2268 lines
63 KiB
C
2268 lines
63 KiB
C
/*
|
|
HandmadeMath.h v2.0.0
|
|
|
|
This is a single header file with a bunch of useful types and functions for
|
|
games and graphics. Consider it a lightweight alternative to GLM that works
|
|
both C and C++.
|
|
|
|
=============================================================================
|
|
CONFIG
|
|
=============================================================================
|
|
|
|
By default, all angles in Handmade Math are specified in radians. However, it
|
|
can be configured to use degrees or turns instead. Use one of the following
|
|
defines to specify the default unit for angles:
|
|
|
|
#define HANDMADE_MATH_USE_RADIANS
|
|
#define HANDMADE_MATH_USE_DEGREES
|
|
#define HANDMADE_MATH_USE_TURNS
|
|
|
|
Regardless of the default angle, you can use the following functions to
|
|
specify an angle in a particular unit:
|
|
|
|
HMM_AngleRad(radians)
|
|
HMM_AngleDeg(degrees)
|
|
HMM_AngleTurn(turns)
|
|
|
|
The definitions of these functions change depending on the default unit.
|
|
|
|
-----------------------------------------------------------------------------
|
|
|
|
Handmade Math ships with SSE (SIMD) implementations of several common
|
|
operations. To disable the use of SSE intrinsics, you must define
|
|
HANDMADE_MATH_NO_SSE before including this file:
|
|
|
|
#define HANDMADE_MATH_NO_SSE
|
|
#include "HandmadeMath.h"
|
|
|
|
-----------------------------------------------------------------------------
|
|
|
|
To use Handmade Math without the C runtime library, you must provide your own
|
|
implementations of basic math functions. Otherwise, HandmadeMath.h will use
|
|
the runtime library implementation of these functions.
|
|
|
|
Define HANDMADE_MATH_PROVIDE_MATH_FUNCTIONS and provide your own
|
|
implementations of HMM_SINF, HMM_COSF, HMM_TANF, HMM_ACOSF, and HMM_SQRTF
|
|
before including HandmadeMath.h, like so:
|
|
|
|
#define HANDMADE_MATH_PROVIDE_MATH_FUNCTIONS
|
|
#define HMM_SINF MySinF
|
|
#define HMM_COSF MyCosF
|
|
#define HMM_TANF MyTanF
|
|
#define HMM_ACOSF MyACosF
|
|
#define HMM_SQRTF MySqrtF
|
|
#include "HandmadeMath.h"
|
|
|
|
By default, it is assumed that your math functions take radians. To use
|
|
different units, you must define HMM_ANGLE_USER_TO_INTERNAL and
|
|
HMM_ANGLE_INTERNAL_TO_USER. For example, if you want to use degrees in your
|
|
code but your math functions use turns:
|
|
|
|
#define HMM_ANGLE_USER_TO_INTERNAL(a) ((a)*HMM_DegToTurn)
|
|
#define HMM_ANGLE_INTERNAL_TO_USER(a) ((a)*HMM_TurnToDeg)
|
|
|
|
=============================================================================
|
|
|
|
LICENSE
|
|
|
|
This software is in the public domain. Where that dedication is not
|
|
recognized, you are granted a perpetual, irrevocable license to copy,
|
|
distribute, and modify this file as you see fit.
|
|
|
|
=============================================================================
|
|
|
|
CREDITS
|
|
|
|
Originally written by Zakary Strange.
|
|
|
|
Functionality:
|
|
Zakary Strange (strangezak@protonmail.com && @strangezak)
|
|
Matt Mascarenhas (@miblo_)
|
|
Aleph
|
|
FieryDrake (@fierydrake)
|
|
Gingerbill (@TheGingerBill)
|
|
Ben Visness (@bvisness)
|
|
Trinton Bullard (@Peliex_Dev)
|
|
@AntonDan
|
|
Logan Forman (@dev_dwarf)
|
|
|
|
Fixes:
|
|
Jeroen van Rijn (@J_vanRijn)
|
|
Kiljacken (@Kiljacken)
|
|
Insofaras (@insofaras)
|
|
Daniel Gibson (@DanielGibson)
|
|
*/
|
|
|
|
#ifndef HANDMADE_MATH_H
|
|
#define HANDMADE_MATH_H
|
|
|
|
#include <chipmunk/chipmunk.h>
|
|
|
|
/* let's figure out if SSE is really available (unless disabled anyway)
|
|
(it isn't on non-x86/x86_64 platforms or even x86 without explicit SSE support)
|
|
=> only use "#ifdef HANDMADE_MATH__USE_SSE" to check for SSE support below this block! */
|
|
#ifndef HANDMADE_MATH_NO_SSE
|
|
#ifdef _MSC_VER /* MSVC supports SSE in amd64 mode or _M_IX86_FP >= 1 (2 means SSE2) */
|
|
#if defined(_M_AMD64) || (defined(_M_IX86_FP) && _M_IX86_FP >= 1)
|
|
#define HANDMADE_MATH__USE_SSE 1
|
|
#endif
|
|
#else /* not MSVC, probably GCC, clang, icc or something that doesn't support SSE anyway */
|
|
#ifdef __SSE__ /* they #define __SSE__ if it's supported */
|
|
#define HANDMADE_MATH__USE_SSE 1
|
|
#endif /* __SSE__ */
|
|
#endif /* not _MSC_VER */
|
|
#endif /* #ifndef HANDMADE_MATH_NO_SSE */
|
|
|
|
#ifdef HANDMADE_MATH__USE_SSE
|
|
#include <xmmintrin.h>
|
|
#endif
|
|
|
|
#ifdef _MSC_VER
|
|
#pragma warning(disable : 4201)
|
|
#endif
|
|
|
|
#if defined(__GNUC__) || defined(__clang__)
|
|
#define HMM_DEPRECATED(msg) __attribute__((deprecated(msg)))
|
|
#elif defined(_MSC_VER)
|
|
#define HMM_DEPRECATED(msg) __declspec(deprecated(msg))
|
|
#else
|
|
#define HMM_DEPRECATED(msg)
|
|
#endif
|
|
|
|
#if !defined(HANDMADE_MATH_USE_DEGREES) && !defined(HANDMADE_MATH_USE_TURNS) && !defined(HANDMADE_MATH_USE_RADIANS)
|
|
#define HANDMADE_MATH_USE_RADIANS
|
|
#endif
|
|
|
|
#define HMM_PI 3.14159265358979323846
|
|
#define HMM_PI32 3.14159265359f
|
|
#define HMM_DEG180 180.0
|
|
#define HMM_DEG18032 180.0f
|
|
#define HMM_TURNHALF 0.5
|
|
#define HMM_TURNHALF32 0.5f
|
|
#define HMM_RadToDeg ((float)(HMM_DEG180 / HMM_PI))
|
|
#define HMM_RadToTurn ((float)(HMM_TURNHALF / HMM_PI))
|
|
#define HMM_DegToRad ((float)(HMM_PI / HMM_DEG180))
|
|
#define HMM_DegToTurn ((float)(HMM_TURNHALF / HMM_DEG180))
|
|
#define HMM_TurnToRad ((float)(HMM_PI / HMM_TURNHALF))
|
|
#define HMM_TurnToDeg ((float)(HMM_DEG180 / HMM_TURNHALF))
|
|
|
|
#if defined(HANDMADE_MATH_USE_RADIANS)
|
|
#define HMM_AngleRad(a) (a)
|
|
#define HMM_AngleDeg(a) ((a)*HMM_DegToRad)
|
|
#define HMM_AngleTurn(a) ((a)*HMM_TurnToRad)
|
|
#elif defined(HANDMADE_MATH_USE_DEGREES)
|
|
#define HMM_AngleRad(a) ((a)*HMM_RadToDeg)
|
|
#define HMM_AngleDeg(a) (a)
|
|
#define HMM_AngleTurn(a) ((a)*HMM_TurnToDeg)
|
|
#elif defined(HANDMADE_MATH_USE_TURNS)
|
|
#define HMM_AngleRad(a) ((a)*HMM_RadToTurn)
|
|
#define HMM_AngleDeg(a) ((a)*HMM_DegToTurn)
|
|
#define HMM_AngleTurn(a) (a)
|
|
#endif
|
|
|
|
#if !defined(HANDMADE_MATH_PROVIDE_MATH_FUNCTIONS)
|
|
#include <math.h>
|
|
#define HMM_SINF sinf
|
|
#define HMM_COSF cosf
|
|
#define HMM_TANF tanf
|
|
#define HMM_SQRTF sqrtf
|
|
#define HMM_ACOSF acosf
|
|
#endif
|
|
|
|
#if !defined(HMM_ANGLE_USER_TO_INTERNAL)
|
|
#define HMM_ANGLE_USER_TO_INTERNAL(a) (HMM_ToRad(a))
|
|
#endif
|
|
|
|
#if !defined(HMM_ANGLE_INTERNAL_TO_USER)
|
|
#if defined(HANDMADE_MATH_USE_RADIANS)
|
|
#define HMM_ANGLE_INTERNAL_TO_USER(a) (a)
|
|
#elif defined(HANDMADE_MATH_USE_DEGREES)
|
|
#define HMM_ANGLE_INTERNAL_TO_USER(a) ((a)*HMM_RadToDeg)
|
|
#elif defined(HANDMADE_MATH_USE_TURNS)
|
|
#define HMM_ANGLE_INTERNAL_TO_USER(a) ((a)*HMM_RadToTurn)
|
|
#endif
|
|
#endif
|
|
|
|
#define HMM_MIN(a, b) ((a) > (b) ? (b) : (a))
|
|
#define HMM_MAX(a, b) ((a) < (b) ? (b) : (a))
|
|
#define HMM_ABS(a) ((a) > 0 ? (a) : -(a))
|
|
#define HMM_MOD(a, m) (((a) % (m)) >= 0 ? ((a) % (m)) : (((a) % (m)) + (m)))
|
|
#define HMM_SQUARE(x) ((x) * (x))
|
|
|
|
typedef union HMM_Vec2 {
|
|
struct
|
|
{
|
|
float X, Y;
|
|
};
|
|
|
|
struct {
|
|
float x, y;
|
|
};
|
|
|
|
struct
|
|
{
|
|
float U, V;
|
|
};
|
|
|
|
struct
|
|
{
|
|
float Left, Right;
|
|
};
|
|
|
|
struct
|
|
{
|
|
float Width, Height;
|
|
};
|
|
|
|
float Elements[2];
|
|
|
|
cpVect cp;
|
|
|
|
} HMM_Vec2;
|
|
|
|
static const HMM_Vec2 v2zero = {0,0};
|
|
|
|
typedef union HMM_Vec3 {
|
|
struct
|
|
{
|
|
float X, Y, Z;
|
|
};
|
|
|
|
struct { float x, y, z; };
|
|
|
|
struct
|
|
{
|
|
float U, V, W;
|
|
};
|
|
|
|
struct
|
|
{
|
|
float R, G, B;
|
|
};
|
|
|
|
struct
|
|
{
|
|
HMM_Vec2 XY;
|
|
float _Ignored0;
|
|
};
|
|
|
|
struct
|
|
{
|
|
HMM_Vec2 xy;
|
|
float _Ignored4;
|
|
};
|
|
|
|
|
|
struct
|
|
{
|
|
float _Ignored1;
|
|
HMM_Vec2 YZ;
|
|
};
|
|
|
|
struct
|
|
{
|
|
HMM_Vec2 UV;
|
|
float _Ignored2;
|
|
};
|
|
|
|
struct
|
|
{
|
|
float _Ignored3;
|
|
HMM_Vec2 VW;
|
|
};
|
|
|
|
float Elements[3];
|
|
|
|
} HMM_Vec3;
|
|
|
|
static const HMM_Vec3 v3zero = {0,0,0};
|
|
|
|
typedef union HMM_Quat {
|
|
struct
|
|
{
|
|
union {
|
|
HMM_Vec3 XYZ;
|
|
struct
|
|
{
|
|
float X, Y, Z;
|
|
};
|
|
};
|
|
|
|
float W;
|
|
};
|
|
|
|
float Elements[4];
|
|
|
|
#ifdef HANDMADE_MATH__USE_SSE
|
|
__m128 SSE;
|
|
#endif
|
|
} HMM_Quat;
|
|
|
|
|
|
typedef union HMM_Vec4 {
|
|
struct
|
|
{
|
|
union {
|
|
HMM_Vec3 XYZ;
|
|
struct
|
|
{
|
|
float X, Y, Z;
|
|
};
|
|
HMM_Vec3 xyz;
|
|
};
|
|
|
|
float W;
|
|
};
|
|
struct
|
|
{
|
|
union {
|
|
HMM_Vec3 RGB;
|
|
struct
|
|
{
|
|
float R, G, B;
|
|
};
|
|
};
|
|
|
|
float A;
|
|
};
|
|
|
|
struct
|
|
{
|
|
HMM_Vec2 XY;
|
|
float _Ignored0;
|
|
float _Ignored1;
|
|
};
|
|
|
|
struct {
|
|
HMM_Vec2 xy;
|
|
float _ig0;
|
|
float _ig1;
|
|
};
|
|
|
|
struct {
|
|
HMM_Vec2 _2;
|
|
float _ig2;
|
|
float _ig3;
|
|
};
|
|
|
|
struct {
|
|
HMM_Vec3 _3;
|
|
float _ig4;
|
|
};
|
|
|
|
struct
|
|
{
|
|
float _Ignored2;
|
|
HMM_Vec2 YZ;
|
|
float _Ignored3;
|
|
};
|
|
|
|
struct
|
|
{
|
|
float _Ignored4;
|
|
float _Ignored5;
|
|
HMM_Vec2 ZW;
|
|
};
|
|
|
|
HMM_Quat quat;
|
|
|
|
float Elements[4];
|
|
float e[4];
|
|
|
|
#ifdef HANDMADE_MATH__USE_SSE
|
|
__m128 SSE;
|
|
#endif
|
|
|
|
} HMM_Vec4;
|
|
|
|
typedef union HMM_Mat2 {
|
|
float Elements[2][2];
|
|
HMM_Vec2 Columns[2];
|
|
|
|
} HMM_Mat2;
|
|
|
|
typedef union HMM_Mat3 {
|
|
float Elements[3][3];
|
|
HMM_Vec3 Columns[3];
|
|
|
|
} HMM_Mat3;
|
|
|
|
typedef union HMM_Mat4 {
|
|
float Elements[4][4];
|
|
HMM_Vec4 Columns[4];
|
|
float e[4][4];
|
|
|
|
} HMM_Mat4;
|
|
|
|
|
|
typedef signed int HMM_Bool;
|
|
|
|
static const HMM_Vec3 vX = {1.0,0.0,0.0};
|
|
static const HMM_Vec3 vY = {0.0,1.0,0.0};
|
|
static const HMM_Vec3 vZ = {0.0,0.0,1.0};
|
|
|
|
static const HMM_Vec3 vUP = {0,1,0};
|
|
static const HMM_Vec3 vDOWN = {0,-1,0};
|
|
static const HMM_Vec3 vFWD = {0,0,1};
|
|
static const HMM_Vec3 vBKWD = {0,0,-1};
|
|
static const HMM_Vec3 vLEFT = {-1,0,0};
|
|
static const HMM_Vec3 vRIGHT = {1,0,0};
|
|
|
|
/*
|
|
* Angle unit conversion functions
|
|
*/
|
|
static inline float HMM_ToRad(float Angle) {
|
|
#if defined(HANDMADE_MATH_USE_RADIANS)
|
|
float Result = Angle;
|
|
#elif defined(HANDMADE_MATH_USE_DEGREES)
|
|
float Result = Angle * HMM_DegToRad;
|
|
#elif defined(HANDMADE_MATH_USE_TURNS)
|
|
float Result = Angle * HMM_TurnToRad;
|
|
#endif
|
|
|
|
return Result;
|
|
}
|
|
|
|
static inline float HMM_ToDeg(float Angle) {
|
|
#if defined(HANDMADE_MATH_USE_RADIANS)
|
|
float Result = Angle * HMM_RadToDeg;
|
|
#elif defined(HANDMADE_MATH_USE_DEGREES)
|
|
float Result = Angle;
|
|
#elif defined(HANDMADE_MATH_USE_TURNS)
|
|
float Result = Angle * HMM_TurnToDeg;
|
|
#endif
|
|
|
|
return Result;
|
|
}
|
|
|
|
static inline float HMM_ToTurn(float Angle) {
|
|
#if defined(HANDMADE_MATH_USE_RADIANS)
|
|
float Result = Angle * HMM_RadToTurn;
|
|
#elif defined(HANDMADE_MATH_USE_DEGREES)
|
|
float Result = Angle * HMM_DegToTurn;
|
|
#elif defined(HANDMADE_MATH_USE_TURNS)
|
|
float Result = Angle;
|
|
#endif
|
|
|
|
return Result;
|
|
}
|
|
|
|
/*
|
|
* Floating-point math functions
|
|
*/
|
|
|
|
static inline float HMM_SinF(float Angle) {
|
|
return HMM_SINF(HMM_ANGLE_USER_TO_INTERNAL(Angle));
|
|
}
|
|
|
|
static inline float HMM_CosF(float Angle) {
|
|
return HMM_COSF(HMM_ANGLE_USER_TO_INTERNAL(Angle));
|
|
}
|
|
|
|
static inline float HMM_TanF(float Angle) {
|
|
return HMM_TANF(HMM_ANGLE_USER_TO_INTERNAL(Angle));
|
|
}
|
|
|
|
static inline float HMM_ACosF(float Arg) {
|
|
return HMM_ANGLE_INTERNAL_TO_USER(HMM_ACOSF(Arg));
|
|
}
|
|
|
|
static inline float HMM_SqrtF(float Float) {
|
|
|
|
float Result;
|
|
|
|
#ifdef HANDMADE_MATH__USE_SSE
|
|
__m128 In = _mm_set_ss(Float);
|
|
__m128 Out = _mm_sqrt_ss(In);
|
|
Result = _mm_cvtss_f32(Out);
|
|
#else
|
|
Result = HMM_SQRTF(Float);
|
|
#endif
|
|
|
|
return Result;
|
|
}
|
|
|
|
static inline float HMM_InvSqrtF(float Float) {
|
|
|
|
float Result;
|
|
|
|
Result = 1.0f / HMM_SqrtF(Float);
|
|
|
|
return Result;
|
|
}
|
|
|
|
/*
|
|
* Utility functions
|
|
*/
|
|
|
|
static inline float HMM_Lerp(float A, float Time, float B) {
|
|
return (1.0f - Time) * A + Time * B;
|
|
}
|
|
|
|
static inline float HMM_Clamp(float Min, float Value, float Max) {
|
|
|
|
float Result = Value;
|
|
|
|
if (Result < Min) {
|
|
Result = Min;
|
|
}
|
|
|
|
if (Result > Max) {
|
|
Result = Max;
|
|
}
|
|
|
|
return Result;
|
|
}
|
|
|
|
static inline float frand(float max) {
|
|
return ((float)rand()/(float)(RAND_MAX))*max;
|
|
}
|
|
|
|
/*
|
|
* Vector initialization
|
|
*/
|
|
|
|
static inline HMM_Vec2 HMM_V2(float X, float Y) {
|
|
|
|
HMM_Vec2 Result;
|
|
Result.X = X;
|
|
Result.Y = Y;
|
|
|
|
return Result;
|
|
}
|
|
|
|
static inline HMM_Vec3 HMM_V3(float X, float Y, float Z) {
|
|
|
|
HMM_Vec3 Result;
|
|
Result.X = X;
|
|
Result.Y = Y;
|
|
Result.Z = Z;
|
|
|
|
return Result;
|
|
}
|
|
|
|
static inline HMM_Vec3 HMM_V3i(float i)
|
|
{
|
|
return (HMM_Vec3){i,i,i};
|
|
}
|
|
|
|
static inline HMM_Vec4 HMM_V4(float X, float Y, float Z, float W) {
|
|
|
|
HMM_Vec4 Result;
|
|
|
|
#ifdef HANDMADE_MATH__USE_SSE
|
|
Result.SSE = _mm_setr_ps(X, Y, Z, W);
|
|
#else
|
|
Result.X = X;
|
|
Result.Y = Y;
|
|
Result.Z = Z;
|
|
Result.W = W;
|
|
#endif
|
|
|
|
return Result;
|
|
}
|
|
|
|
static inline HMM_Vec4 HMM_V4V(HMM_Vec3 Vector, float W) {
|
|
|
|
HMM_Vec4 Result;
|
|
|
|
#ifdef HANDMADE_MATH__USE_SSE
|
|
Result.SSE = _mm_setr_ps(Vector.X, Vector.Y, Vector.Z, W);
|
|
#else
|
|
Result.XYZ = Vector;
|
|
Result.W = W;
|
|
#endif
|
|
|
|
return Result;
|
|
}
|
|
|
|
/*
|
|
* Binary vector operations
|
|
*/
|
|
|
|
static inline HMM_Vec2 HMM_AddV2(HMM_Vec2 Left, HMM_Vec2 Right) {
|
|
|
|
HMM_Vec2 Result;
|
|
Result.X = Left.X + Right.X;
|
|
Result.Y = Left.Y + Right.Y;
|
|
|
|
return Result;
|
|
}
|
|
|
|
|
|
static inline HMM_Vec3 HMM_AddV3(HMM_Vec3 Left, HMM_Vec3 Right) {
|
|
|
|
HMM_Vec3 Result;
|
|
Result.X = Left.X + Right.X;
|
|
Result.Y = Left.Y + Right.Y;
|
|
Result.Z = Left.Z + Right.Z;
|
|
|
|
return Result;
|
|
}
|
|
|
|
static inline HMM_Vec4 HMM_AddV4(HMM_Vec4 Left, HMM_Vec4 Right) {
|
|
|
|
HMM_Vec4 Result;
|
|
|
|
#ifdef HANDMADE_MATH__USE_SSE
|
|
Result.SSE = _mm_add_ps(Left.SSE, Right.SSE);
|
|
#else
|
|
Result.X = Left.X + Right.X;
|
|
Result.Y = Left.Y + Right.Y;
|
|
Result.Z = Left.Z + Right.Z;
|
|
Result.W = Left.W + Right.W;
|
|
#endif
|
|
|
|
return Result;
|
|
}
|
|
|
|
static inline HMM_Vec2 HMM_SubV2(HMM_Vec2 Left, HMM_Vec2 Right) {
|
|
|
|
HMM_Vec2 Result;
|
|
Result.X = Left.X - Right.X;
|
|
Result.Y = Left.Y - Right.Y;
|
|
|
|
return Result;
|
|
}
|
|
|
|
static inline HMM_Vec3 HMM_SubV3(HMM_Vec3 Left, HMM_Vec3 Right) {
|
|
|
|
HMM_Vec3 Result;
|
|
Result.X = Left.X - Right.X;
|
|
Result.Y = Left.Y - Right.Y;
|
|
Result.Z = Left.Z - Right.Z;
|
|
|
|
return Result;
|
|
}
|
|
|
|
static inline HMM_Vec4 HMM_SubV4(HMM_Vec4 Left, HMM_Vec4 Right) {
|
|
|
|
HMM_Vec4 Result;
|
|
|
|
#ifdef HANDMADE_MATH__USE_SSE
|
|
Result.SSE = _mm_sub_ps(Left.SSE, Right.SSE);
|
|
#else
|
|
Result.X = Left.X - Right.X;
|
|
Result.Y = Left.Y - Right.Y;
|
|
Result.Z = Left.Z - Right.Z;
|
|
Result.W = Left.W - Right.W;
|
|
#endif
|
|
|
|
return Result;
|
|
}
|
|
|
|
static inline HMM_Vec2 HMM_ScaleV2(HMM_Vec2 v, double s)
|
|
{
|
|
return HMM_V2(v.X*s, v.Y*s);
|
|
}
|
|
|
|
static inline HMM_Vec3 HMM_ScaleV3(HMM_Vec3 v, double s)
|
|
{
|
|
return HMM_V3(v.x*s,v.y*s,v.z*s);
|
|
}
|
|
|
|
static inline HMM_Vec2 HMM_MulV2(HMM_Vec2 Left, HMM_Vec2 Right) {
|
|
|
|
HMM_Vec2 Result;
|
|
Result.X = Left.X * Right.X;
|
|
Result.Y = Left.Y * Right.Y;
|
|
|
|
return Result;
|
|
}
|
|
|
|
static inline HMM_Vec2 HMM_MulV2F(HMM_Vec2 Left, float Right) {
|
|
|
|
HMM_Vec2 Result;
|
|
Result.X = Left.X * Right;
|
|
Result.Y = Left.Y * Right;
|
|
|
|
return Result;
|
|
}
|
|
|
|
static inline HMM_Vec3 HMM_MulV3(HMM_Vec3 Left, HMM_Vec3 Right) {
|
|
|
|
HMM_Vec3 Result;
|
|
Result.X = Left.X * Right.X;
|
|
Result.Y = Left.Y * Right.Y;
|
|
Result.Z = Left.Z * Right.Z;
|
|
|
|
return Result;
|
|
}
|
|
|
|
static inline HMM_Vec3 HMM_MulV3F(HMM_Vec3 Left, float Right) {
|
|
|
|
HMM_Vec3 Result;
|
|
Result.X = Left.X * Right;
|
|
Result.Y = Left.Y * Right;
|
|
Result.Z = Left.Z * Right;
|
|
|
|
return Result;
|
|
}
|
|
|
|
static inline HMM_Vec4 HMM_MulV4(HMM_Vec4 Left, HMM_Vec4 Right) {
|
|
|
|
HMM_Vec4 Result;
|
|
|
|
#ifdef HANDMADE_MATH__USE_SSE
|
|
Result.SSE = _mm_mul_ps(Left.SSE, Right.SSE);
|
|
#else
|
|
Result.X = Left.X * Right.X;
|
|
Result.Y = Left.Y * Right.Y;
|
|
Result.Z = Left.Z * Right.Z;
|
|
Result.W = Left.W * Right.W;
|
|
#endif
|
|
|
|
return Result;
|
|
}
|
|
|
|
static inline HMM_Vec4 HMM_MulV4F(HMM_Vec4 Left, float Right) {
|
|
|
|
HMM_Vec4 Result;
|
|
|
|
#ifdef HANDMADE_MATH__USE_SSE
|
|
__m128 Scalar = _mm_set1_ps(Right);
|
|
Result.SSE = _mm_mul_ps(Left.SSE, Scalar);
|
|
#else
|
|
Result.X = Left.X * Right;
|
|
Result.Y = Left.Y * Right;
|
|
Result.Z = Left.Z * Right;
|
|
Result.W = Left.W * Right;
|
|
#endif
|
|
|
|
return Result;
|
|
}
|
|
|
|
static inline HMM_Vec2 HMM_DivV2(HMM_Vec2 Left, HMM_Vec2 Right) {
|
|
|
|
HMM_Vec2 Result;
|
|
Result.X = Left.X / Right.X;
|
|
Result.Y = Left.Y / Right.Y;
|
|
|
|
return Result;
|
|
}
|
|
|
|
static inline HMM_Vec2 HMM_DivV2F(HMM_Vec2 Left, float Right) {
|
|
|
|
HMM_Vec2 Result;
|
|
Result.X = Left.X / Right;
|
|
Result.Y = Left.Y / Right;
|
|
|
|
return Result;
|
|
}
|
|
|
|
static inline HMM_Vec3 HMM_DivV3(HMM_Vec3 Left, HMM_Vec3 Right) {
|
|
|
|
HMM_Vec3 Result;
|
|
Result.X = Left.X / Right.X;
|
|
Result.Y = Left.Y / Right.Y;
|
|
Result.Z = Left.Z / Right.Z;
|
|
|
|
return Result;
|
|
}
|
|
|
|
static inline HMM_Vec3 HMM_DivV3F(HMM_Vec3 Left, float Right) {
|
|
|
|
HMM_Vec3 Result;
|
|
Result.X = Left.X / Right;
|
|
Result.Y = Left.Y / Right;
|
|
Result.Z = Left.Z / Right;
|
|
|
|
return Result;
|
|
}
|
|
|
|
static inline HMM_Vec4 HMM_DivV4(HMM_Vec4 Left, HMM_Vec4 Right) {
|
|
|
|
HMM_Vec4 Result;
|
|
|
|
#ifdef HANDMADE_MATH__USE_SSE
|
|
Result.SSE = _mm_div_ps(Left.SSE, Right.SSE);
|
|
#else
|
|
Result.X = Left.X / Right.X;
|
|
Result.Y = Left.Y / Right.Y;
|
|
Result.Z = Left.Z / Right.Z;
|
|
Result.W = Left.W / Right.W;
|
|
#endif
|
|
|
|
return Result;
|
|
}
|
|
|
|
static inline HMM_Vec4 HMM_DivV4F(HMM_Vec4 Left, float Right) {
|
|
|
|
HMM_Vec4 Result;
|
|
|
|
#ifdef HANDMADE_MATH__USE_SSE
|
|
__m128 Scalar = _mm_set1_ps(Right);
|
|
Result.SSE = _mm_div_ps(Left.SSE, Scalar);
|
|
#else
|
|
Result.X = Left.X / Right;
|
|
Result.Y = Left.Y / Right;
|
|
Result.Z = Left.Z / Right;
|
|
Result.W = Left.W / Right;
|
|
#endif
|
|
|
|
return Result;
|
|
}
|
|
|
|
static inline HMM_Bool HMM_EqV2(HMM_Vec2 Left, HMM_Vec2 Right) {
|
|
return Left.X == Right.X && Left.Y == Right.Y;
|
|
}
|
|
|
|
static inline HMM_Bool HMM_EqV3(HMM_Vec3 Left, HMM_Vec3 Right) {
|
|
return Left.X == Right.X && Left.Y == Right.Y && Left.Z == Right.Z;
|
|
}
|
|
|
|
static inline HMM_Bool HMM_EqV4(HMM_Vec4 Left, HMM_Vec4 Right) {
|
|
return Left.X == Right.X && Left.Y == Right.Y && Left.Z == Right.Z && Left.W == Right.W;
|
|
}
|
|
|
|
static inline float HMM_DotV2(HMM_Vec2 Left, HMM_Vec2 Right) {
|
|
return (Left.X * Right.X) + (Left.Y * Right.Y);
|
|
}
|
|
|
|
|
|
|
|
static inline HMM_Vec2 HMM_ProjV2(HMM_Vec2 a, HMM_Vec2 b)
|
|
{
|
|
return HMM_MulV2F(b, HMM_DotV2(a,b)/HMM_DotV2(b,b));
|
|
}
|
|
|
|
static inline float HMM_DotV3(HMM_Vec3 Left, HMM_Vec3 Right) {
|
|
return (Left.X * Right.X) + (Left.Y * Right.Y) + (Left.Z * Right.Z);
|
|
}
|
|
|
|
static inline float HMM_DotV4(HMM_Vec4 Left, HMM_Vec4 Right) {
|
|
|
|
float Result;
|
|
|
|
// NOTE(zak): IN the future if we wanna check what version SSE is support
|
|
// we can use _mm_dp_ps (4.3) but for now we will use the old way.
|
|
// Or a r = _mm_mul_ps(v1, v2), r = _mm_hadd_ps(r, r), r = _mm_hadd_ps(r, r) for SSE3
|
|
#ifdef HANDMADE_MATH__USE_SSE
|
|
__m128 SSEResultOne = _mm_mul_ps(Left.SSE, Right.SSE);
|
|
__m128 SSEResultTwo = _mm_shuffle_ps(SSEResultOne, SSEResultOne, _MM_SHUFFLE(2, 3, 0, 1));
|
|
SSEResultOne = _mm_add_ps(SSEResultOne, SSEResultTwo);
|
|
SSEResultTwo = _mm_shuffle_ps(SSEResultOne, SSEResultOne, _MM_SHUFFLE(0, 1, 2, 3));
|
|
SSEResultOne = _mm_add_ps(SSEResultOne, SSEResultTwo);
|
|
_mm_store_ss(&Result, SSEResultOne);
|
|
#else
|
|
Result = ((Left.X * Right.X) + (Left.Z * Right.Z)) + ((Left.Y * Right.Y) + (Left.W * Right.W));
|
|
#endif
|
|
|
|
return Result;
|
|
}
|
|
|
|
static inline HMM_Vec3 HMM_Cross(HMM_Vec3 Left, HMM_Vec3 Right) {
|
|
|
|
HMM_Vec3 Result;
|
|
Result.X = (Left.Y * Right.Z) - (Left.Z * Right.Y);
|
|
Result.Y = (Left.Z * Right.X) - (Left.X * Right.Z);
|
|
Result.Z = (Left.X * Right.Y) - (Left.Y * Right.X);
|
|
|
|
return Result;
|
|
}
|
|
|
|
/*
|
|
* Unary vector operations
|
|
*/
|
|
|
|
static inline float HMM_LenSqrV2(HMM_Vec2 A) {
|
|
return HMM_DotV2(A, A);
|
|
}
|
|
|
|
static inline float HMM_LenSqrV3(HMM_Vec3 A) {
|
|
return HMM_DotV3(A, A);
|
|
}
|
|
|
|
static inline float HMM_LenSqrV4(HMM_Vec4 A) {
|
|
return HMM_DotV4(A, A);
|
|
}
|
|
|
|
static inline float HMM_LenV2(HMM_Vec2 A) {
|
|
return HMM_SqrtF(HMM_LenSqrV2(A));
|
|
}
|
|
|
|
static inline float HMM_AngleV2(HMM_Vec2 a, HMM_Vec2 b)
|
|
{
|
|
return acos(HMM_DotV2(a,b)/(HMM_LenV2(a)*HMM_LenV2(b)));
|
|
}
|
|
|
|
static inline float HMM_DistV2(HMM_Vec2 a, HMM_Vec2 b) {
|
|
return HMM_LenV2(HMM_SubV2(a,b));
|
|
}
|
|
|
|
static inline float HMM_LenV3(HMM_Vec3 A) {
|
|
return HMM_SqrtF(HMM_LenSqrV3(A));
|
|
}
|
|
|
|
static inline float HMM_AngleV3(HMM_Vec3 a, HMM_Vec3 b)
|
|
{
|
|
return acos(HMM_DotV3(a,b)/(HMM_LenV3(a)*HMM_LenV3(b)));
|
|
}
|
|
|
|
static inline float HMM_LenV4(HMM_Vec4 A) {
|
|
return HMM_SqrtF(HMM_LenSqrV4(A));
|
|
}
|
|
|
|
static inline float HMM_AngleV4(HMM_Vec4 a, HMM_Vec4 b)
|
|
{
|
|
return acos(HMM_DotV4(a,b)/(HMM_LenV4(a)*HMM_LenV4(b)));
|
|
}
|
|
|
|
static inline HMM_Vec2 HMM_NormV2(HMM_Vec2 A) {
|
|
// HMM_MulV2F(A, 1.0/HMM_LenV2(A)+FLOAT_MIN);
|
|
return HMM_MulV2F(A, HMM_InvSqrtF(HMM_DotV2(A, A)));
|
|
}
|
|
|
|
static inline HMM_Vec3 HMM_NormV3(HMM_Vec3 A) {
|
|
return HMM_MulV3F(A, HMM_InvSqrtF(HMM_DotV3(A, A)));
|
|
}
|
|
|
|
static inline HMM_Vec4 HMM_NormV4(HMM_Vec4 A) {
|
|
return HMM_MulV4F(A, HMM_InvSqrtF(HMM_DotV4(A, A)));
|
|
}
|
|
|
|
/*
|
|
* Utility vector functions
|
|
*/
|
|
|
|
static inline HMM_Vec2 HMM_LerpV2(HMM_Vec2 A, float Time, HMM_Vec2 B) {
|
|
return HMM_AddV2(HMM_MulV2F(A, 1.0f - Time), HMM_MulV2F(B, Time));
|
|
}
|
|
|
|
static inline HMM_Vec3 HMM_LerpV3(HMM_Vec3 A, float Time, HMM_Vec3 B) {
|
|
return HMM_AddV3(HMM_MulV3F(A, 1.0f - Time), HMM_MulV3F(B, Time));
|
|
}
|
|
|
|
static inline HMM_Vec4 HMM_LerpV4(HMM_Vec4 A, float Time, HMM_Vec4 B) {
|
|
return HMM_AddV4(HMM_MulV4F(A, 1.0f - Time), HMM_MulV4F(B, Time));
|
|
}
|
|
|
|
/*
|
|
* SSE stuff
|
|
*/
|
|
|
|
static inline HMM_Vec4 HMM_LinearCombineV4M4(HMM_Vec4 Left, HMM_Mat4 Right) {
|
|
|
|
HMM_Vec4 Result;
|
|
#ifdef HANDMADE_MATH__USE_SSE
|
|
Result.SSE = _mm_mul_ps(_mm_shuffle_ps(Left.SSE, Left.SSE, 0x00), Right.Columns[0].SSE);
|
|
Result.SSE = _mm_add_ps(Result.SSE, _mm_mul_ps(_mm_shuffle_ps(Left.SSE, Left.SSE, 0x55), Right.Columns[1].SSE));
|
|
Result.SSE = _mm_add_ps(Result.SSE, _mm_mul_ps(_mm_shuffle_ps(Left.SSE, Left.SSE, 0xaa), Right.Columns[2].SSE));
|
|
Result.SSE = _mm_add_ps(Result.SSE, _mm_mul_ps(_mm_shuffle_ps(Left.SSE, Left.SSE, 0xff), Right.Columns[3].SSE));
|
|
#else
|
|
Result.X = Left.Elements[0] * Right.Columns[0].X;
|
|
Result.Y = Left.Elements[0] * Right.Columns[0].Y;
|
|
Result.Z = Left.Elements[0] * Right.Columns[0].Z;
|
|
Result.W = Left.Elements[0] * Right.Columns[0].W;
|
|
|
|
Result.X += Left.Elements[1] * Right.Columns[1].X;
|
|
Result.Y += Left.Elements[1] * Right.Columns[1].Y;
|
|
Result.Z += Left.Elements[1] * Right.Columns[1].Z;
|
|
Result.W += Left.Elements[1] * Right.Columns[1].W;
|
|
|
|
Result.X += Left.Elements[2] * Right.Columns[2].X;
|
|
Result.Y += Left.Elements[2] * Right.Columns[2].Y;
|
|
Result.Z += Left.Elements[2] * Right.Columns[2].Z;
|
|
Result.W += Left.Elements[2] * Right.Columns[2].W;
|
|
|
|
Result.X += Left.Elements[3] * Right.Columns[3].X;
|
|
Result.Y += Left.Elements[3] * Right.Columns[3].Y;
|
|
Result.Z += Left.Elements[3] * Right.Columns[3].Z;
|
|
Result.W += Left.Elements[3] * Right.Columns[3].W;
|
|
#endif
|
|
|
|
return Result;
|
|
}
|
|
|
|
/*
|
|
* 2x2 Matrices
|
|
*/
|
|
|
|
static inline HMM_Mat2 HMM_M2(void) {
|
|
HMM_Mat2 Result = {0};
|
|
return Result;
|
|
}
|
|
|
|
static inline HMM_Mat2 HMM_M2D(float Diagonal) {
|
|
|
|
HMM_Mat2 Result = {0};
|
|
Result.Elements[0][0] = Diagonal;
|
|
Result.Elements[1][1] = Diagonal;
|
|
|
|
return Result;
|
|
}
|
|
|
|
static inline HMM_Mat2 HMM_TransposeM2(HMM_Mat2 Matrix) {
|
|
|
|
HMM_Mat2 Result = Matrix;
|
|
|
|
Result.Elements[0][1] = Matrix.Elements[1][0];
|
|
Result.Elements[1][0] = Matrix.Elements[0][1];
|
|
|
|
return Result;
|
|
}
|
|
|
|
static inline HMM_Mat2 HMM_RotateM2(float angle)
|
|
{
|
|
HMM_Mat2 result;
|
|
result.Elements[0][0] = cos(angle);
|
|
result.Elements[0][1] = sin(angle);
|
|
result.Elements[1][0] = -result.Elements[0][1];
|
|
result.Elements[1][1] = result.Elements[0][0];
|
|
|
|
return result;
|
|
}
|
|
|
|
|
|
static inline HMM_Mat2 HMM_AddM2(HMM_Mat2 Left, HMM_Mat2 Right) {
|
|
|
|
HMM_Mat2 Result;
|
|
|
|
Result.Elements[0][0] = Left.Elements[0][0] + Right.Elements[0][0];
|
|
Result.Elements[0][1] = Left.Elements[0][1] + Right.Elements[0][1];
|
|
Result.Elements[1][0] = Left.Elements[1][0] + Right.Elements[1][0];
|
|
Result.Elements[1][1] = Left.Elements[1][1] + Right.Elements[1][1];
|
|
|
|
return Result;
|
|
}
|
|
|
|
static inline HMM_Mat2 HMM_SubM2(HMM_Mat2 Left, HMM_Mat2 Right) {
|
|
|
|
HMM_Mat2 Result;
|
|
|
|
Result.Elements[0][0] = Left.Elements[0][0] - Right.Elements[0][0];
|
|
Result.Elements[0][1] = Left.Elements[0][1] - Right.Elements[0][1];
|
|
Result.Elements[1][0] = Left.Elements[1][0] - Right.Elements[1][0];
|
|
Result.Elements[1][1] = Left.Elements[1][1] - Right.Elements[1][1];
|
|
|
|
return Result;
|
|
}
|
|
|
|
static inline HMM_Vec2 HMM_MulM2V2(HMM_Mat2 Matrix, HMM_Vec2 Vector) {
|
|
|
|
HMM_Vec2 Result;
|
|
|
|
Result.X = Vector.Elements[0] * Matrix.Columns[0].X;
|
|
Result.Y = Vector.Elements[0] * Matrix.Columns[0].Y;
|
|
|
|
Result.X += Vector.Elements[1] * Matrix.Columns[1].X;
|
|
Result.Y += Vector.Elements[1] * Matrix.Columns[1].Y;
|
|
|
|
return Result;
|
|
}
|
|
|
|
static inline HMM_Mat2 HMM_MulM2(HMM_Mat2 Left, HMM_Mat2 Right) {
|
|
|
|
HMM_Mat2 Result;
|
|
Result.Columns[0] = HMM_MulM2V2(Left, Right.Columns[0]);
|
|
Result.Columns[1] = HMM_MulM2V2(Left, Right.Columns[1]);
|
|
|
|
return Result;
|
|
}
|
|
|
|
static inline HMM_Mat2 HMM_MulM2F(HMM_Mat2 Matrix, float Scalar) {
|
|
|
|
HMM_Mat2 Result;
|
|
|
|
Result.Elements[0][0] = Matrix.Elements[0][0] * Scalar;
|
|
Result.Elements[0][1] = Matrix.Elements[0][1] * Scalar;
|
|
Result.Elements[1][0] = Matrix.Elements[1][0] * Scalar;
|
|
Result.Elements[1][1] = Matrix.Elements[1][1] * Scalar;
|
|
|
|
return Result;
|
|
}
|
|
|
|
static inline HMM_Mat2 HMM_DivM2F(HMM_Mat2 Matrix, float Scalar) {
|
|
|
|
HMM_Mat2 Result;
|
|
|
|
Result.Elements[0][0] = Matrix.Elements[0][0] / Scalar;
|
|
Result.Elements[0][1] = Matrix.Elements[0][1] / Scalar;
|
|
Result.Elements[1][0] = Matrix.Elements[1][0] / Scalar;
|
|
Result.Elements[1][1] = Matrix.Elements[1][1] / Scalar;
|
|
|
|
return Result;
|
|
}
|
|
|
|
static inline float HMM_DeterminantM2(HMM_Mat2 Matrix) {
|
|
return Matrix.Elements[0][0] * Matrix.Elements[1][1] - Matrix.Elements[0][1] * Matrix.Elements[1][0];
|
|
}
|
|
|
|
static inline HMM_Mat2 HMM_InvGeneralM2(HMM_Mat2 Matrix) {
|
|
|
|
HMM_Mat2 Result;
|
|
float InvDeterminant = 1.0f / HMM_DeterminantM2(Matrix);
|
|
Result.Elements[0][0] = InvDeterminant * +Matrix.Elements[1][1];
|
|
Result.Elements[1][1] = InvDeterminant * +Matrix.Elements[0][0];
|
|
Result.Elements[0][1] = InvDeterminant * -Matrix.Elements[0][1];
|
|
Result.Elements[1][0] = InvDeterminant * -Matrix.Elements[1][0];
|
|
|
|
return Result;
|
|
}
|
|
|
|
/*
|
|
* 3x3 Matrices
|
|
*/
|
|
|
|
static inline HMM_Mat3 HMM_M3(void) {
|
|
HMM_Mat3 Result = {0};
|
|
return Result;
|
|
}
|
|
|
|
static inline HMM_Mat3 HMM_M3D(float Diagonal) {
|
|
|
|
HMM_Mat3 Result = {0};
|
|
Result.Elements[0][0] = Diagonal;
|
|
Result.Elements[1][1] = Diagonal;
|
|
Result.Elements[2][2] = Diagonal;
|
|
|
|
return Result;
|
|
}
|
|
|
|
static inline HMM_Mat3 HMM_Translate2D(HMM_Vec2 p)
|
|
{
|
|
HMM_Mat3 res = HMM_M3D(1);
|
|
res.Columns[2].XY = p;
|
|
return res;
|
|
}
|
|
|
|
static inline HMM_Mat3 HMM_RotateM3(float angle)
|
|
{
|
|
HMM_Mat3 r = HMM_M3D(1);
|
|
r.Columns[0] = (HMM_Vec3){cos(angle), sin(angle), 0};
|
|
r.Columns[1] = (HMM_Vec3){-sin(angle), cos(angle), 0};
|
|
return r;
|
|
}
|
|
|
|
static inline HMM_Mat3 HMM_ScaleM3(HMM_Vec2 s)
|
|
{
|
|
HMM_Mat3 sm = HMM_M3D(1);
|
|
sm.Columns[0].X = s.x;
|
|
sm.Columns[1].Y = s.y;
|
|
return sm;
|
|
}
|
|
|
|
static inline HMM_Mat3 HMM_TransposeM3(HMM_Mat3 Matrix) {
|
|
|
|
HMM_Mat3 Result = Matrix;
|
|
|
|
Result.Elements[0][1] = Matrix.Elements[1][0];
|
|
Result.Elements[0][2] = Matrix.Elements[2][0];
|
|
Result.Elements[1][0] = Matrix.Elements[0][1];
|
|
Result.Elements[1][2] = Matrix.Elements[2][1];
|
|
Result.Elements[2][1] = Matrix.Elements[1][2];
|
|
Result.Elements[2][0] = Matrix.Elements[0][2];
|
|
|
|
return Result;
|
|
}
|
|
|
|
static inline HMM_Mat3 HMM_AddM3(HMM_Mat3 Left, HMM_Mat3 Right) {
|
|
|
|
HMM_Mat3 Result;
|
|
|
|
Result.Elements[0][0] = Left.Elements[0][0] + Right.Elements[0][0];
|
|
Result.Elements[0][1] = Left.Elements[0][1] + Right.Elements[0][1];
|
|
Result.Elements[0][2] = Left.Elements[0][2] + Right.Elements[0][2];
|
|
Result.Elements[1][0] = Left.Elements[1][0] + Right.Elements[1][0];
|
|
Result.Elements[1][1] = Left.Elements[1][1] + Right.Elements[1][1];
|
|
Result.Elements[1][2] = Left.Elements[1][2] + Right.Elements[1][2];
|
|
Result.Elements[2][0] = Left.Elements[2][0] + Right.Elements[2][0];
|
|
Result.Elements[2][1] = Left.Elements[2][1] + Right.Elements[2][1];
|
|
Result.Elements[2][2] = Left.Elements[2][2] + Right.Elements[2][2];
|
|
|
|
return Result;
|
|
}
|
|
|
|
static inline HMM_Mat3 HMM_SubM3(HMM_Mat3 Left, HMM_Mat3 Right) {
|
|
|
|
HMM_Mat3 Result;
|
|
|
|
Result.Elements[0][0] = Left.Elements[0][0] - Right.Elements[0][0];
|
|
Result.Elements[0][1] = Left.Elements[0][1] - Right.Elements[0][1];
|
|
Result.Elements[0][2] = Left.Elements[0][2] - Right.Elements[0][2];
|
|
Result.Elements[1][0] = Left.Elements[1][0] - Right.Elements[1][0];
|
|
Result.Elements[1][1] = Left.Elements[1][1] - Right.Elements[1][1];
|
|
Result.Elements[1][2] = Left.Elements[1][2] - Right.Elements[1][2];
|
|
Result.Elements[2][0] = Left.Elements[2][0] - Right.Elements[2][0];
|
|
Result.Elements[2][1] = Left.Elements[2][1] - Right.Elements[2][1];
|
|
Result.Elements[2][2] = Left.Elements[2][2] - Right.Elements[2][2];
|
|
|
|
return Result;
|
|
}
|
|
|
|
static inline HMM_Vec3 HMM_MulM3V3(HMM_Mat3 Matrix, HMM_Vec3 Vector) {
|
|
HMM_Vec3 Result;
|
|
|
|
Result.X = Vector.Elements[0] * Matrix.Columns[0].X;
|
|
Result.Y = Vector.Elements[0] * Matrix.Columns[0].Y;
|
|
Result.Z = Vector.Elements[0] * Matrix.Columns[0].Z;
|
|
|
|
Result.X += Vector.Elements[1] * Matrix.Columns[1].X;
|
|
Result.Y += Vector.Elements[1] * Matrix.Columns[1].Y;
|
|
Result.Z += Vector.Elements[1] * Matrix.Columns[1].Z;
|
|
|
|
Result.X += Vector.Elements[2] * Matrix.Columns[2].X;
|
|
Result.Y += Vector.Elements[2] * Matrix.Columns[2].Y;
|
|
Result.Z += Vector.Elements[2] * Matrix.Columns[2].Z;
|
|
|
|
return Result;
|
|
}
|
|
|
|
static inline HMM_Mat3 HMM_MulM3(HMM_Mat3 Left, HMM_Mat3 Right) {
|
|
|
|
HMM_Mat3 Result;
|
|
Result.Columns[0] = HMM_MulM3V3(Left, Right.Columns[0]);
|
|
Result.Columns[1] = HMM_MulM3V3(Left, Right.Columns[1]);
|
|
Result.Columns[2] = HMM_MulM3V3(Left, Right.Columns[2]);
|
|
|
|
return Result;
|
|
}
|
|
|
|
/*static inline HMM_Mat3 HMM_VMulM3(int c, ...)
|
|
{
|
|
HMM_Mat3 res = HMM_M3D(1);
|
|
va_list args;
|
|
va_start(args, c);
|
|
for (int i = 0; i < c; i++) {
|
|
HMM_Mat3 m = va_arg(args, HMM_Mat3);
|
|
res = HMM_MulM3(m, res);
|
|
}
|
|
va_end(args);
|
|
return res;
|
|
}
|
|
*/
|
|
static inline HMM_Mat3 HMM_MulM3F(HMM_Mat3 Matrix, float Scalar) {
|
|
|
|
HMM_Mat3 Result;
|
|
|
|
Result.Elements[0][0] = Matrix.Elements[0][0] * Scalar;
|
|
Result.Elements[0][1] = Matrix.Elements[0][1] * Scalar;
|
|
Result.Elements[0][2] = Matrix.Elements[0][2] * Scalar;
|
|
Result.Elements[1][0] = Matrix.Elements[1][0] * Scalar;
|
|
Result.Elements[1][1] = Matrix.Elements[1][1] * Scalar;
|
|
Result.Elements[1][2] = Matrix.Elements[1][2] * Scalar;
|
|
Result.Elements[2][0] = Matrix.Elements[2][0] * Scalar;
|
|
Result.Elements[2][1] = Matrix.Elements[2][1] * Scalar;
|
|
Result.Elements[2][2] = Matrix.Elements[2][2] * Scalar;
|
|
|
|
return Result;
|
|
}
|
|
|
|
static inline HMM_Mat3 HMM_DivM3F(HMM_Mat3 Matrix, float Scalar) {
|
|
|
|
HMM_Mat3 Result;
|
|
|
|
Result.Elements[0][0] = Matrix.Elements[0][0] / Scalar;
|
|
Result.Elements[0][1] = Matrix.Elements[0][1] / Scalar;
|
|
Result.Elements[0][2] = Matrix.Elements[0][2] / Scalar;
|
|
Result.Elements[1][0] = Matrix.Elements[1][0] / Scalar;
|
|
Result.Elements[1][1] = Matrix.Elements[1][1] / Scalar;
|
|
Result.Elements[1][2] = Matrix.Elements[1][2] / Scalar;
|
|
Result.Elements[2][0] = Matrix.Elements[2][0] / Scalar;
|
|
Result.Elements[2][1] = Matrix.Elements[2][1] / Scalar;
|
|
Result.Elements[2][2] = Matrix.Elements[2][2] / Scalar;
|
|
|
|
return Result;
|
|
}
|
|
|
|
static inline HMM_Mat2 HMM_ScaleM2(HMM_Vec2 Scale) {
|
|
|
|
HMM_Mat2 Result = HMM_M2D(1.0f);
|
|
Result.Elements[0][0] = Scale.X;
|
|
Result.Elements[1][1] = Scale.Y;
|
|
|
|
return Result;
|
|
}
|
|
|
|
static inline float HMM_DeterminantM3(HMM_Mat3 Matrix) {
|
|
|
|
HMM_Mat3 Cross;
|
|
Cross.Columns[0] = HMM_Cross(Matrix.Columns[1], Matrix.Columns[2]);
|
|
Cross.Columns[1] = HMM_Cross(Matrix.Columns[2], Matrix.Columns[0]);
|
|
Cross.Columns[2] = HMM_Cross(Matrix.Columns[0], Matrix.Columns[1]);
|
|
|
|
return HMM_DotV3(Cross.Columns[2], Matrix.Columns[2]);
|
|
}
|
|
|
|
static inline HMM_Mat3 HMM_M2Basis(HMM_Mat2 basis)
|
|
{
|
|
HMM_Mat3 m;
|
|
m.Columns[0].XY = basis.Columns[0];
|
|
m.Columns[1].XY = basis.Columns[1];
|
|
m.Columns[2].Z = 1;
|
|
return m;
|
|
}
|
|
|
|
static inline HMM_Mat3 HMM_InvGeneralM3(HMM_Mat3 Matrix) {
|
|
|
|
HMM_Mat3 Cross;
|
|
Cross.Columns[0] = HMM_Cross(Matrix.Columns[1], Matrix.Columns[2]);
|
|
Cross.Columns[1] = HMM_Cross(Matrix.Columns[2], Matrix.Columns[0]);
|
|
Cross.Columns[2] = HMM_Cross(Matrix.Columns[0], Matrix.Columns[1]);
|
|
|
|
float InvDeterminant = 1.0f / HMM_DotV3(Cross.Columns[2], Matrix.Columns[2]);
|
|
|
|
HMM_Mat3 Result;
|
|
Result.Columns[0] = HMM_MulV3F(Cross.Columns[0], InvDeterminant);
|
|
Result.Columns[1] = HMM_MulV3F(Cross.Columns[1], InvDeterminant);
|
|
Result.Columns[2] = HMM_MulV3F(Cross.Columns[2], InvDeterminant);
|
|
|
|
return HMM_TransposeM3(Result);
|
|
}
|
|
|
|
/*
|
|
* 4x4 Matrices
|
|
*/
|
|
|
|
static inline HMM_Mat4 HMM_M4(void) {
|
|
HMM_Mat4 Result = {0};
|
|
return Result;
|
|
}
|
|
|
|
static inline HMM_Mat4 HMM_M4D(float Diagonal) {
|
|
|
|
HMM_Mat4 Result = {0};
|
|
Result.Elements[0][0] = Diagonal;
|
|
Result.Elements[1][1] = Diagonal;
|
|
Result.Elements[2][2] = Diagonal;
|
|
Result.Elements[3][3] = Diagonal;
|
|
|
|
return Result;
|
|
}
|
|
|
|
static inline HMM_Mat4 HMM_TransposeM4(HMM_Mat4 Matrix) {
|
|
|
|
HMM_Mat4 Result = Matrix;
|
|
#ifdef HANDMADE_MATH__USE_SSE
|
|
_MM_TRANSPOSE4_PS(Result.Columns[0].SSE, Result.Columns[1].SSE, Result.Columns[2].SSE, Result.Columns[3].SSE);
|
|
#else
|
|
Result.Elements[0][1] = Matrix.Elements[1][0];
|
|
Result.Elements[0][2] = Matrix.Elements[2][0];
|
|
Result.Elements[0][3] = Matrix.Elements[3][0];
|
|
Result.Elements[1][0] = Matrix.Elements[0][1];
|
|
Result.Elements[1][2] = Matrix.Elements[2][1];
|
|
Result.Elements[1][3] = Matrix.Elements[3][1];
|
|
Result.Elements[2][1] = Matrix.Elements[1][2];
|
|
Result.Elements[2][0] = Matrix.Elements[0][2];
|
|
Result.Elements[2][3] = Matrix.Elements[3][2];
|
|
Result.Elements[3][1] = Matrix.Elements[1][3];
|
|
Result.Elements[3][2] = Matrix.Elements[2][3];
|
|
Result.Elements[3][0] = Matrix.Elements[0][3];
|
|
#endif
|
|
|
|
return Result;
|
|
}
|
|
|
|
static inline HMM_Mat4 HMM_AddM4(HMM_Mat4 Left, HMM_Mat4 Right) {
|
|
|
|
HMM_Mat4 Result;
|
|
|
|
#ifdef HANDMADE_MATH__USE_SSE
|
|
Result.Columns[0].SSE = _mm_add_ps(Left.Columns[0].SSE, Right.Columns[0].SSE);
|
|
Result.Columns[1].SSE = _mm_add_ps(Left.Columns[1].SSE, Right.Columns[1].SSE);
|
|
Result.Columns[2].SSE = _mm_add_ps(Left.Columns[2].SSE, Right.Columns[2].SSE);
|
|
Result.Columns[3].SSE = _mm_add_ps(Left.Columns[3].SSE, Right.Columns[3].SSE);
|
|
#else
|
|
Result.Elements[0][0] = Left.Elements[0][0] + Right.Elements[0][0];
|
|
Result.Elements[0][1] = Left.Elements[0][1] + Right.Elements[0][1];
|
|
Result.Elements[0][2] = Left.Elements[0][2] + Right.Elements[0][2];
|
|
Result.Elements[0][3] = Left.Elements[0][3] + Right.Elements[0][3];
|
|
Result.Elements[1][0] = Left.Elements[1][0] + Right.Elements[1][0];
|
|
Result.Elements[1][1] = Left.Elements[1][1] + Right.Elements[1][1];
|
|
Result.Elements[1][2] = Left.Elements[1][2] + Right.Elements[1][2];
|
|
Result.Elements[1][3] = Left.Elements[1][3] + Right.Elements[1][3];
|
|
Result.Elements[2][0] = Left.Elements[2][0] + Right.Elements[2][0];
|
|
Result.Elements[2][1] = Left.Elements[2][1] + Right.Elements[2][1];
|
|
Result.Elements[2][2] = Left.Elements[2][2] + Right.Elements[2][2];
|
|
Result.Elements[2][3] = Left.Elements[2][3] + Right.Elements[2][3];
|
|
Result.Elements[3][0] = Left.Elements[3][0] + Right.Elements[3][0];
|
|
Result.Elements[3][1] = Left.Elements[3][1] + Right.Elements[3][1];
|
|
Result.Elements[3][2] = Left.Elements[3][2] + Right.Elements[3][2];
|
|
Result.Elements[3][3] = Left.Elements[3][3] + Right.Elements[3][3];
|
|
#endif
|
|
|
|
return Result;
|
|
}
|
|
|
|
static inline HMM_Mat4 HMM_SubM4(HMM_Mat4 Left, HMM_Mat4 Right) {
|
|
|
|
HMM_Mat4 Result;
|
|
|
|
#ifdef HANDMADE_MATH__USE_SSE
|
|
Result.Columns[0].SSE = _mm_sub_ps(Left.Columns[0].SSE, Right.Columns[0].SSE);
|
|
Result.Columns[1].SSE = _mm_sub_ps(Left.Columns[1].SSE, Right.Columns[1].SSE);
|
|
Result.Columns[2].SSE = _mm_sub_ps(Left.Columns[2].SSE, Right.Columns[2].SSE);
|
|
Result.Columns[3].SSE = _mm_sub_ps(Left.Columns[3].SSE, Right.Columns[3].SSE);
|
|
#else
|
|
Result.Elements[0][0] = Left.Elements[0][0] - Right.Elements[0][0];
|
|
Result.Elements[0][1] = Left.Elements[0][1] - Right.Elements[0][1];
|
|
Result.Elements[0][2] = Left.Elements[0][2] - Right.Elements[0][2];
|
|
Result.Elements[0][3] = Left.Elements[0][3] - Right.Elements[0][3];
|
|
Result.Elements[1][0] = Left.Elements[1][0] - Right.Elements[1][0];
|
|
Result.Elements[1][1] = Left.Elements[1][1] - Right.Elements[1][1];
|
|
Result.Elements[1][2] = Left.Elements[1][2] - Right.Elements[1][2];
|
|
Result.Elements[1][3] = Left.Elements[1][3] - Right.Elements[1][3];
|
|
Result.Elements[2][0] = Left.Elements[2][0] - Right.Elements[2][0];
|
|
Result.Elements[2][1] = Left.Elements[2][1] - Right.Elements[2][1];
|
|
Result.Elements[2][2] = Left.Elements[2][2] - Right.Elements[2][2];
|
|
Result.Elements[2][3] = Left.Elements[2][3] - Right.Elements[2][3];
|
|
Result.Elements[3][0] = Left.Elements[3][0] - Right.Elements[3][0];
|
|
Result.Elements[3][1] = Left.Elements[3][1] - Right.Elements[3][1];
|
|
Result.Elements[3][2] = Left.Elements[3][2] - Right.Elements[3][2];
|
|
Result.Elements[3][3] = Left.Elements[3][3] - Right.Elements[3][3];
|
|
#endif
|
|
|
|
return Result;
|
|
}
|
|
|
|
static inline HMM_Mat4 HMM_MulM4(HMM_Mat4 Left, HMM_Mat4 Right) {
|
|
|
|
HMM_Mat4 Result;
|
|
Result.Columns[0] = HMM_LinearCombineV4M4(Right.Columns[0], Left);
|
|
Result.Columns[1] = HMM_LinearCombineV4M4(Right.Columns[1], Left);
|
|
Result.Columns[2] = HMM_LinearCombineV4M4(Right.Columns[2], Left);
|
|
Result.Columns[3] = HMM_LinearCombineV4M4(Right.Columns[3], Left);
|
|
|
|
return Result;
|
|
}
|
|
|
|
static inline HMM_Mat4 HMM_MulM4F(HMM_Mat4 Matrix, float Scalar) {
|
|
|
|
HMM_Mat4 Result;
|
|
|
|
#ifdef HANDMADE_MATH__USE_SSE
|
|
__m128 SSEScalar = _mm_set1_ps(Scalar);
|
|
Result.Columns[0].SSE = _mm_mul_ps(Matrix.Columns[0].SSE, SSEScalar);
|
|
Result.Columns[1].SSE = _mm_mul_ps(Matrix.Columns[1].SSE, SSEScalar);
|
|
Result.Columns[2].SSE = _mm_mul_ps(Matrix.Columns[2].SSE, SSEScalar);
|
|
Result.Columns[3].SSE = _mm_mul_ps(Matrix.Columns[3].SSE, SSEScalar);
|
|
#else
|
|
Result.Elements[0][0] = Matrix.Elements[0][0] * Scalar;
|
|
Result.Elements[0][1] = Matrix.Elements[0][1] * Scalar;
|
|
Result.Elements[0][2] = Matrix.Elements[0][2] * Scalar;
|
|
Result.Elements[0][3] = Matrix.Elements[0][3] * Scalar;
|
|
Result.Elements[1][0] = Matrix.Elements[1][0] * Scalar;
|
|
Result.Elements[1][1] = Matrix.Elements[1][1] * Scalar;
|
|
Result.Elements[1][2] = Matrix.Elements[1][2] * Scalar;
|
|
Result.Elements[1][3] = Matrix.Elements[1][3] * Scalar;
|
|
Result.Elements[2][0] = Matrix.Elements[2][0] * Scalar;
|
|
Result.Elements[2][1] = Matrix.Elements[2][1] * Scalar;
|
|
Result.Elements[2][2] = Matrix.Elements[2][2] * Scalar;
|
|
Result.Elements[2][3] = Matrix.Elements[2][3] * Scalar;
|
|
Result.Elements[3][0] = Matrix.Elements[3][0] * Scalar;
|
|
Result.Elements[3][1] = Matrix.Elements[3][1] * Scalar;
|
|
Result.Elements[3][2] = Matrix.Elements[3][2] * Scalar;
|
|
Result.Elements[3][3] = Matrix.Elements[3][3] * Scalar;
|
|
#endif
|
|
|
|
return Result;
|
|
}
|
|
|
|
static inline HMM_Vec4 HMM_MulM4V4(HMM_Mat4 Matrix, HMM_Vec4 Vector) {
|
|
return HMM_LinearCombineV4M4(Vector, Matrix);
|
|
}
|
|
|
|
static inline HMM_Mat4 HMM_DivM4F(HMM_Mat4 Matrix, float Scalar) {
|
|
|
|
HMM_Mat4 Result;
|
|
|
|
#ifdef HANDMADE_MATH__USE_SSE
|
|
__m128 SSEScalar = _mm_set1_ps(Scalar);
|
|
Result.Columns[0].SSE = _mm_div_ps(Matrix.Columns[0].SSE, SSEScalar);
|
|
Result.Columns[1].SSE = _mm_div_ps(Matrix.Columns[1].SSE, SSEScalar);
|
|
Result.Columns[2].SSE = _mm_div_ps(Matrix.Columns[2].SSE, SSEScalar);
|
|
Result.Columns[3].SSE = _mm_div_ps(Matrix.Columns[3].SSE, SSEScalar);
|
|
#else
|
|
Result.Elements[0][0] = Matrix.Elements[0][0] / Scalar;
|
|
Result.Elements[0][1] = Matrix.Elements[0][1] / Scalar;
|
|
Result.Elements[0][2] = Matrix.Elements[0][2] / Scalar;
|
|
Result.Elements[0][3] = Matrix.Elements[0][3] / Scalar;
|
|
Result.Elements[1][0] = Matrix.Elements[1][0] / Scalar;
|
|
Result.Elements[1][1] = Matrix.Elements[1][1] / Scalar;
|
|
Result.Elements[1][2] = Matrix.Elements[1][2] / Scalar;
|
|
Result.Elements[1][3] = Matrix.Elements[1][3] / Scalar;
|
|
Result.Elements[2][0] = Matrix.Elements[2][0] / Scalar;
|
|
Result.Elements[2][1] = Matrix.Elements[2][1] / Scalar;
|
|
Result.Elements[2][2] = Matrix.Elements[2][2] / Scalar;
|
|
Result.Elements[2][3] = Matrix.Elements[2][3] / Scalar;
|
|
Result.Elements[3][0] = Matrix.Elements[3][0] / Scalar;
|
|
Result.Elements[3][1] = Matrix.Elements[3][1] / Scalar;
|
|
Result.Elements[3][2] = Matrix.Elements[3][2] / Scalar;
|
|
Result.Elements[3][3] = Matrix.Elements[3][3] / Scalar;
|
|
#endif
|
|
|
|
return Result;
|
|
}
|
|
|
|
static inline float HMM_DeterminantM4(HMM_Mat4 Matrix) {
|
|
|
|
HMM_Vec3 C01 = HMM_Cross(Matrix.Columns[0].XYZ, Matrix.Columns[1].XYZ);
|
|
HMM_Vec3 C23 = HMM_Cross(Matrix.Columns[2].XYZ, Matrix.Columns[3].XYZ);
|
|
HMM_Vec3 B10 = HMM_SubV3(HMM_MulV3F(Matrix.Columns[0].XYZ, Matrix.Columns[1].W), HMM_MulV3F(Matrix.Columns[1].XYZ, Matrix.Columns[0].W));
|
|
HMM_Vec3 B32 = HMM_SubV3(HMM_MulV3F(Matrix.Columns[2].XYZ, Matrix.Columns[3].W), HMM_MulV3F(Matrix.Columns[3].XYZ, Matrix.Columns[2].W));
|
|
|
|
return HMM_DotV3(C01, B32) + HMM_DotV3(C23, B10);
|
|
}
|
|
|
|
// Returns a general-purpose inverse of an HMM_Mat4. Note that special-purpose inverses of many transformations
|
|
// are available and will be more efficient.
|
|
static inline HMM_Mat4 HMM_InvGeneralM4(HMM_Mat4 Matrix) {
|
|
|
|
HMM_Vec3 C01 = HMM_Cross(Matrix.Columns[0].XYZ, Matrix.Columns[1].XYZ);
|
|
HMM_Vec3 C23 = HMM_Cross(Matrix.Columns[2].XYZ, Matrix.Columns[3].XYZ);
|
|
HMM_Vec3 B10 = HMM_SubV3(HMM_MulV3F(Matrix.Columns[0].XYZ, Matrix.Columns[1].W), HMM_MulV3F(Matrix.Columns[1].XYZ, Matrix.Columns[0].W));
|
|
HMM_Vec3 B32 = HMM_SubV3(HMM_MulV3F(Matrix.Columns[2].XYZ, Matrix.Columns[3].W), HMM_MulV3F(Matrix.Columns[3].XYZ, Matrix.Columns[2].W));
|
|
|
|
float InvDeterminant = 1.0f / (HMM_DotV3(C01, B32) + HMM_DotV3(C23, B10));
|
|
C01 = HMM_MulV3F(C01, InvDeterminant);
|
|
C23 = HMM_MulV3F(C23, InvDeterminant);
|
|
B10 = HMM_MulV3F(B10, InvDeterminant);
|
|
B32 = HMM_MulV3F(B32, InvDeterminant);
|
|
|
|
HMM_Mat4 Result;
|
|
Result.Columns[0] = HMM_V4V(HMM_AddV3(HMM_Cross(Matrix.Columns[1].XYZ, B32), HMM_MulV3F(C23, Matrix.Columns[1].W)), -HMM_DotV3(Matrix.Columns[1].XYZ, C23));
|
|
Result.Columns[1] = HMM_V4V(HMM_SubV3(HMM_Cross(B32, Matrix.Columns[0].XYZ), HMM_MulV3F(C23, Matrix.Columns[0].W)), +HMM_DotV3(Matrix.Columns[0].XYZ, C23));
|
|
Result.Columns[2] = HMM_V4V(HMM_AddV3(HMM_Cross(Matrix.Columns[3].XYZ, B10), HMM_MulV3F(C01, Matrix.Columns[3].W)), -HMM_DotV3(Matrix.Columns[3].XYZ, C01));
|
|
Result.Columns[3] = HMM_V4V(HMM_SubV3(HMM_Cross(B10, Matrix.Columns[2].XYZ), HMM_MulV3F(C01, Matrix.Columns[2].W)), +HMM_DotV3(Matrix.Columns[2].XYZ, C01));
|
|
|
|
return HMM_TransposeM4(Result);
|
|
}
|
|
|
|
/*
|
|
* Common graphics transformations
|
|
*/
|
|
|
|
// Produces a right-handed orthographic projection matrix with Z ranging from -1 to 1 (the GL convention).
|
|
// Left, Right, Bottom, and Top specify the coordinates of their respective clipping planes.
|
|
// Near and Far specify the distances to the near and far clipping planes.
|
|
static inline HMM_Mat4 HMM_Orthographic_RH_NO(float Left, float Right, float Bottom, float Top, float Near, float Far) {
|
|
|
|
HMM_Mat4 Result = {0};
|
|
|
|
Result.Elements[0][0] = 2.0f / (Right - Left);
|
|
Result.Elements[1][1] = 2.0f / (Top - Bottom);
|
|
Result.Elements[2][2] = 2.0f / (Near - Far);
|
|
Result.Elements[3][3] = 1.0f;
|
|
|
|
Result.Elements[3][0] = (Left + Right) / (Left - Right);
|
|
Result.Elements[3][1] = (Bottom + Top) / (Bottom - Top);
|
|
Result.Elements[3][2] = (Near + Far) / (Near - Far);
|
|
|
|
return Result;
|
|
}
|
|
|
|
// Produces a right-handed orthographic projection matrix with Z ranging from 0 to 1 (the DirectX convention).
|
|
// Left, Right, Bottom, and Top specify the coordinates of their respective clipping planes.
|
|
// Near and Far specify the distances to the near and far clipping planes.
|
|
static inline HMM_Mat4 HMM_Orthographic_RH_ZO(float Left, float Right, float Bottom, float Top, float Near, float Far) {
|
|
|
|
HMM_Mat4 Result = {0};
|
|
|
|
Result.Elements[0][0] = 2.0f / (Right - Left);
|
|
Result.Elements[1][1] = 2.0f / (Top - Bottom);
|
|
Result.Elements[2][2] = 1.0f / (Near - Far);
|
|
Result.Elements[3][3] = 1.0f;
|
|
|
|
Result.Elements[3][0] = (Left + Right) / (Left - Right);
|
|
Result.Elements[3][1] = (Bottom + Top) / (Bottom - Top);
|
|
Result.Elements[3][2] = (Near) / (Near - Far);
|
|
|
|
return Result;
|
|
}
|
|
|
|
// Produces a left-handed orthographic projection matrix with Z ranging from -1 to 1 (the GL convention).
|
|
// Left, Right, Bottom, and Top specify the coordinates of their respective clipping planes.
|
|
// Near and Far specify the distances to the near and far clipping planes.
|
|
static inline HMM_Mat4 HMM_Orthographic_LH_NO(float Left, float Right, float Bottom, float Top, float Near, float Far) {
|
|
|
|
HMM_Mat4 Result = HMM_Orthographic_RH_NO(Left, Right, Bottom, Top, Near, Far);
|
|
Result.Elements[2][2] = -Result.Elements[2][2];
|
|
|
|
return Result;
|
|
}
|
|
|
|
// Produces a left-handed orthographic projection matrix with Z ranging from 0 to 1 (the DirectX convention).
|
|
// Left, Right, Bottom, and Top specify the coordinates of their respective clipping planes.
|
|
// Near and Far specify the distances to the near and far clipping planes.
|
|
static inline HMM_Mat4 HMM_Orthographic_LH_ZO(float Left, float Right, float Bottom, float Top, float Near, float Far) {
|
|
|
|
HMM_Mat4 Result = HMM_Orthographic_RH_ZO(Left, Right, Bottom, Top, Near, Far);
|
|
Result.Elements[2][2] = -Result.Elements[2][2];
|
|
|
|
return Result;
|
|
}
|
|
|
|
// Returns an inverse for the given orthographic projection matrix. Works for all orthographic
|
|
// projection matrices, regardless of handedness or NDC convention.
|
|
static inline HMM_Mat4 HMM_InvOrthographic(HMM_Mat4 OrthoMatrix) {
|
|
|
|
HMM_Mat4 Result = {0};
|
|
Result.Elements[0][0] = 1.0f / OrthoMatrix.Elements[0][0];
|
|
Result.Elements[1][1] = 1.0f / OrthoMatrix.Elements[1][1];
|
|
Result.Elements[2][2] = 1.0f / OrthoMatrix.Elements[2][2];
|
|
Result.Elements[3][3] = 1.0f;
|
|
|
|
Result.Elements[3][0] = -OrthoMatrix.Elements[3][0] * Result.Elements[0][0];
|
|
Result.Elements[3][1] = -OrthoMatrix.Elements[3][1] * Result.Elements[1][1];
|
|
Result.Elements[3][2] = -OrthoMatrix.Elements[3][2] * Result.Elements[2][2];
|
|
|
|
return Result;
|
|
}
|
|
|
|
static inline HMM_Mat4 HMM_Perspective_RH_NO(float FOV, float AspectRatio, float Near, float Far) {
|
|
|
|
HMM_Mat4 Result = {0};
|
|
|
|
// See https://www.khronos.org/registry/OpenGL-Refpages/gl2.1/xhtml/gluPerspective.xml
|
|
|
|
float Cotangent = 1.0f / HMM_TanF(FOV / 2.0f);
|
|
Result.Elements[0][0] = Cotangent / AspectRatio;
|
|
Result.Elements[1][1] = Cotangent;
|
|
Result.Elements[2][3] = -1.0f;
|
|
|
|
Result.Elements[2][2] = (Near + Far) / (Near - Far);
|
|
Result.Elements[3][2] = (2.0f * Near * Far) / (Near - Far);
|
|
|
|
return Result;
|
|
}
|
|
|
|
static inline HMM_Mat4 HMM_Perspective_RH_ZO(float FOV, float AspectRatio, float Near, float Far) {
|
|
|
|
HMM_Mat4 Result = {0};
|
|
|
|
// See https://www.khronos.org/registry/OpenGL-Refpages/gl2.1/xhtml/gluPerspective.xml
|
|
|
|
float Cotangent = 1.0f / HMM_TanF(FOV / 2.0f);
|
|
Result.Elements[0][0] = Cotangent / AspectRatio;
|
|
Result.Elements[1][1] = Cotangent;
|
|
Result.Elements[2][3] = -1.0f;
|
|
|
|
Result.Elements[2][2] = (Far) / (Near - Far);
|
|
Result.Elements[3][2] = (Near * Far) / (Near - Far);
|
|
|
|
return Result;
|
|
}
|
|
|
|
static inline HMM_Mat4 HMM_Perspective_LH_NO(float FOV, float AspectRatio, float Near, float Far) {
|
|
|
|
HMM_Mat4 Result = HMM_Perspective_RH_NO(FOV, AspectRatio, Near, Far);
|
|
Result.Elements[2][2] = -Result.Elements[2][2];
|
|
Result.Elements[2][3] = -Result.Elements[2][3];
|
|
|
|
return Result;
|
|
}
|
|
|
|
static inline HMM_Mat4 HMM_Perspective_LH_ZO(float FOV, float AspectRatio, float Near, float Far) {
|
|
|
|
HMM_Mat4 Result = HMM_Perspective_RH_ZO(FOV, AspectRatio, Near, Far);
|
|
Result.Elements[2][2] = -Result.Elements[2][2];
|
|
Result.Elements[2][3] = -Result.Elements[2][3];
|
|
|
|
return Result;
|
|
}
|
|
|
|
static inline HMM_Mat4 HMM_InvPerspective_RH(HMM_Mat4 PerspectiveMatrix) {
|
|
|
|
HMM_Mat4 Result = {0};
|
|
Result.Elements[0][0] = 1.0f / PerspectiveMatrix.Elements[0][0];
|
|
Result.Elements[1][1] = 1.0f / PerspectiveMatrix.Elements[1][1];
|
|
Result.Elements[2][2] = 0.0f;
|
|
|
|
Result.Elements[2][3] = 1.0f / PerspectiveMatrix.Elements[3][2];
|
|
Result.Elements[3][3] = PerspectiveMatrix.Elements[2][2] * Result.Elements[2][3];
|
|
Result.Elements[3][2] = PerspectiveMatrix.Elements[2][3];
|
|
|
|
return Result;
|
|
}
|
|
|
|
static inline HMM_Mat4 HMM_InvPerspective_LH(HMM_Mat4 PerspectiveMatrix) {
|
|
|
|
HMM_Mat4 Result = {0};
|
|
Result.Elements[0][0] = 1.0f / PerspectiveMatrix.Elements[0][0];
|
|
Result.Elements[1][1] = 1.0f / PerspectiveMatrix.Elements[1][1];
|
|
Result.Elements[2][2] = 0.0f;
|
|
|
|
Result.Elements[2][3] = 1.0f / PerspectiveMatrix.Elements[3][2];
|
|
Result.Elements[3][3] = PerspectiveMatrix.Elements[2][2] * -Result.Elements[2][3];
|
|
Result.Elements[3][2] = PerspectiveMatrix.Elements[2][3];
|
|
|
|
return Result;
|
|
}
|
|
|
|
static inline HMM_Mat4 HMM_Translate(HMM_Vec3 Translation) {
|
|
|
|
HMM_Mat4 Result = HMM_M4D(1.0f);
|
|
Result.Elements[3][0] = Translation.X;
|
|
Result.Elements[3][1] = Translation.Y;
|
|
Result.Elements[3][2] = Translation.Z;
|
|
|
|
return Result;
|
|
}
|
|
|
|
static inline HMM_Mat4 *HMM_Translate_p(HMM_Mat4 *m, HMM_Vec3 t)
|
|
{
|
|
m->Elements[3][0] += t.X;
|
|
m->Elements[3][1] += t.Y;
|
|
m->Elements[3][2] += t.Z;
|
|
return m;
|
|
}
|
|
|
|
static inline HMM_Mat4 HMM_InvTranslate(HMM_Mat4 TranslationMatrix) {
|
|
|
|
HMM_Mat4 Result = TranslationMatrix;
|
|
Result.Elements[3][0] = -Result.Elements[3][0];
|
|
Result.Elements[3][1] = -Result.Elements[3][1];
|
|
Result.Elements[3][2] = -Result.Elements[3][2];
|
|
|
|
return Result;
|
|
}
|
|
|
|
static inline HMM_Mat4 HMM_Rotate_RH(float Angle, HMM_Vec3 Axis) {
|
|
|
|
HMM_Mat4 Result = HMM_M4D(1.0f);
|
|
|
|
Axis = HMM_NormV3(Axis);
|
|
|
|
float SinTheta = HMM_SinF(Angle);
|
|
float CosTheta = HMM_CosF(Angle);
|
|
float CosValue = 1.0f - CosTheta;
|
|
|
|
Result.Elements[0][0] = (Axis.X * Axis.X * CosValue) + CosTheta;
|
|
Result.Elements[0][1] = (Axis.X * Axis.Y * CosValue) + (Axis.Z * SinTheta);
|
|
Result.Elements[0][2] = (Axis.X * Axis.Z * CosValue) - (Axis.Y * SinTheta);
|
|
|
|
Result.Elements[1][0] = (Axis.Y * Axis.X * CosValue) - (Axis.Z * SinTheta);
|
|
Result.Elements[1][1] = (Axis.Y * Axis.Y * CosValue) + CosTheta;
|
|
Result.Elements[1][2] = (Axis.Y * Axis.Z * CosValue) + (Axis.X * SinTheta);
|
|
|
|
Result.Elements[2][0] = (Axis.Z * Axis.X * CosValue) + (Axis.Y * SinTheta);
|
|
Result.Elements[2][1] = (Axis.Z * Axis.Y * CosValue) - (Axis.X * SinTheta);
|
|
Result.Elements[2][2] = (Axis.Z * Axis.Z * CosValue) + CosTheta;
|
|
|
|
return Result;
|
|
}
|
|
|
|
static inline HMM_Mat4 HMM_Rotate_LH(float Angle, HMM_Vec3 Axis) {
|
|
/* NOTE(lcf): Matrix will be inverse/transpose of RH. */
|
|
return HMM_Rotate_RH(-Angle, Axis);
|
|
}
|
|
|
|
static inline HMM_Mat4 HMM_InvRotate(HMM_Mat4 RotationMatrix) {
|
|
return HMM_TransposeM4(RotationMatrix);
|
|
}
|
|
|
|
static inline HMM_Mat4 HMM_Scale(HMM_Vec3 Scale) {
|
|
|
|
HMM_Mat4 Result = HMM_M4D(1.0f);
|
|
Result.Elements[0][0] = Scale.X;
|
|
Result.Elements[1][1] = Scale.Y;
|
|
Result.Elements[2][2] = Scale.Z;
|
|
|
|
return Result;
|
|
}
|
|
|
|
static inline HMM_Mat4 *HMM_Scale_p(HMM_Mat4 *m, HMM_Vec3 s)
|
|
{
|
|
m->Elements[0][0] *= s.X;
|
|
m->Elements[1][1] *= s.Y;
|
|
m->Elements[2][2] *= s.Z;
|
|
return m;
|
|
}
|
|
|
|
static inline HMM_Mat4 HMM_InvScale(HMM_Mat4 ScaleMatrix) {
|
|
|
|
HMM_Mat4 Result = ScaleMatrix;
|
|
Result.Elements[0][0] = 1.0f / Result.Elements[0][0];
|
|
Result.Elements[1][1] = 1.0f / Result.Elements[1][1];
|
|
Result.Elements[2][2] = 1.0f / Result.Elements[2][2];
|
|
|
|
return Result;
|
|
}
|
|
|
|
static inline HMM_Mat4 _HMM_LookAt(HMM_Vec3 F, HMM_Vec3 S, HMM_Vec3 U, HMM_Vec3 Eye) {
|
|
HMM_Mat4 Result;
|
|
|
|
Result.Elements[0][0] = S.X;
|
|
Result.Elements[0][1] = U.X;
|
|
Result.Elements[0][2] = -F.X;
|
|
Result.Elements[0][3] = 0.0f;
|
|
|
|
Result.Elements[1][0] = S.Y;
|
|
Result.Elements[1][1] = U.Y;
|
|
Result.Elements[1][2] = -F.Y;
|
|
Result.Elements[1][3] = 0.0f;
|
|
|
|
Result.Elements[2][0] = S.Z;
|
|
Result.Elements[2][1] = U.Z;
|
|
Result.Elements[2][2] = -F.Z;
|
|
Result.Elements[2][3] = 0.0f;
|
|
|
|
Result.Elements[3][0] = -HMM_DotV3(S, Eye);
|
|
Result.Elements[3][1] = -HMM_DotV3(U, Eye);
|
|
Result.Elements[3][2] = HMM_DotV3(F, Eye);
|
|
Result.Elements[3][3] = 1.0f;
|
|
|
|
return Result;
|
|
}
|
|
|
|
static inline HMM_Mat4 HMM_LookAt_RH(HMM_Vec3 Eye, HMM_Vec3 Center, HMM_Vec3 Up) {
|
|
|
|
HMM_Vec3 F = HMM_NormV3(HMM_SubV3(Center, Eye));
|
|
HMM_Vec3 S = HMM_NormV3(HMM_Cross(F, Up));
|
|
HMM_Vec3 U = HMM_Cross(S, F);
|
|
|
|
return _HMM_LookAt(F, S, U, Eye);
|
|
}
|
|
|
|
static inline HMM_Mat4 HMM_LookAt_LH(HMM_Vec3 Eye, HMM_Vec3 Center, HMM_Vec3 Up) {
|
|
|
|
HMM_Vec3 F = HMM_NormV3(HMM_SubV3(Eye, Center));
|
|
HMM_Vec3 S = HMM_NormV3(HMM_Cross(F, Up));
|
|
HMM_Vec3 U = HMM_Cross(S, F);
|
|
|
|
return _HMM_LookAt(F, S, U, Eye);
|
|
}
|
|
|
|
static inline HMM_Mat4 HMM_InvLookAt(HMM_Mat4 Matrix) {
|
|
HMM_Mat4 Result;
|
|
|
|
HMM_Mat3 Rotation = {0};
|
|
Rotation.Columns[0] = Matrix.Columns[0].XYZ;
|
|
Rotation.Columns[1] = Matrix.Columns[1].XYZ;
|
|
Rotation.Columns[2] = Matrix.Columns[2].XYZ;
|
|
Rotation = HMM_TransposeM3(Rotation);
|
|
|
|
Result.Columns[0] = HMM_V4V(Rotation.Columns[0], 0.0f);
|
|
Result.Columns[1] = HMM_V4V(Rotation.Columns[1], 0.0f);
|
|
Result.Columns[2] = HMM_V4V(Rotation.Columns[2], 0.0f);
|
|
Result.Columns[3] = HMM_MulV4F(Matrix.Columns[3], -1.0f);
|
|
Result.Elements[3][0] = -1.0f * Matrix.Elements[3][0] /
|
|
(Rotation.Elements[0][0] + Rotation.Elements[0][1] + Rotation.Elements[0][2]);
|
|
Result.Elements[3][1] = -1.0f * Matrix.Elements[3][1] /
|
|
(Rotation.Elements[1][0] + Rotation.Elements[1][1] + Rotation.Elements[1][2]);
|
|
Result.Elements[3][2] = -1.0f * Matrix.Elements[3][2] /
|
|
(Rotation.Elements[2][0] + Rotation.Elements[2][1] + Rotation.Elements[2][2]);
|
|
Result.Elements[3][3] = 1.0f;
|
|
|
|
return Result;
|
|
}
|
|
|
|
/*
|
|
* Quaternion operations
|
|
*/
|
|
|
|
static inline HMM_Vec3 HMM_QVRot(HMM_Vec3 v, HMM_Quat q)
|
|
{
|
|
HMM_Vec3 t = HMM_MulV3F(HMM_Cross(q.XYZ, v), 2);
|
|
HMM_Vec3 r = HMM_AddV3(v, HMM_MulV3F(t, q.W));
|
|
r = HMM_AddV3(r, HMM_Cross(q.XYZ, t));
|
|
return r;
|
|
}
|
|
|
|
static inline HMM_Quat HMM_Q(float X, float Y, float Z, float W) {
|
|
|
|
HMM_Quat Result;
|
|
|
|
#ifdef HANDMADE_MATH__USE_SSE
|
|
Result.SSE = _mm_setr_ps(X, Y, Z, W);
|
|
#else
|
|
Result.X = X;
|
|
Result.Y = Y;
|
|
Result.Z = Z;
|
|
Result.W = W;
|
|
#endif
|
|
|
|
return Result;
|
|
}
|
|
|
|
static inline HMM_Quat HMM_QV4(HMM_Vec4 Vector) {
|
|
|
|
HMM_Quat Result;
|
|
|
|
#ifdef HANDMADE_MATH__USE_SSE
|
|
Result.SSE = Vector.SSE;
|
|
#else
|
|
Result.X = Vector.X;
|
|
Result.Y = Vector.Y;
|
|
Result.Z = Vector.Z;
|
|
Result.W = Vector.W;
|
|
#endif
|
|
|
|
return Result;
|
|
}
|
|
|
|
static inline HMM_Quat HMM_AddQ(HMM_Quat Left, HMM_Quat Right) {
|
|
|
|
HMM_Quat Result;
|
|
|
|
#ifdef HANDMADE_MATH__USE_SSE
|
|
Result.SSE = _mm_add_ps(Left.SSE, Right.SSE);
|
|
#else
|
|
|
|
Result.X = Left.X + Right.X;
|
|
Result.Y = Left.Y + Right.Y;
|
|
Result.Z = Left.Z + Right.Z;
|
|
Result.W = Left.W + Right.W;
|
|
#endif
|
|
|
|
return Result;
|
|
}
|
|
|
|
static inline HMM_Quat HMM_SubQ(HMM_Quat Left, HMM_Quat Right) {
|
|
|
|
HMM_Quat Result;
|
|
|
|
#ifdef HANDMADE_MATH__USE_SSE
|
|
Result.SSE = _mm_sub_ps(Left.SSE, Right.SSE);
|
|
#else
|
|
Result.X = Left.X - Right.X;
|
|
Result.Y = Left.Y - Right.Y;
|
|
Result.Z = Left.Z - Right.Z;
|
|
Result.W = Left.W - Right.W;
|
|
#endif
|
|
|
|
return Result;
|
|
}
|
|
|
|
static inline HMM_Quat HMM_MulQ(HMM_Quat Left, HMM_Quat Right) {
|
|
|
|
HMM_Quat Result;
|
|
|
|
#ifdef HANDMADE_MATH__USE_SSE
|
|
__m128 SSEResultOne = _mm_xor_ps(_mm_shuffle_ps(Left.SSE, Left.SSE, _MM_SHUFFLE(0, 0, 0, 0)), _mm_setr_ps(0.f, -0.f, 0.f, -0.f));
|
|
__m128 SSEResultTwo = _mm_shuffle_ps(Right.SSE, Right.SSE, _MM_SHUFFLE(0, 1, 2, 3));
|
|
__m128 SSEResultThree = _mm_mul_ps(SSEResultTwo, SSEResultOne);
|
|
|
|
SSEResultOne = _mm_xor_ps(_mm_shuffle_ps(Left.SSE, Left.SSE, _MM_SHUFFLE(1, 1, 1, 1)), _mm_setr_ps(0.f, 0.f, -0.f, -0.f));
|
|
SSEResultTwo = _mm_shuffle_ps(Right.SSE, Right.SSE, _MM_SHUFFLE(1, 0, 3, 2));
|
|
SSEResultThree = _mm_add_ps(SSEResultThree, _mm_mul_ps(SSEResultTwo, SSEResultOne));
|
|
|
|
SSEResultOne = _mm_xor_ps(_mm_shuffle_ps(Left.SSE, Left.SSE, _MM_SHUFFLE(2, 2, 2, 2)), _mm_setr_ps(-0.f, 0.f, 0.f, -0.f));
|
|
SSEResultTwo = _mm_shuffle_ps(Right.SSE, Right.SSE, _MM_SHUFFLE(2, 3, 0, 1));
|
|
SSEResultThree = _mm_add_ps(SSEResultThree, _mm_mul_ps(SSEResultTwo, SSEResultOne));
|
|
|
|
SSEResultOne = _mm_shuffle_ps(Left.SSE, Left.SSE, _MM_SHUFFLE(3, 3, 3, 3));
|
|
SSEResultTwo = _mm_shuffle_ps(Right.SSE, Right.SSE, _MM_SHUFFLE(3, 2, 1, 0));
|
|
Result.SSE = _mm_add_ps(SSEResultThree, _mm_mul_ps(SSEResultTwo, SSEResultOne));
|
|
#else
|
|
Result.X = Right.Elements[3] * +Left.Elements[0];
|
|
Result.Y = Right.Elements[2] * -Left.Elements[0];
|
|
Result.Z = Right.Elements[1] * +Left.Elements[0];
|
|
Result.W = Right.Elements[0] * -Left.Elements[0];
|
|
|
|
Result.X += Right.Elements[2] * +Left.Elements[1];
|
|
Result.Y += Right.Elements[3] * +Left.Elements[1];
|
|
Result.Z += Right.Elements[0] * -Left.Elements[1];
|
|
Result.W += Right.Elements[1] * -Left.Elements[1];
|
|
|
|
Result.X += Right.Elements[1] * -Left.Elements[2];
|
|
Result.Y += Right.Elements[0] * +Left.Elements[2];
|
|
Result.Z += Right.Elements[3] * +Left.Elements[2];
|
|
Result.W += Right.Elements[2] * -Left.Elements[2];
|
|
|
|
Result.X += Right.Elements[0] * +Left.Elements[3];
|
|
Result.Y += Right.Elements[1] * +Left.Elements[3];
|
|
Result.Z += Right.Elements[2] * +Left.Elements[3];
|
|
Result.W += Right.Elements[3] * +Left.Elements[3];
|
|
#endif
|
|
|
|
return Result;
|
|
}
|
|
|
|
static inline HMM_Quat HMM_MulQF(HMM_Quat Left, float Multiplicative) {
|
|
|
|
HMM_Quat Result;
|
|
|
|
#ifdef HANDMADE_MATH__USE_SSE
|
|
__m128 Scalar = _mm_set1_ps(Multiplicative);
|
|
Result.SSE = _mm_mul_ps(Left.SSE, Scalar);
|
|
#else
|
|
Result.X = Left.X * Multiplicative;
|
|
Result.Y = Left.Y * Multiplicative;
|
|
Result.Z = Left.Z * Multiplicative;
|
|
Result.W = Left.W * Multiplicative;
|
|
#endif
|
|
|
|
return Result;
|
|
}
|
|
|
|
static inline HMM_Quat HMM_DivQF(HMM_Quat Left, float Divnd) {
|
|
|
|
HMM_Quat Result;
|
|
|
|
#ifdef HANDMADE_MATH__USE_SSE
|
|
__m128 Scalar = _mm_set1_ps(Divnd);
|
|
Result.SSE = _mm_div_ps(Left.SSE, Scalar);
|
|
#else
|
|
Result.X = Left.X / Divnd;
|
|
Result.Y = Left.Y / Divnd;
|
|
Result.Z = Left.Z / Divnd;
|
|
Result.W = Left.W / Divnd;
|
|
#endif
|
|
|
|
return Result;
|
|
}
|
|
|
|
static inline float HMM_DotQ(HMM_Quat Left, HMM_Quat Right) {
|
|
|
|
float Result;
|
|
|
|
#ifdef HANDMADE_MATH__USE_SSE
|
|
__m128 SSEResultOne = _mm_mul_ps(Left.SSE, Right.SSE);
|
|
__m128 SSEResultTwo = _mm_shuffle_ps(SSEResultOne, SSEResultOne, _MM_SHUFFLE(2, 3, 0, 1));
|
|
SSEResultOne = _mm_add_ps(SSEResultOne, SSEResultTwo);
|
|
SSEResultTwo = _mm_shuffle_ps(SSEResultOne, SSEResultOne, _MM_SHUFFLE(0, 1, 2, 3));
|
|
SSEResultOne = _mm_add_ps(SSEResultOne, SSEResultTwo);
|
|
_mm_store_ss(&Result, SSEResultOne);
|
|
#else
|
|
Result = ((Left.X * Right.X) + (Left.Z * Right.Z)) + ((Left.Y * Right.Y) + (Left.W * Right.W));
|
|
#endif
|
|
|
|
return Result;
|
|
}
|
|
|
|
static inline HMM_Quat HMM_InvQ(HMM_Quat Left) {
|
|
|
|
HMM_Quat Result;
|
|
Result.X = -Left.X;
|
|
Result.Y = -Left.Y;
|
|
Result.Z = -Left.Z;
|
|
Result.W = Left.W;
|
|
|
|
return HMM_DivQF(Result, (HMM_DotQ(Left, Left)));
|
|
}
|
|
|
|
static inline HMM_Quat HMM_NormQ(HMM_Quat Quat) {
|
|
|
|
/* NOTE(lcf): Take advantage of SSE implementation in HMM_NormV4 */
|
|
HMM_Vec4 Vec = {Quat.X, Quat.Y, Quat.Z, Quat.W};
|
|
Vec = HMM_NormV4(Vec);
|
|
HMM_Quat Result = {Vec.X, Vec.Y, Vec.Z, Vec.W};
|
|
|
|
return Result;
|
|
}
|
|
|
|
static inline HMM_Quat _HMM_MixQ(HMM_Quat Left, float MixLeft, HMM_Quat Right, float MixRight) {
|
|
HMM_Quat Result;
|
|
|
|
#ifdef HANDMADE_MATH__USE_SSE
|
|
__m128 ScalarLeft = _mm_set1_ps(MixLeft);
|
|
__m128 ScalarRight = _mm_set1_ps(MixRight);
|
|
__m128 SSEResultOne = _mm_mul_ps(Left.SSE, ScalarLeft);
|
|
__m128 SSEResultTwo = _mm_mul_ps(Right.SSE, ScalarRight);
|
|
Result.SSE = _mm_add_ps(SSEResultOne, SSEResultTwo);
|
|
#else
|
|
Result.X = Left.X * MixLeft + Right.X * MixRight;
|
|
Result.Y = Left.Y * MixLeft + Right.Y * MixRight;
|
|
Result.Z = Left.Z * MixLeft + Right.Z * MixRight;
|
|
Result.W = Left.W * MixLeft + Right.W * MixRight;
|
|
#endif
|
|
|
|
return Result;
|
|
}
|
|
|
|
static inline HMM_Quat HMM_NLerp(HMM_Quat Left, float Time, HMM_Quat Right) {
|
|
|
|
HMM_Quat Result = _HMM_MixQ(Left, 1.0f - Time, Right, Time);
|
|
Result = HMM_NormQ(Result);
|
|
|
|
return Result;
|
|
}
|
|
|
|
static inline HMM_Quat HMM_SLerp(HMM_Quat Left, float Time, HMM_Quat Right) {
|
|
|
|
HMM_Quat Result;
|
|
|
|
float Cos_Theta = HMM_DotQ(Left, Right);
|
|
|
|
if (Cos_Theta < 0.0f) { /* NOTE(lcf): Take shortest path on Hyper-sphere */
|
|
Cos_Theta = -Cos_Theta;
|
|
Right = HMM_Q(-Right.X, -Right.Y, -Right.Z, -Right.W);
|
|
}
|
|
|
|
/* NOTE(lcf): Use Normalized Linear interpolation when vectors are roughly not L.I. */
|
|
if (Cos_Theta > 0.9995f) {
|
|
Result = HMM_NLerp(Left, Time, Right);
|
|
} else {
|
|
float Angle = HMM_ACosF(Cos_Theta);
|
|
float MixLeft = HMM_SinF((1.0f - Time) * Angle);
|
|
float MixRight = HMM_SinF(Time * Angle);
|
|
|
|
Result = _HMM_MixQ(Left, MixLeft, Right, MixRight);
|
|
Result = HMM_NormQ(Result);
|
|
}
|
|
|
|
return Result;
|
|
}
|
|
|
|
static inline HMM_Mat4 HMM_QToM4(HMM_Quat Left) {
|
|
|
|
HMM_Mat4 Result;
|
|
|
|
HMM_Quat NormalizedQ = HMM_NormQ(Left);
|
|
|
|
float XX, YY, ZZ,
|
|
XY, XZ, YZ,
|
|
WX, WY, WZ;
|
|
|
|
XX = NormalizedQ.X * NormalizedQ.X;
|
|
YY = NormalizedQ.Y * NormalizedQ.Y;
|
|
ZZ = NormalizedQ.Z * NormalizedQ.Z;
|
|
XY = NormalizedQ.X * NormalizedQ.Y;
|
|
XZ = NormalizedQ.X * NormalizedQ.Z;
|
|
YZ = NormalizedQ.Y * NormalizedQ.Z;
|
|
WX = NormalizedQ.W * NormalizedQ.X;
|
|
WY = NormalizedQ.W * NormalizedQ.Y;
|
|
WZ = NormalizedQ.W * NormalizedQ.Z;
|
|
|
|
Result.Elements[0][0] = 1.0f - 2.0f * (YY + ZZ);
|
|
Result.Elements[0][1] = 2.0f * (XY + WZ);
|
|
Result.Elements[0][2] = 2.0f * (XZ - WY);
|
|
Result.Elements[0][3] = 0.0f;
|
|
|
|
Result.Elements[1][0] = 2.0f * (XY - WZ);
|
|
Result.Elements[1][1] = 1.0f - 2.0f * (XX + ZZ);
|
|
Result.Elements[1][2] = 2.0f * (YZ + WX);
|
|
Result.Elements[1][3] = 0.0f;
|
|
|
|
Result.Elements[2][0] = 2.0f * (XZ + WY);
|
|
Result.Elements[2][1] = 2.0f * (YZ - WX);
|
|
Result.Elements[2][2] = 1.0f - 2.0f * (XX + YY);
|
|
Result.Elements[2][3] = 0.0f;
|
|
|
|
Result.Elements[3][0] = 0.0f;
|
|
Result.Elements[3][1] = 0.0f;
|
|
Result.Elements[3][2] = 0.0f;
|
|
Result.Elements[3][3] = 1.0f;
|
|
|
|
return Result;
|
|
}
|
|
|
|
// This method taken from Mike Day at Insomniac Games.
|
|
// https://d3cw3dd2w32x2b.cloudfront.net/wp-content/uploads/2015/01/matrix-to-quat.pdf
|
|
//
|
|
// Note that as mentioned at the top of the paper, the paper assumes the matrix
|
|
// would be *post*-multiplied to a vector to rotate it, meaning the matrix is
|
|
// the transpose of what we're dealing with. But, because our matrices are
|
|
// stored in column-major order, the indices *appear* to match the paper.
|
|
//
|
|
// For example, m12 in the paper is row 1, column 2. We need to transpose it to
|
|
// row 2, column 1. But, because the column comes first when referencing
|
|
// elements, it looks like M.Elements[1][2].
|
|
//
|
|
// Don't be confused! Or if you must be confused, at least trust this
|
|
// comment. :)
|
|
static inline HMM_Quat HMM_M4ToQ_RH(HMM_Mat4 M) {
|
|
float T;
|
|
HMM_Quat Q;
|
|
|
|
if (M.Elements[2][2] < 0.0f) {
|
|
if (M.Elements[0][0] > M.Elements[1][1]) {
|
|
|
|
T = 1 + M.Elements[0][0] - M.Elements[1][1] - M.Elements[2][2];
|
|
Q = HMM_Q(
|
|
T,
|
|
M.Elements[0][1] + M.Elements[1][0],
|
|
M.Elements[2][0] + M.Elements[0][2],
|
|
M.Elements[1][2] - M.Elements[2][1]);
|
|
} else {
|
|
|
|
T = 1 - M.Elements[0][0] + M.Elements[1][1] - M.Elements[2][2];
|
|
Q = HMM_Q(
|
|
M.Elements[0][1] + M.Elements[1][0],
|
|
T,
|
|
M.Elements[1][2] + M.Elements[2][1],
|
|
M.Elements[2][0] - M.Elements[0][2]);
|
|
}
|
|
} else {
|
|
if (M.Elements[0][0] < -M.Elements[1][1]) {
|
|
|
|
T = 1 - M.Elements[0][0] - M.Elements[1][1] + M.Elements[2][2];
|
|
Q = HMM_Q(
|
|
M.Elements[2][0] + M.Elements[0][2],
|
|
M.Elements[1][2] + M.Elements[2][1],
|
|
T,
|
|
M.Elements[0][1] - M.Elements[1][0]);
|
|
} else {
|
|
|
|
T = 1 + M.Elements[0][0] + M.Elements[1][1] + M.Elements[2][2];
|
|
Q = HMM_Q(
|
|
M.Elements[1][2] - M.Elements[2][1],
|
|
M.Elements[2][0] - M.Elements[0][2],
|
|
M.Elements[0][1] - M.Elements[1][0],
|
|
T);
|
|
}
|
|
}
|
|
|
|
Q = HMM_MulQF(Q, 0.5f / HMM_SqrtF(T));
|
|
|
|
return Q;
|
|
}
|
|
|
|
static inline HMM_Quat HMM_M4ToQ_LH(HMM_Mat4 M) {
|
|
float T;
|
|
HMM_Quat Q;
|
|
|
|
if (M.Elements[2][2] < 0.0f) {
|
|
if (M.Elements[0][0] > M.Elements[1][1]) {
|
|
|
|
T = 1 + M.Elements[0][0] - M.Elements[1][1] - M.Elements[2][2];
|
|
Q = HMM_Q(
|
|
T,
|
|
M.Elements[0][1] + M.Elements[1][0],
|
|
M.Elements[2][0] + M.Elements[0][2],
|
|
M.Elements[2][1] - M.Elements[1][2]);
|
|
} else {
|
|
|
|
T = 1 - M.Elements[0][0] + M.Elements[1][1] - M.Elements[2][2];
|
|
Q = HMM_Q(
|
|
M.Elements[0][1] + M.Elements[1][0],
|
|
T,
|
|
M.Elements[1][2] + M.Elements[2][1],
|
|
M.Elements[0][2] - M.Elements[2][0]);
|
|
}
|
|
} else {
|
|
if (M.Elements[0][0] < -M.Elements[1][1]) {
|
|
|
|
T = 1 - M.Elements[0][0] - M.Elements[1][1] + M.Elements[2][2];
|
|
Q = HMM_Q(
|
|
M.Elements[2][0] + M.Elements[0][2],
|
|
M.Elements[1][2] + M.Elements[2][1],
|
|
T,
|
|
M.Elements[1][0] - M.Elements[0][1]);
|
|
} else {
|
|
|
|
T = 1 + M.Elements[0][0] + M.Elements[1][1] + M.Elements[2][2];
|
|
Q = HMM_Q(
|
|
M.Elements[2][1] - M.Elements[1][2],
|
|
M.Elements[0][2] - M.Elements[2][0],
|
|
M.Elements[1][0] - M.Elements[0][2],
|
|
T);
|
|
}
|
|
}
|
|
|
|
Q = HMM_MulQF(Q, 0.5f / HMM_SqrtF(T));
|
|
|
|
return Q;
|
|
}
|
|
|
|
static inline HMM_Quat HMM_QFromAxisAngle_RH(HMM_Vec3 Axis, float AngleOfRotation) {
|
|
|
|
HMM_Quat Result;
|
|
|
|
HMM_Vec3 AxisNormalized = HMM_NormV3(Axis);
|
|
float SineOfRotation = HMM_SinF(AngleOfRotation / 2.0f);
|
|
|
|
Result.XYZ = HMM_MulV3F(AxisNormalized, SineOfRotation);
|
|
Result.W = HMM_CosF(AngleOfRotation / 2.0f);
|
|
|
|
return Result;
|
|
}
|
|
|
|
static inline HMM_Quat HMM_QFromAxisAngle_LH(HMM_Vec3 Axis, float AngleOfRotation) {
|
|
|
|
return HMM_QFromAxisAngle_RH(Axis, -AngleOfRotation);
|
|
}
|
|
|
|
#endif /* HANDMADE_MATH_H */
|