prosperon/source/engine/thirdparty/Chipmunk2D/src/cpGrooveJoint.c
2022-01-25 15:22:03 +00:00

198 lines
5.9 KiB
C
Executable file

/* Copyright (c) 2013 Scott Lembcke and Howling Moon Software
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "chipmunk/chipmunk_private.h"
static void
preStep(cpGrooveJoint *joint, cpFloat dt)
{
cpBody *a = joint->constraint.a;
cpBody *b = joint->constraint.b;
// calculate endpoints in worldspace
cpVect ta = cpTransformPoint(a->transform, joint->grv_a);
cpVect tb = cpTransformPoint(a->transform, joint->grv_b);
// calculate axis
cpVect n = cpTransformVect(a->transform, joint->grv_n);
cpFloat d = cpvdot(ta, n);
joint->grv_tn = n;
joint->r2 = cpTransformVect(b->transform, cpvsub(joint->anchorB, b->cog));
// calculate tangential distance along the axis of r2
cpFloat td = cpvcross(cpvadd(b->p, joint->r2), n);
// calculate clamping factor and r2
if(td <= cpvcross(ta, n)){
joint->clamp = 1.0f;
joint->r1 = cpvsub(ta, a->p);
} else if(td >= cpvcross(tb, n)){
joint->clamp = -1.0f;
joint->r1 = cpvsub(tb, a->p);
} else {
joint->clamp = 0.0f;
joint->r1 = cpvsub(cpvadd(cpvmult(cpvperp(n), -td), cpvmult(n, d)), a->p);
}
// Calculate mass tensor
joint->k = k_tensor(a, b, joint->r1, joint->r2);
// calculate bias velocity
cpVect delta = cpvsub(cpvadd(b->p, joint->r2), cpvadd(a->p, joint->r1));
joint->bias = cpvclamp(cpvmult(delta, -bias_coef(joint->constraint.errorBias, dt)/dt), joint->constraint.maxBias);
}
static void
applyCachedImpulse(cpGrooveJoint *joint, cpFloat dt_coef)
{
cpBody *a = joint->constraint.a;
cpBody *b = joint->constraint.b;
apply_impulses(a, b, joint->r1, joint->r2, cpvmult(joint->jAcc, dt_coef));
}
static inline cpVect
grooveConstrain(cpGrooveJoint *joint, cpVect j, cpFloat dt){
cpVect n = joint->grv_tn;
cpVect jClamp = (joint->clamp*cpvcross(j, n) > 0.0f) ? j : cpvproject(j, n);
return cpvclamp(jClamp, joint->constraint.maxForce*dt);
}
static void
applyImpulse(cpGrooveJoint *joint, cpFloat dt)
{
cpBody *a = joint->constraint.a;
cpBody *b = joint->constraint.b;
cpVect r1 = joint->r1;
cpVect r2 = joint->r2;
// compute impulse
cpVect vr = relative_velocity(a, b, r1, r2);
cpVect j = cpMat2x2Transform(joint->k, cpvsub(joint->bias, vr));
cpVect jOld = joint->jAcc;
joint->jAcc = grooveConstrain(joint, cpvadd(jOld, j), dt);
j = cpvsub(joint->jAcc, jOld);
// apply impulse
apply_impulses(a, b, joint->r1, joint->r2, j);
}
static cpFloat
getImpulse(cpGrooveJoint *joint)
{
return cpvlength(joint->jAcc);
}
static const cpConstraintClass klass = {
(cpConstraintPreStepImpl)preStep,
(cpConstraintApplyCachedImpulseImpl)applyCachedImpulse,
(cpConstraintApplyImpulseImpl)applyImpulse,
(cpConstraintGetImpulseImpl)getImpulse,
};
cpGrooveJoint *
cpGrooveJointAlloc(void)
{
return (cpGrooveJoint *)cpcalloc(1, sizeof(cpGrooveJoint));
}
cpGrooveJoint *
cpGrooveJointInit(cpGrooveJoint *joint, cpBody *a, cpBody *b, cpVect groove_a, cpVect groove_b, cpVect anchorB)
{
cpConstraintInit((cpConstraint *)joint, &klass, a, b);
joint->grv_a = groove_a;
joint->grv_b = groove_b;
joint->grv_n = cpvperp(cpvnormalize(cpvsub(groove_b, groove_a)));
joint->anchorB = anchorB;
joint->jAcc = cpvzero;
return joint;
}
cpConstraint *
cpGrooveJointNew(cpBody *a, cpBody *b, cpVect groove_a, cpVect groove_b, cpVect anchorB)
{
return (cpConstraint *)cpGrooveJointInit(cpGrooveJointAlloc(), a, b, groove_a, groove_b, anchorB);
}
cpBool
cpConstraintIsGrooveJoint(const cpConstraint *constraint)
{
return (constraint->klass == &klass);
}
cpVect
cpGrooveJointGetGrooveA(const cpConstraint *constraint)
{
cpAssertHard(cpConstraintIsGrooveJoint(constraint), "Constraint is not a groove joint.");
return ((cpGrooveJoint *)constraint)->grv_a;
}
void
cpGrooveJointSetGrooveA(cpConstraint *constraint, cpVect value)
{
cpAssertHard(cpConstraintIsGrooveJoint(constraint), "Constraint is not a groove joint.");
cpGrooveJoint *g = (cpGrooveJoint *)constraint;
g->grv_a = value;
g->grv_n = cpvperp(cpvnormalize(cpvsub(g->grv_b, value)));
cpConstraintActivateBodies(constraint);
}
cpVect
cpGrooveJointGetGrooveB(const cpConstraint *constraint)
{
cpAssertHard(cpConstraintIsGrooveJoint(constraint), "Constraint is not a groove joint.");
return ((cpGrooveJoint *)constraint)->grv_b;
}
void
cpGrooveJointSetGrooveB(cpConstraint *constraint, cpVect value)
{
cpAssertHard(cpConstraintIsGrooveJoint(constraint), "Constraint is not a groove joint.");
cpGrooveJoint *g = (cpGrooveJoint *)constraint;
g->grv_b = value;
g->grv_n = cpvperp(cpvnormalize(cpvsub(value, g->grv_a)));
cpConstraintActivateBodies(constraint);
}
cpVect
cpGrooveJointGetAnchorB(const cpConstraint *constraint)
{
cpAssertHard(cpConstraintIsGrooveJoint(constraint), "Constraint is not a groove joint.");
return ((cpGrooveJoint *)constraint)->anchorB;
}
void
cpGrooveJointSetAnchorB(cpConstraint *constraint, cpVect anchorB)
{
cpAssertHard(cpConstraintIsGrooveJoint(constraint), "Constraint is not a groove joint.");
cpConstraintActivateBodies(constraint);
((cpGrooveJoint *)constraint)->anchorB = anchorB;
}