prosperon/source/engine/thirdparty/par/par_sprune.h
2023-05-13 03:21:11 +00:00

477 lines
15 KiB
C

// SPRUNE :: https://github.com/prideout/par
// Sweep and Prune library for detecting axis-aligned box collisions in 2D.
//
// For an emscripten demo of this library, take a look at the following link.
//
// https://prideout.net/d3cpp
//
// The axis-aligned bounding boxes are specified by (minx, miny, maxx, maxy).
// Simple usage example:
//
// float boxes[] = {
// 0.10, 0.10, 0.30, 0.30, // box 0
// 0.20, 0.20, 0.40, 0.40, // box 1
// 0.60, 0.15, 0.70, 0.25, // box 2
// };
// int nboxes = 3;
// par_sprune_context* ctx = par_sprune_overlap(boxes, nboxes, 0);
// int const* pairs = ctx->collision_pairs;
// for (int i = 0; i < ctx->ncollision_pairs * 2; i += 2) {
// printf("box %d overlaps box %d\n", pairs[i], pairs[i + 1]);
// }
// par_sprune_free_context(ctx);
//
// Distributed under the MIT License, see bottom of file.
#ifndef PAR_SPRUNE_H
#define PAR_SPRUNE_H
#ifdef __cplusplus
extern "C" {
#endif
#include <stdint.h>
#include <stdbool.h>
#ifndef PAR_SPRUNE_INT
#define PAR_SPRUNE_INT int32_t
#endif
#ifndef PAR_SPRUNE_FLT
#define PAR_SPRUNE_FLT float
#endif
// -----------------------------------------------------------------------------
// BEGIN PUBLIC API
// -----------------------------------------------------------------------------
typedef struct {
PAR_SPRUNE_INT const* const collision_pairs; // list of two-tuples
PAR_SPRUNE_INT const ncollision_pairs; // number of two-tuples
PAR_SPRUNE_INT const* const culled; // filled by par_sprune_cull
PAR_SPRUNE_INT const nculled; // set by par_sprune_cull
} par_sprune_context;
void par_sprune_free_context(par_sprune_context* context);
// Takes an array of 4-tuples (minx miny maxx maxy) and performs SaP. Populates
// "collision_pairs" and "ncollision_pairs". Optionally takes an existing
// context to avoid memory churn; pass NULL for initial construction.
par_sprune_context* par_sprune_overlap(PAR_SPRUNE_FLT const* aabbs,
PAR_SPRUNE_INT naabbs, par_sprune_context* previous);
// Reads new aabb data from the same pointer that was passed to the overlap
// function and refreshes the two relevant fields. This function should
// only be used when the number of aabbs remains constant. If this returns
// false, no changes to the collision set were detected.
bool par_sprune_update(par_sprune_context* ctx);
// Examines all collision groups and creates a culling set such that no boxes
// would overlap if the culled boxes are removed. When two boxes collide, the
// box that occurs earlier in the list is more likely to be culled. Populates
// the "culled" and "nculled" fields in par_sprune_context. This is useful for
// hiding labels in GIS applications.
void par_sprune_cull(par_sprune_context* context);
// -----------------------------------------------------------------------------
// END PUBLIC API
// -----------------------------------------------------------------------------
#ifdef __cplusplus
}
#endif
#ifdef PAR_SPRUNE_IMPLEMENTATION
#define PARINT PAR_SPRUNE_INT
#define PARFLT PAR_SPRUNE_FLT
#include <stdlib.h>
#include <assert.h>
#ifndef PAR_PI
#define PAR_PI (3.14159265359)
#define PAR_MIN(a, b) (a > b ? b : a)
#define PAR_MAX(a, b) (a > b ? a : b)
#define PAR_CLAMP(v, lo, hi) PAR_MAX(lo, PAR_MIN(hi, v))
#define PAR_SWAP(T, A, B) { T tmp = B; B = A; A = tmp; }
#define PAR_SQR(a) ((a) * (a))
#endif
#ifndef PAR_MALLOC
#define PAR_MALLOC(T, N) ((T*) malloc(N * sizeof(T)))
#define PAR_CALLOC(T, N) ((T*) calloc(N * sizeof(T), 1))
#define PAR_REALLOC(T, BUF, N) ((T*) realloc(BUF, sizeof(T) * (N)))
#define PAR_FREE(BUF) free(BUF)
#endif
#ifndef PAR_ARRAY
#define PAR_ARRAY
#define pa_free(a) ((a) ? PAR_FREE(pa___raw(a)), 0 : 0)
#define pa_push(a, v) (pa___maybegrow(a, (int) 1), (a)[pa___n(a)++] = (v))
#define pa_count(a) ((a) ? pa___n(a) : 0)
#define pa_add(a, n) (pa___maybegrow(a, (int) n), pa___n(a) += (n))
#define pa_last(a) ((a)[pa___n(a) - 1])
#define pa_end(a) (a + pa_count(a))
#define pa_clear(arr) if (arr) pa___n(arr) = 0
#define pa___raw(a) ((int*) (a) -2)
#define pa___m(a) pa___raw(a)[0]
#define pa___n(a) pa___raw(a)[1]
#define pa___needgrow(a, n) ((a) == 0 || pa___n(a) + ((int) n) >= pa___m(a))
#define pa___maybegrow(a, n) (pa___needgrow(a, (n)) ? pa___grow(a, n) : 0)
#define pa___grow(a, n) (*((void**)& (a)) = pa___growf((void*) (a), (n), \
sizeof(*(a))))
// ptr[-2] is capacity, ptr[-1] is size.
static void* pa___growf(void* arr, int increment, int itemsize)
{
int dbl_cur = arr ? 2 * pa___m(arr) : 0;
int min_needed = pa_count(arr) + increment;
int m = dbl_cur > min_needed ? dbl_cur : min_needed;
int* p = (int *) PAR_REALLOC(uint8_t, arr ? pa___raw(arr) : 0,
itemsize * m + sizeof(int) * 2);
if (p) {
if (!arr) {
p[1] = 0;
}
p[0] = m;
return p + 2;
}
return (void*) (2 * sizeof(int));
}
#endif
typedef struct {
// Public:
PARINT* collision_pairs;
PARINT ncollision_pairs;
PARINT* culled;
PARINT nculled;
// Private:
PARFLT const* aabbs;
PARINT naabbs;
PARINT* sorted_indices[2];
PARINT* pairs[2];
} par_sprune__context;
static inline int par_qsort_cmpswap(char *__restrict a, char *__restrict b,
size_t w,
int (*compar)(const void *_a, const void *_b,
void *_arg),
void *arg)
{
char tmp, *end = a+w;
if (compar(a, b, arg) > 0) {
for(; a < end; a++, b++) { tmp = *a; *a = *b; *b = tmp; }
return 1;
}
return 0;
}
// qsort doesn't take a context, so we have our own portable implementation.
// Parameters:
// base is the array to be sorted
// nel is the number of elements in the array
// w is the size in bytes of each element of the array
// compar is the comparison function
// arg is a pointer to be passed to the comparison function
//
static inline void par_qsort(
void *base,
size_t nel,
size_t w,
int (*compar)(const void *_a, const void *_b, void *_arg),
void *arg)
{
char *b = (char*) base, *end = (char*) (b + nel * w);
if (nel < 7) {
char *pi, *pj;
for (pi = b+w; pi < end; pi += w) {
for (pj = pi; pj > b && par_qsort_cmpswap(pj-w, pj, w, compar, arg);
pj -= w) {}
}
return;
}
char *x, *y, *xend, ch;
char *pl, *pr;
char *last = b+w*(nel-1), *tmp;
char *l[3];
l[0] = b;
l[1] = b+w*(nel/2);
l[2] = last;
if (compar(l[0],l[1],arg) > 0) {
tmp=l[0]; l[0]=l[1]; l[1]=tmp;
}
if (compar(l[1],l[2],arg) > 0) {
tmp=l[1]; l[1]=l[2]; l[2]=tmp;
if (compar(l[0],l[1],arg) > 0) {
tmp=l[0]; l[0]=l[1]; l[1]=tmp;
}
}
for(x = l[1], y = last, xend = x+w; x<xend; x++, y++) {
ch = *x; *x = *y; *y = ch;
}
pl = b;
pr = last;
while (pl < pr) {
for (; pl < pr; pl += w) {
if (par_qsort_cmpswap(pl, pr, w, compar, arg)) {
pr -= w;
break;
}
}
for (; pl < pr; pr -= w) {
if (par_qsort_cmpswap(pl, pr, w, compar, arg)) {
pl += w;
break;
}
}
}
par_qsort(b, (pl-b) / w, w, compar, arg);
par_qsort(pl+w, (end - (pl+w)) / w, w, compar, arg);
}
void par_sprune_free_context(par_sprune_context* context)
{
par_sprune__context* ctx = (par_sprune__context*) context;
pa_free(ctx->sorted_indices[0]);
pa_free(ctx->sorted_indices[1]);
pa_free(ctx->pairs[0]);
pa_free(ctx->pairs[1]);
pa_free(ctx->collision_pairs);
PAR_FREE(ctx);
}
static void par_sprune__remove(PARINT* arr, PARINT val)
{
int i = pa_count(arr) - 1;
for (; i >= 0; i--) {
if (arr[i] == val) {
break;
}
}
assert(i >= 0);
for (++i; i < pa_count(arr); i++) {
PAR_SWAP(PARINT, arr[i - 1], arr[i]);
}
pa___n(arr)--;
}
typedef struct {
PARFLT const* aabbs;
} par__sprune_sorter;
static int par__cmpinds(const void* pa, const void* pb, void* psorter)
{
PARINT a = *((const PARINT*) pa);
PARINT b = *((const PARINT*) pb);
par__sprune_sorter* sorter = (par__sprune_sorter*) psorter;
PARFLT const* aabbs = sorter->aabbs;
PARFLT vala = aabbs[a];
PARFLT valb = aabbs[b];
if (vala > valb) return 1;
if (vala < valb) return -1;
if (a > b) return 1;
if (a < b) return -1;
return 0;
}
static int par__cmppairs(const void* pa, const void* pb, void* unused)
{
PARINT a = *((const PARINT*) pa);
PARINT b = *((const PARINT*) pb);
if (a > b) return 1;
if (a < b) return -1;
a = *(1 + (const PARINT*) pa);
b = *(1 + (const PARINT*) pb);
if (a > b) return 1;
if (a < b) return -1;
return 0;
}
static int par__cmpfind(const void* pa, const void* pb)
{
PARINT a = *((const PARINT*) pa);
PARINT b = *((const PARINT*) pb);
if (a > b) return 1;
if (a < b) return -1;
a = *(1 + (const PARINT*) pa);
b = *(1 + (const PARINT*) pb);
if (a > b) return 1;
if (a < b) return -1;
return 0;
}
par_sprune_context* par_sprune_overlap(PARFLT const* aabbs, PARINT naabbs,
par_sprune_context* previous)
{
par_sprune__context* ctx = (par_sprune__context*) previous;
if (!ctx) {
ctx = PAR_CALLOC(par_sprune__context, 1);
}
ctx->aabbs = aabbs;
ctx->naabbs = naabbs;
for (int axis = 0; axis < 2; axis++) {
pa_clear(ctx->sorted_indices[axis]);
pa_add(ctx->sorted_indices[axis], naabbs * 2);
pa_clear(ctx->pairs[axis]);
}
for (PARINT i = 0; i < naabbs; i++) {
ctx->sorted_indices[0][i * 2 + 0] = i * 4 + 0;
ctx->sorted_indices[1][i * 2 + 0] = i * 4 + 1;
ctx->sorted_indices[0][i * 2 + 1] = i * 4 + 2;
ctx->sorted_indices[1][i * 2 + 1] = i * 4 + 3;
}
par__sprune_sorter sorter;
sorter.aabbs = ctx->aabbs;
PARINT* active = 0;
// Sweep a plane first across the X-axis, then down through the Y-axis.
for (int axis = 0; axis < 2; axis++) {
PARINT** pairs = &ctx->pairs[axis];
PARINT* indices = ctx->sorted_indices[axis];
par_qsort(indices, naabbs * 2, sizeof(PARINT), par__cmpinds, &sorter);
pa_clear(active);
for (PARINT i = 0; i < naabbs * 2; i++) {
PARINT fltindex = indices[i];
PARINT boxindex = fltindex / 4;
bool ismin = ((fltindex - axis) % 4) == 0;
if (ismin) {
for (int j = 0; j < pa_count(active); j++) {
pa_push(*pairs, active[j]);
pa_push(*pairs, boxindex);
pa_push(*pairs, boxindex);
pa_push(*pairs, active[j]);
}
pa_push(active, boxindex);
} else {
par_sprune__remove(active, boxindex);
}
}
}
// Sort the Y-axis collision pairs to make it easier to intersect it
// with the set of X-axis collision pairs. We also sort the X-axis
// pairs because it's required for subsequent calls to par_sprune_update.
PARINT* xpairs = ctx->pairs[0];
PARINT* ypairs = ctx->pairs[1];
int nxpairs = pa_count(xpairs) / 2;
int nypairs = pa_count(ypairs) / 2;
int pairsize = 2 * sizeof(PARINT);
pa_free(active);
par_qsort(xpairs, nxpairs, pairsize, par__cmppairs, 0);
par_qsort(ypairs, nypairs, pairsize, par__cmppairs, 0);
pa_clear(ctx->collision_pairs);
// Find the intersection of X-axis overlaps and Y-axis overlaps.
for (int i = 0; i < pa_count(xpairs); i += 2) {
PARINT* key = xpairs + i;
if (key[1] < key[0]) {
continue;
}
void* found = bsearch(key, ypairs, nypairs, pairsize, par__cmpfind);
if (found) {
pa_push(ctx->collision_pairs, key[0]);
pa_push(ctx->collision_pairs, key[1]);
}
}
ctx->ncollision_pairs = pa_count(ctx->collision_pairs) / 2;
return (par_sprune_context*) ctx;
}
bool par_sprune_update(par_sprune_context* context)
{
par_sprune__context* ctx = (par_sprune__context*) context;
PARINT* collision_pairs = ctx->collision_pairs;
PARINT ncollision_pairs = ctx->ncollision_pairs;
ctx->collision_pairs = 0;
par_sprune_overlap(ctx->aabbs, ctx->naabbs, context);
bool dirty = ncollision_pairs != ctx->ncollision_pairs;
if (!dirty) {
int pairsize = 2 * sizeof(PARINT);
for (int i = 0; i < ctx->ncollision_pairs; i += 2) {
PARINT* key = ctx->collision_pairs + i;
if (!bsearch(key, collision_pairs, ncollision_pairs,
pairsize, par__cmpfind)) {
dirty = true;
break;
}
}
}
pa_free(collision_pairs);
return dirty;
}
bool par_sprune__is_culled(par_sprune__context* ctx, PARINT key)
{
for (int i = 0; i < pa_count(ctx->culled); i++) {
if (key == ctx->culled[i]) {
return true;
}
}
return false;
}
static int par__cmpfindsingle(const void* pa, const void* pb)
{
PARINT a = *((const PARINT*) pa);
PARINT b = *((const PARINT*) pb);
if (a > b) return 1;
if (a < b) return -1;
return 0;
}
void par_sprune_cull(par_sprune_context* context)
{
par_sprune__context* ctx = (par_sprune__context*) context;
pa_clear(ctx->culled);
PARINT* collision_pairs = ctx->collision_pairs;
PARINT ncollision_pairs = ctx->ncollision_pairs;
int pairsize = 2 * sizeof(PARINT);
for (int i = 0; i < ctx->naabbs; i++) {
PARINT* found = (PARINT*) bsearch(&i, collision_pairs, ncollision_pairs,
pairsize, par__cmpfindsingle);
if (!found) {
continue;
}
if (!par_sprune__is_culled(ctx, found[0]) &&
!par_sprune__is_culled(ctx, found[1])) {
pa_push(ctx->culled, found[0]);
}
}
ctx->nculled = pa_count(ctx->culled);
}
#undef PARINT
#undef PARFLT
#endif // PAR_SPRUNE_IMPLEMENTATION
#endif // PAR_SPRUNE_H
// par_sprune is distributed under the MIT license:
//
// Copyright (c) 2019 Philip Rideout
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
// SOFTWARE.