prosperon/source/engine/model.c
2024-07-15 15:54:18 -05:00

625 lines
15 KiB
C

#include "model.h"
#include "log.h"
#include "resources.h"
#include "stb_ds.h"
#include "gameobject.h"
#include "render.h"
#include "HandmadeMath.h"
#include "math.h"
#include "time.h"
#include <cgltf.h>
#include <limits.h>
#include <stdlib.h>
#include <string.h>
#include "yugine.h"
#include "jsffi.h"
#include "texture.h"
#include "sokol/sokol_gfx.h"
static void processnode();
static void processmesh();
static void processtexture();
static cgltf_data *cdata;
static char *cpath;
cgltf_attribute *get_attr_type(cgltf_primitive *p, cgltf_attribute_type t)
{
for (int i = 0; i < p->attributes_count; i++) {
if (p->attributes[i].type == t)
return &p->attributes[i];
}
return NULL;
}
unsigned short pack_short_tex(float c) { return c * USHRT_MAX; }
void mesh_add_material(primitive *prim, cgltf_material *mat)
{
if (!mat) return;
prim->mat = calloc(sizeof(*prim->mat), 1);
material *pmat = prim->mat;
if (mat->has_pbr_metallic_roughness && mat->pbr_metallic_roughness.base_color_texture.texture) {
cgltf_image *img = mat->pbr_metallic_roughness.base_color_texture.texture->image;
if (img->buffer_view) {
cgltf_buffer_view *buf = img->buffer_view;
pmat->diffuse = texture_fromdata(buf->buffer->data, buf->size);
} else {
// char *path = makepath(dirname(cpath), img->uri);
// pmat->diffuse = texture_from_file(path);
// free(path);
}
} else
pmat->diffuse = texture_from_file("icons/moon.gif");
}
sg_buffer texcoord_floats(float *f, int n)
{
unsigned short packed[n];
for (int i = 0; i < n; i++) {
float v = f[i];
if (v < 0) v = 0;
if (v > 1) v = 1;
packed[i] = pack_short_tex(v);
}
return sg_make_buffer(&(sg_buffer_desc){
.data = SG_RANGE(packed),
.label = "tex coord vert buffer",
});
}
sg_buffer par_idx_buffer(uint32_t *p, int v)
{
uint16_t idx[v];
for (int i = 0; i < v; i++) idx[i] = p[i];
return sg_make_buffer(&(sg_buffer_desc){
.data = SG_RANGE(idx),
.type = SG_BUFFERTYPE_INDEXBUFFER
});
}
sg_buffer float_buffer(float *f, int v)
{
return sg_make_buffer(&(sg_buffer_desc){
.data = (sg_range){
.ptr = f,
.size = sizeof(*f)*v
}
});
}
sg_buffer index_buffer(float *f, int verts)
{
uint16_t idxs[verts];
for (int i = 0; i < verts; i++)
idxs[i] = f[i];
return sg_make_buffer(&(sg_buffer_desc){
.data = SG_RANGE(idxs),
.type = SG_BUFFERTYPE_INDEXBUFFER,
});
}
uint32_t pack_int10_n2(float *norm)
{
uint32_t ret = 0;
for (int i = 0; i < 3; i++) {
int n = (norm[i]+1.0)*511;
ret |= (n & 0x3ff) << (10*i);
}
return ret;
}
sg_buffer normal_floats(float *f, int n)
{
return float_buffer(f, n);
uint32_t packed_norms[n/3];
for (int v = 0, i = 0; v < n/3; v++, i+= 3)
packed_norms[v] = pack_int10_n2(f+i);
return sg_make_buffer(&(sg_buffer_desc){
.data = SG_RANGE(packed_norms),
.label = "normal vert buffer",
});
}
sg_buffer ubyten_buffer(float *f, int v)
{
unsigned char b[v];
for (int i = 0; i < (v); i++)
b[i] = f[i]*255;
return sg_make_buffer(&(sg_buffer_desc){.data=SG_RANGE(b)});
}
sg_buffer ubyte_buffer(float *f, int v)
{
unsigned char b[v];
for (int i = 0; i < (v); i++)
b[i] = f[i];
return sg_make_buffer(&(sg_buffer_desc){.data=SG_RANGE(b)});
}
sg_buffer joint_buf(float *f, int v)
{
char joints[v];
for (int i = 0; i < (v); i++)
joints[i] = f[i];
return sg_make_buffer(&(sg_buffer_desc){ .data = SG_RANGE(joints)});
}
sg_buffer weight_buf(float *f, int v)
{
unsigned char weights[v];
for (int i = 0; i < (v); i++)
weights[i] = f[i]*255;
return sg_make_buffer(&(sg_buffer_desc){ .data = SG_RANGE(weights)});
}
HMM_Vec3 index_to_vert(uint32_t idx, float *f)
{
return (HMM_Vec3){f[idx*3], f[idx*3+1], f[idx*3+2]};
}
void primitive_gen_indices(primitive *prim)
{
if (prim->idx_count != 0) return;
uint16_t *idxs = malloc(sizeof(*idxs)*prim->idx_count);
for (int z = 0; z < prim->idx_count; z++)
idxs[z] = z;
prim->index = sg_make_buffer(&(sg_buffer_desc){
.data.ptr = idxs,
.data.size = sizeof(uint16_t) * prim->idx_count,
.type = SG_BUFFERTYPE_INDEXBUFFER});
free(idxs);
}
struct primitive mesh_add_primitive(cgltf_primitive *prim)
{
primitive retp = (primitive){0};
uint16_t *idxs;
if (prim->indices) {
int n = cgltf_accessor_unpack_floats(prim->indices, NULL, 0);
float fidx[n];
cgltf_accessor_unpack_floats(prim->indices, fidx, n);
idxs = malloc(sizeof(*idxs)*n);
for (int i = 0; i < n; i++)
idxs[i] = fidx[i];
retp.index = sg_make_buffer(&(sg_buffer_desc){
.data.ptr = idxs,
.data.size = sizeof(*idxs) * n,
.type = SG_BUFFERTYPE_INDEXBUFFER,
.label = "mesh index buffer",
});
retp.idx_count = n;
free(idxs);
} else {
retp.idx_count = cgltf_accessor_unpack_floats(prim->attributes[0].data, NULL, 0);
primitive_gen_indices(&retp);
}
printf("adding material\n");
mesh_add_material(&retp, prim->material);
for (int k = 0; k < prim->attributes_count; k++) {
cgltf_attribute attribute = prim->attributes[k];
int n = cgltf_accessor_unpack_floats(attribute.data, NULL, 0); /* floats per vertex x num elements. In other words, total floats pulled */
int comp = cgltf_num_components(attribute.data->type);
int verts = n/comp;
float vs[n];
cgltf_accessor_unpack_floats(attribute.data, vs, n);
switch (attribute.type) {
case cgltf_attribute_type_position:
retp.pos = sg_make_buffer(&(sg_buffer_desc){
.data.ptr = vs,
.data.size = sizeof(float) * n,
.label = "mesh vert buffer"
});
break;
case cgltf_attribute_type_normal:
retp.norm = normal_floats(vs, n);
break;
case cgltf_attribute_type_tangent:
break;
case cgltf_attribute_type_color:
retp.color = ubyten_buffer(vs,n);
break;
case cgltf_attribute_type_weights:
retp.weight = ubyten_buffer(vs, n);
break;
case cgltf_attribute_type_joints:
retp.bone = ubyte_buffer(vs, n);
break;
case cgltf_attribute_type_texcoord:
retp.uv = texcoord_floats(vs, n);
break;
case cgltf_attribute_type_invalid:
YughWarn("Invalid type.");
break;
case cgltf_attribute_type_custom:
break;
case cgltf_attribute_type_max_enum:
break;
}
}
if (!retp.bone.id) {
char joints[retp.idx_count*4];
memset(joints, 0, retp.idx_count*4);
retp.bone = sg_make_buffer(&(sg_buffer_desc){ .data = SG_RANGE(joints)});
}
if (!retp.weight.id) {
char weights[retp.idx_count*4];
memset(weights,0,retp.idx_count*4);
retp.weight = sg_make_buffer(&(sg_buffer_desc){ .data = SG_RANGE(weights)});
}
if (!retp.color.id) {
char colors[retp.idx_count*4];
memset(colors,0,retp.idx_count*4);
retp.color = sg_make_buffer(&(sg_buffer_desc) { .data = SG_RANGE(colors) });
}
if (!retp.norm.id) {
YughInfo("Making normals.");
cgltf_attribute *pa = get_attr_type(prim, cgltf_attribute_type_position);
int n = cgltf_accessor_unpack_floats(pa->data, NULL,0);
int comp = 3;
int verts = n/comp;
uint32_t face_norms[verts];
float ps[n];
cgltf_accessor_unpack_floats(pa->data,ps,n);
for (int i = 0; i < verts; i+=3) {
HMM_Vec3 a = index_to_vert(i,ps);
HMM_Vec3 b = index_to_vert(i+1,ps);
HMM_Vec3 c = index_to_vert(i+2,ps);
HMM_Vec3 norm = HMM_NormV3(HMM_Cross(HMM_SubV3(b,a), HMM_SubV3(c,a)));
uint32_t packed_norm = pack_int10_n2(norm.Elements);
face_norms[i] = face_norms[i+1] = face_norms[i+2] = packed_norm;
}
retp.norm = sg_make_buffer(&(sg_buffer_desc){
.data.ptr = face_norms,
.data.size = sizeof(uint32_t) * verts});
}
return retp;
}
void model_add_cgltf_mesh(mesh *m, cgltf_mesh *gltf_mesh)
{
for (int i = 0; i < gltf_mesh->primitives_count; i++)
arrput(m->primitives, mesh_add_primitive(gltf_mesh->primitives+i));
}
void packFloats(float *src, float *dest, int srcLength) {
int i, j;
for (i = 0, j = 0; i < srcLength; i += 3, j += 4) {
dest[j] = src[i];
dest[j + 1] = src[i + 1];
dest[j + 2] = src[i + 2];
dest[j + 3] = 0.0f;
}
}
void model_add_cgltf_anim(model *model, cgltf_animation *anim)
{
YughInfo("FOUND ANIM, using %d channels and %d samplers", anim->channels_count, anim->samplers_count);
struct animation an = (struct animation){0};
arrsetlen(an.samplers, anim->samplers_count);
for (int i = 0; i < anim->samplers_count; i++) {
cgltf_animation_sampler s = anim->samplers[i];
sampler samp = (sampler){0};
int n = cgltf_accessor_unpack_floats(s.input, NULL, 0);
arrsetlen(samp.times, n);
cgltf_accessor_unpack_floats(s.input, samp.times, n);
n = cgltf_accessor_unpack_floats(s.output, NULL, 0);
int comp = cgltf_num_components(s.output->type);
arrsetlen(samp.data, n/comp);
if (comp == 4)
cgltf_accessor_unpack_floats(s.output, samp.data, n);
else {
float *out = malloc(sizeof(*out)*n);
cgltf_accessor_unpack_floats(s.output, out, n);
packFloats(out, samp.data, n);
free(out);
}
samp.type = s.interpolation;
if (samp.type == LINEAR && comp == 4)
samp.type = SLERP;
an.samplers[i] = samp;
}
for (int i = 0; i < anim->channels_count; i++) {
cgltf_animation_channel ch = anim->channels[i];
struct anim_channel ach = (struct anim_channel){0};
md5joint *md = model->nodes+(ch.target_node-cdata->nodes);
switch(ch.target_path) {
case cgltf_animation_path_type_translation:
ach.target = &md->pos;
break;
case cgltf_animation_path_type_rotation:
ach.target = &md->rot;
break;
case cgltf_animation_path_type_scale:
ach.target = &md->scale;
break;
default: break;
}
ach.sampler = an.samplers+(ch.sampler-anim->samplers);
arrput(an.channels, ach);
}
model->anim = an;
model->anim.time = apptime();
}
void model_add_cgltf_skin(model *model, cgltf_skin *skin)
{
int n = cgltf_accessor_unpack_floats(skin->inverse_bind_matrices, NULL, 0);
struct skin sk = (struct skin){0};
arrsetlen(sk.invbind, n/16);
cgltf_accessor_unpack_floats(skin->inverse_bind_matrices, sk.invbind, n);
YughInfo("FOUND SKIN, of %d bones, and %d vert comps", skin->joints_count, n);
cgltf_node *root = skin->skeleton;
arrsetlen(sk.joints, skin->joints_count);
sk.root = model->nodes+(skin->skeleton-cdata->nodes);
for (int i = 0; i < 50; i++)
sk.binds[i] = MAT1;
for (int i = 0; i < skin->joints_count; i++) {
int offset = skin->joints[i]-cdata->nodes;
sk.joints[i] = model->nodes+offset;
md5joint *j = sk.joints[i];
cgltf_node *n = skin->joints[i];
for (int i = 0; i < 3; i++) {
j->pos.e[i] = n->translation[i];
j->scale.e[i] = n->scale[i];
}
for (int i = 0; i < 4; i++)
j->rot.e[i] = n->rotation[i];
}
model->skin = sk;
}
void model_process_node(model *model, cgltf_node *node)
{
int n = node-cdata->nodes;
cgltf_node_transform_world(node, model->nodes[n].t.e);
model->nodes[n].parent = model->nodes+(node->parent-cdata->nodes);
if (node->mesh) {
int meshn = node->mesh-cdata->meshes;
arrsetlen(model->meshes, meshn+1);
model->meshes[meshn].m = &model->nodes[n].t;
model_add_cgltf_mesh(model->meshes+meshn, node->mesh);
}
}
struct model *model_make(const char *path)
{
YughInfo("Making the model from %s.", path);
cpath = path;
cgltf_options options = {0};
cgltf_data *data = NULL;
cgltf_result result = cgltf_parse_file(&options, path, &data);
struct model *model = NULL;
if (result) {
YughError("CGLTF could not parse file %s, err %d.", path, result);
goto CLEAN;
}
result = cgltf_load_buffers(&options, data, path);
if (result) {
YughError("CGLTF could not load buffers for file %s, err %d.", path, result);
goto CLEAN;
}
cdata = data;
model = calloc(1, sizeof(*model));
arrsetlen(model->nodes, data->nodes_count);
for (int i = 0; i < data->nodes_count; i++)
model_process_node(model, data->nodes+i);
for (int i = 0; i < data->animations_count; i++)
model_add_cgltf_anim(model, data->animations+i);
for (int i = 0; i < data->skins_count; i++)
model_add_cgltf_skin(model, data->skins+i);
CLEAN:
cgltf_free(data);
return model;
}
void model_free(model *m)
{
}
sg_bindings primitive_bind(primitive *p)
{
sg_bindings b = {0};
b.vertex_buffers[MAT_POS] = p->pos;
b.vertex_buffers[MAT_UV] = p->uv;
b.vertex_buffers[MAT_NORM] = p->norm;
b.vertex_buffers[MAT_BONE] = p->bone;
b.vertex_buffers[MAT_WEIGHT] = p->weight;
b.vertex_buffers[MAT_COLOR] = p->color;
b.index_buffer = p->index;
b.fs.images[0] = p->mat->diffuse->id;
b.fs.samplers[0] = tex_sampler;
return b;
}
void model_draw_go(model *model, transform *go)
{
HMM_Mat4 gom = transform2mat(*go);
animation_run(&model->anim, apptime());
skin *sk = &model->skin;
for (int i = 0; i < arrlen(sk->joints); i++) {
md5joint *md = sk->joints[i];
HMM_Mat4 local = HMM_M4TRS(md->pos.xyz, md->rot, md->scale.xyz);
if (md->parent)
local = HMM_MulM4(md->parent->t, local);
md->t = local;
sk->binds[i] = HMM_MulM4(md->t, sk->invbind[i]);
}
/*sg_apply_uniforms(SG_SHADERSTAGE_VS, SLOT_skinv, &(sg_range){
.ptr = sk->binds,
.size = sizeof(*sk->binds)*50
});
*/
for (int i = 0; i < arrlen(model->meshes); i++) {
HMM_Mat4 mod = *model->meshes[i].m;
mod = HMM_MulM4(mod, gom);
mesh msh = model->meshes[i];
for (int j = 0; j < arrlen(msh.primitives); j++) {
sg_bindings b = primitive_bind(msh.primitives+j);
sg_apply_bindings(&b);
sg_draw(0, msh.primitives[j].idx_count, 1);
}
}
}
int mat2type(int mat)
{
switch(mat) {
case MAT_POS:
case MAT_NORM:
return SG_VERTEXFORMAT_FLOAT3;
case MAT_PPOS:
case MAT_WH:
case MAT_ST:
return SG_VERTEXFORMAT_FLOAT2;
case MAT_UV:
case MAT_TAN:
return SG_VERTEXFORMAT_USHORT2N;
return SG_VERTEXFORMAT_UINT10_N2;
case MAT_BONE:
return SG_VERTEXFORMAT_UBYTE4;
case MAT_WEIGHT:
case MAT_COLOR:
return SG_VERTEXFORMAT_UBYTE4N;
case MAT_ANGLE:
case MAT_SCALE:
return SG_VERTEXFORMAT_FLOAT;
};
return 0;
}
int mat2step(int mat)
{
switch(mat) {
case MAT_POS:
case MAT_UV:
case MAT_TAN:
case MAT_NORM:
case MAT_BONE:
case MAT_WEIGHT:
return SG_VERTEXSTEP_PER_VERTEX;
};
return SG_VERTEXSTEP_PER_INSTANCE;
}
sg_buffer mat2buffer(int mat, primitive *p)
{
switch(mat) {
case MAT_POS: return p->pos;
case MAT_NORM: return p->norm;
case MAT_UV: return p->uv;
case MAT_BONE: return p->bone;
case MAT_WEIGHT: return p->weight;
case MAT_COLOR: return p->color;
};
return p->pos;
}
sg_bindings primitive_bindings(primitive *p, JSValue v)
{
sg_bindings b = {0};
JSValue inputs = js_getpropstr(js_getpropstr(v, "vs"), "inputs");
for (int i = 0; i < js_arrlen(inputs); i++) {
JSValue attr = js_getpropidx(inputs, i);
int mat = js2number(js_getpropstr(attr, "mat"));
int slot = js2number(js_getpropstr(attr, "slot"));
sg_buffer buf = mat2buffer(mat,p);
if (!buf.id) {
// ERROR
}
b.vertex_buffers[slot] = buf;
}
b.index_buffer = p->index;
return b;
}
void primitive_free(primitive *prim)
{
}
void material_free(material *mat)
{
}