653 lines
17 KiB
C
Executable file
653 lines
17 KiB
C
Executable file
// Copyright 2013 Howling Moon Software. All rights reserved.
|
|
// See http://chipmunk2d.net/legal.php for more information.
|
|
|
|
#include <stdlib.h>
|
|
#include <stdio.h>
|
|
#include <string.h>
|
|
#include <math.h>
|
|
|
|
#include "chipmunk/chipmunk_private.h"
|
|
#include "chipmunk/cpPolyline.h"
|
|
|
|
|
|
static inline int Next(int i, int count){return (i+1)%count;}
|
|
|
|
//MARK: Polylines
|
|
|
|
#define DEFAULT_POLYLINE_CAPACITY 16
|
|
|
|
static int
|
|
cpPolylineSizeForCapacity(int capacity)
|
|
{
|
|
return sizeof(cpPolyline) + capacity*sizeof(cpVect);
|
|
}
|
|
|
|
static cpPolyline *
|
|
cpPolylineMake(int capacity)
|
|
{
|
|
capacity = (capacity > DEFAULT_POLYLINE_CAPACITY ? capacity : DEFAULT_POLYLINE_CAPACITY);
|
|
|
|
cpPolyline *line = (cpPolyline *)cpcalloc(1, cpPolylineSizeForCapacity(capacity));
|
|
line->count = 0;
|
|
line->capacity = capacity;
|
|
|
|
return line;
|
|
}
|
|
|
|
static cpPolyline *
|
|
cpPolylineMake2(int capacity, cpVect a, cpVect b)
|
|
{
|
|
cpPolyline *line = cpPolylineMake(capacity);
|
|
line->count = 2;
|
|
line->verts[0] = a;
|
|
line->verts[1] = b;
|
|
|
|
return line;
|
|
}
|
|
|
|
static cpPolyline *
|
|
cpPolylineShrink(cpPolyline *line)
|
|
{
|
|
line->capacity = line->count;
|
|
return (cpPolyline*) cprealloc(line, cpPolylineSizeForCapacity(line->count));
|
|
}
|
|
|
|
void
|
|
cpPolylineFree(cpPolyline *line)
|
|
{
|
|
cpfree(line);
|
|
}
|
|
|
|
// Grow the allocated memory for a polyline.
|
|
static cpPolyline *
|
|
cpPolylineGrow(cpPolyline *line, int count)
|
|
{
|
|
line->count += count;
|
|
|
|
int capacity = line->capacity;
|
|
while(line->count > capacity) capacity *= 2;
|
|
|
|
if(line->capacity < capacity){
|
|
line->capacity = capacity;
|
|
line = (cpPolyline*) cprealloc(line, cpPolylineSizeForCapacity(capacity));
|
|
}
|
|
|
|
return line;
|
|
}
|
|
|
|
// Push v onto the end of line.
|
|
static cpPolyline *
|
|
cpPolylinePush(cpPolyline *line, cpVect v)
|
|
{
|
|
int count = line->count;
|
|
line = cpPolylineGrow(line, 1);
|
|
line->verts[count] = v;
|
|
|
|
return line;
|
|
}
|
|
|
|
// Push v onto the beginning of line.
|
|
static cpPolyline *
|
|
cpPolylineEnqueue(cpPolyline *line, cpVect v)
|
|
{
|
|
// TODO could optimize this to grow in both directions.
|
|
// Probably doesn't matter though.
|
|
int count = line->count;
|
|
line = cpPolylineGrow(line, 1);
|
|
memmove(line->verts + 1, line->verts, count*sizeof(cpVect));
|
|
line->verts[0] = v;
|
|
|
|
return line;
|
|
}
|
|
|
|
// Returns true if the polyline starts and ends with the same vertex.
|
|
cpBool
|
|
cpPolylineIsClosed(cpPolyline *line)
|
|
{
|
|
return (line->count > 1 && cpveql(line->verts[0], line->verts[line->count-1]));
|
|
}
|
|
|
|
// Check if a cpPolyline is longer than a certain length
|
|
// Takes a range which can wrap around if the polyline is looped.
|
|
static cpBool
|
|
cpPolylineIsShort(cpVect *points, int count, int start, int end, cpFloat min)
|
|
{
|
|
cpFloat length = 0.0f;
|
|
for(int i=start; i!=end; i=Next(i, count)){
|
|
length += cpvdist(points[i], points[Next(i, count)]);
|
|
if(length > min) return cpFalse;
|
|
}
|
|
|
|
return cpTrue;
|
|
}
|
|
|
|
//MARK: Polyline Simplification
|
|
|
|
static inline cpFloat
|
|
Sharpness(cpVect a, cpVect b, cpVect c)
|
|
{
|
|
// TODO could speed this up by caching the normals instead of calculating each twice.
|
|
return cpvdot(cpvnormalize(cpvsub(a, b)), cpvnormalize(cpvsub(c, b)));
|
|
}
|
|
|
|
// Join similar adjacent line segments together. Works well for hard edged shapes.
|
|
// 'tol' is the minimum anglular difference in radians of a vertex.
|
|
cpPolyline *
|
|
cpPolylineSimplifyVertexes(cpPolyline *line, cpFloat tol)
|
|
{
|
|
cpPolyline *reduced = cpPolylineMake2(0, line->verts[0], line->verts[1]);
|
|
|
|
cpFloat minSharp = -cpfcos(tol);
|
|
|
|
for(int i=2; i<line->count; i++){
|
|
cpVect vert = line->verts[i];
|
|
cpFloat sharp = Sharpness(reduced->verts[reduced->count - 2], reduced->verts[reduced->count - 1], vert);
|
|
|
|
if(sharp <= minSharp){
|
|
reduced->verts[reduced->count - 1] = vert;
|
|
} else {
|
|
reduced = cpPolylinePush(reduced, vert);
|
|
}
|
|
}
|
|
|
|
if(
|
|
cpPolylineIsClosed(line) &&
|
|
Sharpness(reduced->verts[reduced->count - 2], reduced->verts[0], reduced->verts[1]) < minSharp
|
|
){
|
|
reduced->verts[0] = reduced->verts[reduced->count - 2];
|
|
reduced->count--;
|
|
}
|
|
|
|
// TODO shrink
|
|
return reduced;
|
|
}
|
|
|
|
// Recursive function used by cpPolylineSimplifyCurves().
|
|
static cpPolyline *
|
|
DouglasPeucker(
|
|
cpVect *verts, cpPolyline *reduced,
|
|
int length, int start, int end,
|
|
cpFloat min, cpFloat tol
|
|
){
|
|
// Early exit if the points are adjacent
|
|
if((end - start + length)%length < 2) return reduced;
|
|
|
|
cpVect a = verts[start];
|
|
cpVect b = verts[end];
|
|
|
|
// Check if the length is below the threshold
|
|
if(cpvnear(a, b, min) && cpPolylineIsShort(verts, length, start, end, min)) return reduced;
|
|
|
|
// Find the maximal vertex to split and recurse on
|
|
cpFloat max = 0.0;
|
|
int maxi = start;
|
|
|
|
cpVect n = cpvnormalize(cpvperp(cpvsub(b, a)));
|
|
cpFloat d = cpvdot(n, a);
|
|
|
|
for(int i=Next(start, length); i!=end; i=Next(i, length)){
|
|
cpFloat dist = fabs(cpvdot(n, verts[i]) - d);
|
|
|
|
if(dist > max){
|
|
max = dist;
|
|
maxi = i;
|
|
}
|
|
}
|
|
|
|
if(max > tol){
|
|
reduced = DouglasPeucker(verts, reduced, length, start, maxi, min, tol);
|
|
reduced = cpPolylinePush(reduced, verts[maxi]);
|
|
reduced = DouglasPeucker(verts, reduced, length, maxi, end, min, tol);
|
|
}
|
|
|
|
return reduced;
|
|
}
|
|
|
|
// Recursively reduce the vertex count on a polyline. Works best for smooth shapes.
|
|
// 'tol' is the maximum error for the reduction.
|
|
// The reduced polyline will never be farther than this distance from the original polyline.
|
|
cpPolyline *
|
|
cpPolylineSimplifyCurves(cpPolyline *line, cpFloat tol)
|
|
{
|
|
cpPolyline *reduced = cpPolylineMake(line->count);
|
|
|
|
cpFloat min = tol/2.0f;
|
|
|
|
if(cpPolylineIsClosed(line)){
|
|
int start, end;
|
|
cpLoopIndexes(line->verts, line->count - 1, &start, &end);
|
|
|
|
reduced = cpPolylinePush(reduced, line->verts[start]);
|
|
reduced = DouglasPeucker(line->verts, reduced, line->count - 1, start, end, min, tol);
|
|
reduced = cpPolylinePush(reduced, line->verts[end]);
|
|
reduced = DouglasPeucker(line->verts, reduced, line->count - 1, end, start, min, tol);
|
|
reduced = cpPolylinePush(reduced, line->verts[start]);
|
|
} else {
|
|
reduced = cpPolylinePush(reduced, line->verts[0]);
|
|
reduced = DouglasPeucker(line->verts, reduced, line->count, 0, line->count - 1, min, tol);
|
|
reduced = cpPolylinePush(reduced, line->verts[line->count - 1]);
|
|
}
|
|
|
|
return cpPolylineShrink(reduced);
|
|
}
|
|
|
|
//MARK: Polyline Sets
|
|
|
|
cpPolylineSet *
|
|
cpPolylineSetAlloc(void)
|
|
{
|
|
return (cpPolylineSet *)cpcalloc(1, sizeof(cpPolylineSet));
|
|
}
|
|
|
|
cpPolylineSet *
|
|
cpPolylineSetInit(cpPolylineSet *set)
|
|
{
|
|
set->count = 0;
|
|
set->capacity = 8;
|
|
set->lines = (cpPolyline**) cpcalloc(set->capacity, sizeof(cpPolyline));
|
|
|
|
return set;
|
|
}
|
|
|
|
|
|
cpPolylineSet *
|
|
cpPolylineSetNew(void)
|
|
{
|
|
return cpPolylineSetInit(cpPolylineSetAlloc());
|
|
}
|
|
|
|
void
|
|
cpPolylineSetDestroy(cpPolylineSet *set, cpBool freePolylines)
|
|
{
|
|
if(freePolylines){
|
|
for(int i=0; i<set->count; i++){
|
|
cpPolylineFree(set->lines[i]);
|
|
}
|
|
}
|
|
|
|
cpfree(set->lines);
|
|
}
|
|
|
|
|
|
void
|
|
cpPolylineSetFree(cpPolylineSet *set, cpBool freePolylines)
|
|
{
|
|
if(set){
|
|
cpPolylineSetDestroy(set, freePolylines);
|
|
cpfree(set);
|
|
}
|
|
}
|
|
|
|
// Find the polyline that ends with v.
|
|
static int
|
|
cpPolylineSetFindEnds(cpPolylineSet *set, cpVect v){
|
|
int count = set->count;
|
|
cpPolyline **lines = set->lines;
|
|
|
|
for(int i=0; i<count; i++){
|
|
cpPolyline *line = lines[i];
|
|
if(cpveql(line->verts[line->count - 1], v)) return i;
|
|
}
|
|
|
|
return -1;
|
|
}
|
|
|
|
// Find the polyline that starts with v.
|
|
static int
|
|
cpPolylineSetFindStarts(cpPolylineSet *set, cpVect v){
|
|
int count = set->count;
|
|
cpPolyline **lines = set->lines;
|
|
|
|
for(int i=0; i<count; i++){
|
|
if(cpveql(lines[i]->verts[0], v)) return i;
|
|
}
|
|
|
|
return -1;
|
|
}
|
|
|
|
// Add a new polyline to a polyline set.
|
|
static void
|
|
cpPolylineSetPush(cpPolylineSet *set, cpPolyline *line)
|
|
{
|
|
// grow set
|
|
set->count++;
|
|
if(set->count > set->capacity){
|
|
set->capacity *= 2;
|
|
set->lines = (cpPolyline**) cprealloc(set->lines, set->capacity*sizeof(cpPolyline));
|
|
}
|
|
|
|
set->lines[set->count - 1] = line;
|
|
}
|
|
|
|
// Add a new polyline to a polyline set.
|
|
static void
|
|
cpPolylineSetAdd(cpPolylineSet *set, cpVect v0, cpVect v1)
|
|
{
|
|
cpPolylineSetPush(set, cpPolylineMake2(DEFAULT_POLYLINE_CAPACITY, v0, v1));
|
|
}
|
|
|
|
// Join two cpPolylines in a polyline set together.
|
|
static void
|
|
cpPolylineSetJoin(cpPolylineSet *set, int before, int after)
|
|
{
|
|
cpPolyline *lbefore = set->lines[before];
|
|
cpPolyline *lafter = set->lines[after];
|
|
|
|
// append
|
|
int count = lbefore->count;
|
|
lbefore = cpPolylineGrow(lbefore, lafter->count);
|
|
memmove(lbefore->verts + count, lafter->verts, lafter->count*sizeof(cpVect));
|
|
set->lines[before] = lbefore;
|
|
|
|
// delete lafter
|
|
set->count--;
|
|
cpPolylineFree(set->lines[after]);
|
|
set->lines[after] = set->lines[set->count];
|
|
}
|
|
|
|
// Add a segment to a polyline set.
|
|
// A segment will either start a new polyline, join two others, or add to or loop an existing polyline.
|
|
void
|
|
cpPolylineSetCollectSegment(cpVect v0, cpVect v1, cpPolylineSet *lines)
|
|
{
|
|
int before = cpPolylineSetFindEnds(lines, v0);
|
|
int after = cpPolylineSetFindStarts(lines, v1);
|
|
|
|
if(before >= 0 && after >= 0){
|
|
if(before == after){
|
|
// loop by pushing v1 onto before
|
|
lines->lines[before] = cpPolylinePush(lines->lines[before], v1);
|
|
} else {
|
|
// join before and after
|
|
cpPolylineSetJoin(lines, before, after);
|
|
}
|
|
} else if(before >= 0){
|
|
// push v1 onto before
|
|
lines->lines[before] = cpPolylinePush(lines->lines[before], v1);
|
|
} else if(after >= 0){
|
|
// enqueue v0 onto after
|
|
lines->lines[after] = cpPolylineEnqueue(lines->lines[after], v0);
|
|
} else {
|
|
// create new line from v0 and v1
|
|
cpPolylineSetAdd(lines, v0, v1);
|
|
}
|
|
}
|
|
|
|
//MARK: Convex Hull Functions
|
|
|
|
cpPolyline *
|
|
cpPolylineToConvexHull(cpPolyline *line, cpFloat tol)
|
|
{
|
|
cpPolyline *hull = cpPolylineMake(line->count + 1);
|
|
hull->count = cpConvexHull(line->count, line->verts, hull->verts, NULL, tol);
|
|
hull = cpPolylinePush(hull, hull->verts[0]);
|
|
|
|
return cpPolylineShrink(hull);
|
|
}
|
|
|
|
//MARK: Approximate Concave Decompostition
|
|
|
|
struct Notch {
|
|
int i;
|
|
cpFloat d;
|
|
cpVect v;
|
|
cpVect n;
|
|
};
|
|
|
|
static cpFloat
|
|
FindSteiner(int count, cpVect *verts, struct Notch notch)
|
|
{
|
|
cpFloat min = INFINITY;
|
|
cpFloat feature = -1.0;
|
|
|
|
for(int i=1; i<count-1; i++){
|
|
int index = (notch.i + i)%count;
|
|
|
|
cpVect seg_a = verts[index];
|
|
cpVect seg_b = verts[Next(index, count)];
|
|
|
|
cpFloat thing_a = cpvcross(notch.n, cpvsub(seg_a, notch.v));
|
|
cpFloat thing_b = cpvcross(notch.n, cpvsub(seg_b, notch.v));
|
|
if(thing_a*thing_b <= 0.0){
|
|
cpFloat t = thing_a/(thing_a - thing_b);
|
|
cpFloat dist = cpvdot(notch.n, cpvsub(cpvlerp(seg_a, seg_b, t), notch.v));
|
|
|
|
if(dist >= 0.0 && dist <= min){
|
|
min = dist;
|
|
feature = index + t;
|
|
}
|
|
}
|
|
}
|
|
|
|
return feature;
|
|
}
|
|
|
|
//static cpFloat
|
|
//FindSteiner2(cpVect *verts, int count, struct Notch notch)
|
|
//{
|
|
// cpVect a = verts[(notch.i + count - 1)%count];
|
|
// cpVect b = verts[(notch.i + 1)%count];
|
|
// cpVect n = cpvnormalize(cpvadd(cpvnormalize(cpvsub(notch.v, a)), cpvnormalize(cpvsub(notch.v, b))));
|
|
//
|
|
// cpFloat min = INFINITY;
|
|
// cpFloat feature = -1.0;
|
|
//
|
|
// for(int i=1; i<count-1; i++){
|
|
// int index = (notch.i + i)%count;
|
|
//
|
|
// cpVect seg_a = verts[index];
|
|
// cpVect seg_b = verts[Next(index, count)];
|
|
//
|
|
// cpFloat thing_a = cpvcross(n, cpvsub(seg_a, notch.v));
|
|
// cpFloat thing_b = cpvcross(n, cpvsub(seg_b, notch.v));
|
|
// if(thing_a*thing_b <= 0.0){
|
|
// cpFloat t = thing_a/(thing_a - thing_b);
|
|
// cpFloat dist = cpvdot(n, cpvsub(cpvlerp(seg_a, seg_b, t), notch.v));
|
|
//
|
|
// if(dist >= 0.0 && dist <= min){
|
|
// min = dist;
|
|
// feature = index + t;
|
|
// }
|
|
// }
|
|
// }
|
|
//
|
|
// cpAssertSoft(feature >= 0.0, "No closest features detected. This is likely due to a self intersecting polygon.");
|
|
// return feature;
|
|
//}
|
|
|
|
//struct Range {cpFloat min, max;};
|
|
//static inline struct Range
|
|
//clip_range(cpVect delta_a, cpVect delta_b, cpVect clip)
|
|
//{
|
|
// cpFloat da = cpvcross(delta_a, clip);
|
|
// cpFloat db = cpvcross(delta_b, clip);
|
|
// cpFloat clamp = da/(da - db);
|
|
// if(da > db){
|
|
// return (struct Range){-INFINITY, clamp};
|
|
// } else if(da < db){
|
|
// return (struct Range){clamp, INFINITY};
|
|
// } else {
|
|
// return (struct Range){-INFINITY, INFINITY};
|
|
// }
|
|
//}
|
|
//
|
|
//static cpFloat
|
|
//FindSteiner3(cpVect *verts, int count, struct Notch notch)
|
|
//{
|
|
// cpFloat min = INFINITY;
|
|
// cpFloat feature = -1.0;
|
|
//
|
|
// cpVect support_a = verts[(notch.i - 1 + count)%count];
|
|
// cpVect support_b = verts[(notch.i + 1)%count];
|
|
//
|
|
// cpVect clip_a = cpvlerp(support_a, support_b, 0.1);
|
|
// cpVect clip_b = cpvlerp(support_b, support_b, 0.9);
|
|
//
|
|
// for(int i=1; i<count - 1; i++){
|
|
// int index = (notch.i + i)%count;
|
|
// cpVect seg_a = verts[index];
|
|
// cpVect seg_b = verts[Next(index, count)];
|
|
//
|
|
// cpVect delta_a = cpvsub(seg_a, notch.v);
|
|
// cpVect delta_b = cpvsub(seg_b, notch.v);
|
|
//
|
|
// // Ignore if the segment faces away from the point.
|
|
// if(cpvcross(delta_b, delta_a) > 0.0){
|
|
// struct Range range1 = clip_range(delta_a, delta_b, cpvsub(notch.v, clip_a));
|
|
// struct Range range2 = clip_range(delta_a, delta_b, cpvsub(clip_b, notch.v));
|
|
//
|
|
// cpFloat min_t = cpfmax(0.0, cpfmax(range1.min, range2.min));
|
|
// cpFloat max_t = cpfmin(1.0, cpfmin(range1.max, range2.max));
|
|
//
|
|
// // Ignore if the segment has been completely clipped away.
|
|
// if(min_t < max_t){
|
|
// cpVect seg_delta = cpvsub(seg_b, seg_a);
|
|
// cpFloat closest_t = cpfclamp(cpvdot(seg_delta, cpvsub(notch.v, seg_a))/cpvlengthsq(seg_delta), min_t, max_t);
|
|
// cpVect closest = cpvlerp(seg_a, seg_b, closest_t);
|
|
//
|
|
// cpFloat dist = cpvdistsq(notch.v, closest);
|
|
// if(dist < min){
|
|
// min = dist;
|
|
// feature = index + closest_t;
|
|
// }
|
|
// }
|
|
// }
|
|
// }
|
|
//
|
|
// cpAssertWarn(feature >= 0.0, "Internal Error: No closest features detected.");
|
|
// return feature;
|
|
//}
|
|
|
|
//static cpBool
|
|
//VertexUnobscured(int count, cpVect *verts, int index, int notch_i)
|
|
//{
|
|
// cpVect v = verts[notch_i];
|
|
// cpVect n = cpvnormalize(cpvsub(verts[index], v));
|
|
//
|
|
// for(int i=0; i<count; i++){
|
|
// if(i == index || i == Next(i, count) || i == notch_i || i == Next(notch_i, count)) continue;
|
|
//
|
|
// cpVect seg_a = verts[i];
|
|
// cpVect seg_b = verts[Next(i, count)];
|
|
//
|
|
// cpFloat thing_a = cpvcross(n, cpvsub(seg_a, v));
|
|
// cpFloat thing_b = cpvcross(n, cpvsub(seg_b, v));
|
|
// if(thing_a*thing_b <= 0.0) return cpTrue;
|
|
// }
|
|
//
|
|
// return cpFalse;
|
|
//}
|
|
//
|
|
//static cpFloat
|
|
//FindSteiner4(int count, cpVect *verts, struct Notch notch, cpFloat *convexity)
|
|
//{
|
|
// cpFloat min = INFINITY;
|
|
// cpFloat feature = -1.0;
|
|
//
|
|
// for(int i=Next(notch.b, count); i!=notch.a; i=Next(i, count)){
|
|
// cpVect v = verts[i];
|
|
// cpFloat weight = (1.0 + 0.1*convexity[i])/(1.0*cpvdist(notch.v, v));
|
|
//
|
|
// if(weight <= min && VertexUnobscured(count, verts, i, notch.i)){
|
|
// min = weight;
|
|
// feature = i;
|
|
// }
|
|
// }
|
|
//
|
|
// cpAssertSoft(feature >= 0.0, "No closest features detected. This is likely due to a self intersecting polygon.");
|
|
// return feature;
|
|
//}
|
|
|
|
static struct Notch
|
|
DeepestNotch(int count, cpVect *verts, int hullCount, cpVect *hullVerts, int first, cpFloat tol)
|
|
{
|
|
struct Notch notch = {};
|
|
int j = Next(first, count);
|
|
|
|
for(int i=0; i<hullCount; i++){
|
|
cpVect a = hullVerts[i];
|
|
cpVect b = hullVerts[Next(i, hullCount)];
|
|
|
|
// TODO use a cross check instead?
|
|
cpVect n = cpvnormalize(cpvrperp(cpvsub(a, b)));
|
|
cpFloat d = cpvdot(n, a);
|
|
|
|
cpVect v = verts[j];
|
|
while(!cpveql(v, b)){
|
|
cpFloat depth = cpvdot(n, v) - d;
|
|
|
|
if(depth > notch.d){
|
|
notch.d = depth;
|
|
notch.i = j;
|
|
notch.v = v;
|
|
notch.n = n;
|
|
}
|
|
|
|
j = Next(j, count);
|
|
v = verts[j];
|
|
}
|
|
|
|
j = Next(j, count);
|
|
}
|
|
|
|
return notch;
|
|
}
|
|
|
|
static inline int IMAX(int a, int b){return (a > b ? a : b);}
|
|
|
|
static void
|
|
ApproximateConcaveDecomposition(cpVect *verts, int count, cpFloat tol, cpPolylineSet *set)
|
|
{
|
|
int first;
|
|
cpVect *hullVerts = (cpVect*) alloca(count*sizeof(cpVect));
|
|
int hullCount = cpConvexHull(count, verts, hullVerts, &first, 0.0);
|
|
|
|
if(hullCount != count){
|
|
struct Notch notch = DeepestNotch(count, verts, hullCount, hullVerts, first, tol);
|
|
|
|
if(notch.d > tol){
|
|
cpFloat steiner_it = FindSteiner(count, verts, notch);
|
|
|
|
if(steiner_it >= 0.0){
|
|
int steiner_i = (int)steiner_it;
|
|
cpVect steiner = cpvlerp(verts[steiner_i], verts[Next(steiner_i, count)], steiner_it - steiner_i);
|
|
|
|
// Vertex counts NOT including the steiner point.
|
|
int sub1_count = (steiner_i - notch.i + count)%count + 1;
|
|
int sub2_count = count - (steiner_i - notch.i + count)%count;
|
|
cpVect *scratch = (cpVect*) alloca((IMAX(sub1_count, sub2_count) + 1)*sizeof(cpVect));
|
|
|
|
for(int i=0; i<sub1_count; i++) scratch[i] = verts[(notch.i + i)%count];
|
|
scratch[sub1_count] = steiner;
|
|
ApproximateConcaveDecomposition(scratch, sub1_count + 1, tol, set);
|
|
|
|
for(int i=0; i<sub2_count; i++) scratch[i] = verts[(steiner_i + 1 + i)%count];
|
|
scratch[sub2_count] = steiner;
|
|
ApproximateConcaveDecomposition(scratch, sub2_count + 1, tol, set);
|
|
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
cpPolyline *hull = cpPolylineMake(hullCount + 1);
|
|
|
|
memcpy(hull->verts, hullVerts, hullCount*sizeof(cpVect));
|
|
hull->verts[hullCount] = hullVerts[0];
|
|
hull->count = hullCount + 1;
|
|
|
|
cpPolylineSetPush(set, hull);
|
|
}
|
|
|
|
cpPolylineSet *
|
|
cpPolylineConvexDecomposition_BETA(cpPolyline *line, cpFloat tol)
|
|
{
|
|
cpAssertSoft(cpPolylineIsClosed(line), "Cannot decompose an open polygon.");
|
|
cpAssertSoft(cpAreaForPoly(line->count, line->verts, 0.0) >= 0.0, "Winding is backwards. (Are you passing a hole?)");
|
|
|
|
cpPolylineSet *set = cpPolylineSetNew();
|
|
ApproximateConcaveDecomposition(line->verts, line->count - 1, tol, set);
|
|
|
|
return set;
|
|
}
|