prosperon/source/engine/thirdparty/dr_libs/dr_wav.h

8816 lines
344 KiB
C

/*
WAV audio loader and writer. Choice of public domain or MIT-0. See license statements at the end of this file.
dr_wav - v0.13.16 - 2024-02-27
David Reid - mackron@gmail.com
GitHub: https://github.com/mackron/dr_libs
*/
/*
Introduction
============
This is a single file library. To use it, do something like the following in one .c file.
```c
#define DR_WAV_IMPLEMENTATION
#include "dr_wav.h"
```
You can then #include this file in other parts of the program as you would with any other header file. Do something like the following to read audio data:
```c
drwav wav;
if (!drwav_init_file(&wav, "my_song.wav", NULL)) {
// Error opening WAV file.
}
drwav_int32* pDecodedInterleavedPCMFrames = malloc(wav.totalPCMFrameCount * wav.channels * sizeof(drwav_int32));
size_t numberOfSamplesActuallyDecoded = drwav_read_pcm_frames_s32(&wav, wav.totalPCMFrameCount, pDecodedInterleavedPCMFrames);
...
drwav_uninit(&wav);
```
If you just want to quickly open and read the audio data in a single operation you can do something like this:
```c
unsigned int channels;
unsigned int sampleRate;
drwav_uint64 totalPCMFrameCount;
float* pSampleData = drwav_open_file_and_read_pcm_frames_f32("my_song.wav", &channels, &sampleRate, &totalPCMFrameCount, NULL);
if (pSampleData == NULL) {
// Error opening and reading WAV file.
}
...
drwav_free(pSampleData, NULL);
```
The examples above use versions of the API that convert the audio data to a consistent format (32-bit signed PCM, in this case), but you can still output the
audio data in its internal format (see notes below for supported formats):
```c
size_t framesRead = drwav_read_pcm_frames(&wav, wav.totalPCMFrameCount, pDecodedInterleavedPCMFrames);
```
You can also read the raw bytes of audio data, which could be useful if dr_wav does not have native support for a particular data format:
```c
size_t bytesRead = drwav_read_raw(&wav, bytesToRead, pRawDataBuffer);
```
dr_wav can also be used to output WAV files. This does not currently support compressed formats. To use this, look at `drwav_init_write()`,
`drwav_init_file_write()`, etc. Use `drwav_write_pcm_frames()` to write samples, or `drwav_write_raw()` to write raw data in the "data" chunk.
```c
drwav_data_format format;
format.container = drwav_container_riff; // <-- drwav_container_riff = normal WAV files, drwav_container_w64 = Sony Wave64.
format.format = DR_WAVE_FORMAT_PCM; // <-- Any of the DR_WAVE_FORMAT_* codes.
format.channels = 2;
format.sampleRate = 44100;
format.bitsPerSample = 16;
drwav_init_file_write(&wav, "data/recording.wav", &format, NULL);
...
drwav_uint64 framesWritten = drwav_write_pcm_frames(pWav, frameCount, pSamples);
```
Note that writing to AIFF or RIFX is not supported.
dr_wav has support for decoding from a number of different encapsulation formats. See below for details.
Build Options
=============
#define these options before including this file.
#define DR_WAV_NO_CONVERSION_API
Disables conversion APIs such as `drwav_read_pcm_frames_f32()` and `drwav_s16_to_f32()`.
#define DR_WAV_NO_STDIO
Disables APIs that initialize a decoder from a file such as `drwav_init_file()`, `drwav_init_file_write()`, etc.
#define DR_WAV_NO_WCHAR
Disables all functions ending with `_w`. Use this if your compiler does not provide wchar.h. Not required if DR_WAV_NO_STDIO is also defined.
Supported Encapsulations
========================
- RIFF (Regular WAV)
- RIFX (Big-Endian)
- AIFF (Does not currently support ADPCM)
- RF64
- W64
Note that AIFF and RIFX do not support write mode, nor do they support reading of metadata.
Supported Encodings
===================
- Unsigned 8-bit PCM
- Signed 12-bit PCM
- Signed 16-bit PCM
- Signed 24-bit PCM
- Signed 32-bit PCM
- IEEE 32-bit floating point
- IEEE 64-bit floating point
- A-law and u-law
- Microsoft ADPCM
- IMA ADPCM (DVI, format code 0x11)
8-bit PCM encodings are always assumed to be unsigned. Signed 8-bit encoding can only be read with `drwav_read_raw()`.
Note that ADPCM is not currently supported with AIFF. Contributions welcome.
Notes
=====
- Samples are always interleaved.
- The default read function does not do any data conversion. Use `drwav_read_pcm_frames_f32()`, `drwav_read_pcm_frames_s32()` and `drwav_read_pcm_frames_s16()`
to read and convert audio data to 32-bit floating point, signed 32-bit integer and signed 16-bit integer samples respectively.
- dr_wav will try to read the WAV file as best it can, even if it's not strictly conformant to the WAV format.
*/
#ifndef dr_wav_h
#define dr_wav_h
#ifdef __cplusplus
extern "C" {
#endif
#define DRWAV_STRINGIFY(x) #x
#define DRWAV_XSTRINGIFY(x) DRWAV_STRINGIFY(x)
#define DRWAV_VERSION_MAJOR 0
#define DRWAV_VERSION_MINOR 13
#define DRWAV_VERSION_REVISION 16
#define DRWAV_VERSION_STRING DRWAV_XSTRINGIFY(DRWAV_VERSION_MAJOR) "." DRWAV_XSTRINGIFY(DRWAV_VERSION_MINOR) "." DRWAV_XSTRINGIFY(DRWAV_VERSION_REVISION)
#include <stddef.h> /* For size_t. */
/* Sized Types */
typedef signed char drwav_int8;
typedef unsigned char drwav_uint8;
typedef signed short drwav_int16;
typedef unsigned short drwav_uint16;
typedef signed int drwav_int32;
typedef unsigned int drwav_uint32;
#if defined(_MSC_VER) && !defined(__clang__)
typedef signed __int64 drwav_int64;
typedef unsigned __int64 drwav_uint64;
#else
#if defined(__clang__) || (defined(__GNUC__) && (__GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 6)))
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wlong-long"
#if defined(__clang__)
#pragma GCC diagnostic ignored "-Wc++11-long-long"
#endif
#endif
typedef signed long long drwav_int64;
typedef unsigned long long drwav_uint64;
#if defined(__clang__) || (defined(__GNUC__) && (__GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 6)))
#pragma GCC diagnostic pop
#endif
#endif
#if defined(__LP64__) || defined(_WIN64) || (defined(__x86_64__) && !defined(__ILP32__)) || defined(_M_X64) || defined(__ia64) || defined (_M_IA64) || defined(__aarch64__) || defined(_M_ARM64) || defined(__powerpc64__)
typedef drwav_uint64 drwav_uintptr;
#else
typedef drwav_uint32 drwav_uintptr;
#endif
typedef drwav_uint8 drwav_bool8;
typedef drwav_uint32 drwav_bool32;
#define DRWAV_TRUE 1
#define DRWAV_FALSE 0
/* End Sized Types */
/* Decorations */
#if !defined(DRWAV_API)
#if defined(DRWAV_DLL)
#if defined(_WIN32)
#define DRWAV_DLL_IMPORT __declspec(dllimport)
#define DRWAV_DLL_EXPORT __declspec(dllexport)
#define DRWAV_DLL_PRIVATE static
#else
#if defined(__GNUC__) && __GNUC__ >= 4
#define DRWAV_DLL_IMPORT __attribute__((visibility("default")))
#define DRWAV_DLL_EXPORT __attribute__((visibility("default")))
#define DRWAV_DLL_PRIVATE __attribute__((visibility("hidden")))
#else
#define DRWAV_DLL_IMPORT
#define DRWAV_DLL_EXPORT
#define DRWAV_DLL_PRIVATE static
#endif
#endif
#if defined(DR_WAV_IMPLEMENTATION) || defined(DRWAV_IMPLEMENTATION)
#define DRWAV_API DRWAV_DLL_EXPORT
#else
#define DRWAV_API DRWAV_DLL_IMPORT
#endif
#define DRWAV_PRIVATE DRWAV_DLL_PRIVATE
#else
#define DRWAV_API extern
#define DRWAV_PRIVATE static
#endif
#endif
/* End Decorations */
/* Result Codes */
typedef drwav_int32 drwav_result;
#define DRWAV_SUCCESS 0
#define DRWAV_ERROR -1 /* A generic error. */
#define DRWAV_INVALID_ARGS -2
#define DRWAV_INVALID_OPERATION -3
#define DRWAV_OUT_OF_MEMORY -4
#define DRWAV_OUT_OF_RANGE -5
#define DRWAV_ACCESS_DENIED -6
#define DRWAV_DOES_NOT_EXIST -7
#define DRWAV_ALREADY_EXISTS -8
#define DRWAV_TOO_MANY_OPEN_FILES -9
#define DRWAV_INVALID_FILE -10
#define DRWAV_TOO_BIG -11
#define DRWAV_PATH_TOO_LONG -12
#define DRWAV_NAME_TOO_LONG -13
#define DRWAV_NOT_DIRECTORY -14
#define DRWAV_IS_DIRECTORY -15
#define DRWAV_DIRECTORY_NOT_EMPTY -16
#define DRWAV_END_OF_FILE -17
#define DRWAV_NO_SPACE -18
#define DRWAV_BUSY -19
#define DRWAV_IO_ERROR -20
#define DRWAV_INTERRUPT -21
#define DRWAV_UNAVAILABLE -22
#define DRWAV_ALREADY_IN_USE -23
#define DRWAV_BAD_ADDRESS -24
#define DRWAV_BAD_SEEK -25
#define DRWAV_BAD_PIPE -26
#define DRWAV_DEADLOCK -27
#define DRWAV_TOO_MANY_LINKS -28
#define DRWAV_NOT_IMPLEMENTED -29
#define DRWAV_NO_MESSAGE -30
#define DRWAV_BAD_MESSAGE -31
#define DRWAV_NO_DATA_AVAILABLE -32
#define DRWAV_INVALID_DATA -33
#define DRWAV_TIMEOUT -34
#define DRWAV_NO_NETWORK -35
#define DRWAV_NOT_UNIQUE -36
#define DRWAV_NOT_SOCKET -37
#define DRWAV_NO_ADDRESS -38
#define DRWAV_BAD_PROTOCOL -39
#define DRWAV_PROTOCOL_UNAVAILABLE -40
#define DRWAV_PROTOCOL_NOT_SUPPORTED -41
#define DRWAV_PROTOCOL_FAMILY_NOT_SUPPORTED -42
#define DRWAV_ADDRESS_FAMILY_NOT_SUPPORTED -43
#define DRWAV_SOCKET_NOT_SUPPORTED -44
#define DRWAV_CONNECTION_RESET -45
#define DRWAV_ALREADY_CONNECTED -46
#define DRWAV_NOT_CONNECTED -47
#define DRWAV_CONNECTION_REFUSED -48
#define DRWAV_NO_HOST -49
#define DRWAV_IN_PROGRESS -50
#define DRWAV_CANCELLED -51
#define DRWAV_MEMORY_ALREADY_MAPPED -52
#define DRWAV_AT_END -53
/* End Result Codes */
/* Common data formats. */
#define DR_WAVE_FORMAT_PCM 0x1
#define DR_WAVE_FORMAT_ADPCM 0x2
#define DR_WAVE_FORMAT_IEEE_FLOAT 0x3
#define DR_WAVE_FORMAT_ALAW 0x6
#define DR_WAVE_FORMAT_MULAW 0x7
#define DR_WAVE_FORMAT_DVI_ADPCM 0x11
#define DR_WAVE_FORMAT_EXTENSIBLE 0xFFFE
/* Flags to pass into drwav_init_ex(), etc. */
#define DRWAV_SEQUENTIAL 0x00000001
#define DRWAV_WITH_METADATA 0x00000002
DRWAV_API void drwav_version(drwav_uint32* pMajor, drwav_uint32* pMinor, drwav_uint32* pRevision);
DRWAV_API const char* drwav_version_string(void);
/* Allocation Callbacks */
typedef struct
{
void* pUserData;
void* (* onMalloc)(size_t sz, void* pUserData);
void* (* onRealloc)(void* p, size_t sz, void* pUserData);
void (* onFree)(void* p, void* pUserData);
} drwav_allocation_callbacks;
/* End Allocation Callbacks */
typedef enum
{
drwav_seek_origin_start,
drwav_seek_origin_current
} drwav_seek_origin;
typedef enum
{
drwav_container_riff,
drwav_container_rifx,
drwav_container_w64,
drwav_container_rf64,
drwav_container_aiff
} drwav_container;
typedef struct
{
union
{
drwav_uint8 fourcc[4];
drwav_uint8 guid[16];
} id;
/* The size in bytes of the chunk. */
drwav_uint64 sizeInBytes;
/*
RIFF = 2 byte alignment.
W64 = 8 byte alignment.
*/
unsigned int paddingSize;
} drwav_chunk_header;
typedef struct
{
/*
The format tag exactly as specified in the wave file's "fmt" chunk. This can be used by applications
that require support for data formats not natively supported by dr_wav.
*/
drwav_uint16 formatTag;
/* The number of channels making up the audio data. When this is set to 1 it is mono, 2 is stereo, etc. */
drwav_uint16 channels;
/* The sample rate. Usually set to something like 44100. */
drwav_uint32 sampleRate;
/* Average bytes per second. You probably don't need this, but it's left here for informational purposes. */
drwav_uint32 avgBytesPerSec;
/* Block align. This is equal to the number of channels * bytes per sample. */
drwav_uint16 blockAlign;
/* Bits per sample. */
drwav_uint16 bitsPerSample;
/* The size of the extended data. Only used internally for validation, but left here for informational purposes. */
drwav_uint16 extendedSize;
/*
The number of valid bits per sample. When <formatTag> is equal to WAVE_FORMAT_EXTENSIBLE, <bitsPerSample>
is always rounded up to the nearest multiple of 8. This variable contains information about exactly how
many bits are valid per sample. Mainly used for informational purposes.
*/
drwav_uint16 validBitsPerSample;
/* The channel mask. Not used at the moment. */
drwav_uint32 channelMask;
/* The sub-format, exactly as specified by the wave file. */
drwav_uint8 subFormat[16];
} drwav_fmt;
DRWAV_API drwav_uint16 drwav_fmt_get_format(const drwav_fmt* pFMT);
/*
Callback for when data is read. Return value is the number of bytes actually read.
pUserData [in] The user data that was passed to drwav_init() and family.
pBufferOut [out] The output buffer.
bytesToRead [in] The number of bytes to read.
Returns the number of bytes actually read.
A return value of less than bytesToRead indicates the end of the stream. Do _not_ return from this callback until
either the entire bytesToRead is filled or you have reached the end of the stream.
*/
typedef size_t (* drwav_read_proc)(void* pUserData, void* pBufferOut, size_t bytesToRead);
/*
Callback for when data is written. Returns value is the number of bytes actually written.
pUserData [in] The user data that was passed to drwav_init_write() and family.
pData [out] A pointer to the data to write.
bytesToWrite [in] The number of bytes to write.
Returns the number of bytes actually written.
If the return value differs from bytesToWrite, it indicates an error.
*/
typedef size_t (* drwav_write_proc)(void* pUserData, const void* pData, size_t bytesToWrite);
/*
Callback for when data needs to be seeked.
pUserData [in] The user data that was passed to drwav_init() and family.
offset [in] The number of bytes to move, relative to the origin. Will never be negative.
origin [in] The origin of the seek - the current position or the start of the stream.
Returns whether or not the seek was successful.
Whether or not it is relative to the beginning or current position is determined by the "origin" parameter which will be either drwav_seek_origin_start or
drwav_seek_origin_current.
*/
typedef drwav_bool32 (* drwav_seek_proc)(void* pUserData, int offset, drwav_seek_origin origin);
/*
Callback for when drwav_init_ex() finds a chunk.
pChunkUserData [in] The user data that was passed to the pChunkUserData parameter of drwav_init_ex() and family.
onRead [in] A pointer to the function to call when reading.
onSeek [in] A pointer to the function to call when seeking.
pReadSeekUserData [in] The user data that was passed to the pReadSeekUserData parameter of drwav_init_ex() and family.
pChunkHeader [in] A pointer to an object containing basic header information about the chunk. Use this to identify the chunk.
container [in] Whether or not the WAV file is a RIFF or Wave64 container. If you're unsure of the difference, assume RIFF.
pFMT [in] A pointer to the object containing the contents of the "fmt" chunk.
Returns the number of bytes read + seeked.
To read data from the chunk, call onRead(), passing in pReadSeekUserData as the first parameter. Do the same for seeking with onSeek(). The return value must
be the total number of bytes you have read _plus_ seeked.
Use the `container` argument to discriminate the fields in `pChunkHeader->id`. If the container is `drwav_container_riff` or `drwav_container_rf64` you should
use `id.fourcc`, otherwise you should use `id.guid`.
The `pFMT` parameter can be used to determine the data format of the wave file. Use `drwav_fmt_get_format()` to get the sample format, which will be one of the
`DR_WAVE_FORMAT_*` identifiers.
The read pointer will be sitting on the first byte after the chunk's header. You must not attempt to read beyond the boundary of the chunk.
*/
typedef drwav_uint64 (* drwav_chunk_proc)(void* pChunkUserData, drwav_read_proc onRead, drwav_seek_proc onSeek, void* pReadSeekUserData, const drwav_chunk_header* pChunkHeader, drwav_container container, const drwav_fmt* pFMT);
/* Structure for internal use. Only used for loaders opened with drwav_init_memory(). */
typedef struct
{
const drwav_uint8* data;
size_t dataSize;
size_t currentReadPos;
} drwav__memory_stream;
/* Structure for internal use. Only used for writers opened with drwav_init_memory_write(). */
typedef struct
{
void** ppData;
size_t* pDataSize;
size_t dataSize;
size_t dataCapacity;
size_t currentWritePos;
} drwav__memory_stream_write;
typedef struct
{
drwav_container container; /* RIFF, W64. */
drwav_uint32 format; /* DR_WAVE_FORMAT_* */
drwav_uint32 channels;
drwav_uint32 sampleRate;
drwav_uint32 bitsPerSample;
} drwav_data_format;
typedef enum
{
drwav_metadata_type_none = 0,
/*
Unknown simply means a chunk that drwav does not handle specifically. You can still ask to
receive these chunks as metadata objects. It is then up to you to interpret the chunk's data.
You can also write unknown metadata to a wav file. Be careful writing unknown chunks if you
have also edited the audio data. The unknown chunks could represent offsets/sizes that no
longer correctly correspond to the audio data.
*/
drwav_metadata_type_unknown = 1 << 0,
/* Only 1 of each of these metadata items are allowed in a wav file. */
drwav_metadata_type_smpl = 1 << 1,
drwav_metadata_type_inst = 1 << 2,
drwav_metadata_type_cue = 1 << 3,
drwav_metadata_type_acid = 1 << 4,
drwav_metadata_type_bext = 1 << 5,
/*
Wav files often have a LIST chunk. This is a chunk that contains a set of subchunks. For this
higher-level metadata API, we don't make a distinction between a regular chunk and a LIST
subchunk. Instead, they are all just 'metadata' items.
There can be multiple of these metadata items in a wav file.
*/
drwav_metadata_type_list_label = 1 << 6,
drwav_metadata_type_list_note = 1 << 7,
drwav_metadata_type_list_labelled_cue_region = 1 << 8,
drwav_metadata_type_list_info_software = 1 << 9,
drwav_metadata_type_list_info_copyright = 1 << 10,
drwav_metadata_type_list_info_title = 1 << 11,
drwav_metadata_type_list_info_artist = 1 << 12,
drwav_metadata_type_list_info_comment = 1 << 13,
drwav_metadata_type_list_info_date = 1 << 14,
drwav_metadata_type_list_info_genre = 1 << 15,
drwav_metadata_type_list_info_album = 1 << 16,
drwav_metadata_type_list_info_tracknumber = 1 << 17,
/* Other type constants for convenience. */
drwav_metadata_type_list_all_info_strings = drwav_metadata_type_list_info_software
| drwav_metadata_type_list_info_copyright
| drwav_metadata_type_list_info_title
| drwav_metadata_type_list_info_artist
| drwav_metadata_type_list_info_comment
| drwav_metadata_type_list_info_date
| drwav_metadata_type_list_info_genre
| drwav_metadata_type_list_info_album
| drwav_metadata_type_list_info_tracknumber,
drwav_metadata_type_list_all_adtl = drwav_metadata_type_list_label
| drwav_metadata_type_list_note
| drwav_metadata_type_list_labelled_cue_region,
drwav_metadata_type_all = -2, /*0xFFFFFFFF & ~drwav_metadata_type_unknown,*/
drwav_metadata_type_all_including_unknown = -1 /*0xFFFFFFFF,*/
} drwav_metadata_type;
/*
Sampler Metadata
The sampler chunk contains information about how a sound should be played in the context of a whole
audio production, and when used in a sampler. See https://en.wikipedia.org/wiki/Sample-based_synthesis.
*/
typedef enum
{
drwav_smpl_loop_type_forward = 0,
drwav_smpl_loop_type_pingpong = 1,
drwav_smpl_loop_type_backward = 2
} drwav_smpl_loop_type;
typedef struct
{
/* The ID of the associated cue point, see drwav_cue and drwav_cue_point. As with all cue point IDs, this can correspond to a label chunk to give this loop a name, see drwav_list_label_or_note. */
drwav_uint32 cuePointId;
/* See drwav_smpl_loop_type. */
drwav_uint32 type;
/* The byte offset of the first sample to be played in the loop. */
drwav_uint32 firstSampleByteOffset;
/* The byte offset into the audio data of the last sample to be played in the loop. */
drwav_uint32 lastSampleByteOffset;
/* A value to represent that playback should occur at a point between samples. This value ranges from 0 to UINT32_MAX. Where a value of 0 means no fraction, and a value of (UINT32_MAX / 2) would mean half a sample. */
drwav_uint32 sampleFraction;
/* Number of times to play the loop. 0 means loop infinitely. */
drwav_uint32 playCount;
} drwav_smpl_loop;
typedef struct
{
/* IDs for a particular MIDI manufacturer. 0 if not used. */
drwav_uint32 manufacturerId;
drwav_uint32 productId;
/* The period of 1 sample in nanoseconds. */
drwav_uint32 samplePeriodNanoseconds;
/* The MIDI root note of this file. 0 to 127. */
drwav_uint32 midiUnityNote;
/* The fraction of a semitone up from the given MIDI note. This is a value from 0 to UINT32_MAX, where 0 means no change and (UINT32_MAX / 2) is half a semitone (AKA 50 cents). */
drwav_uint32 midiPitchFraction;
/* Data relating to SMPTE standards which are used for syncing audio and video. 0 if not used. */
drwav_uint32 smpteFormat;
drwav_uint32 smpteOffset;
/* drwav_smpl_loop loops. */
drwav_uint32 sampleLoopCount;
/* Optional sampler-specific data. */
drwav_uint32 samplerSpecificDataSizeInBytes;
drwav_smpl_loop* pLoops;
drwav_uint8* pSamplerSpecificData;
} drwav_smpl;
/*
Instrument Metadata
The inst metadata contains data about how a sound should be played as part of an instrument. This
commonly read by samplers. See https://en.wikipedia.org/wiki/Sample-based_synthesis.
*/
typedef struct
{
drwav_int8 midiUnityNote; /* The root note of the audio as a MIDI note number. 0 to 127. */
drwav_int8 fineTuneCents; /* -50 to +50 */
drwav_int8 gainDecibels; /* -64 to +64 */
drwav_int8 lowNote; /* 0 to 127 */
drwav_int8 highNote; /* 0 to 127 */
drwav_int8 lowVelocity; /* 1 to 127 */
drwav_int8 highVelocity; /* 1 to 127 */
} drwav_inst;
/*
Cue Metadata
Cue points are markers at specific points in the audio. They often come with an associated piece of
drwav_list_label_or_note metadata which contains the text for the marker.
*/
typedef struct
{
/* Unique identification value. */
drwav_uint32 id;
/* Set to 0. This is only relevant if there is a 'playlist' chunk - which is not supported by dr_wav. */
drwav_uint32 playOrderPosition;
/* Should always be "data". This represents the fourcc value of the chunk that this cue point corresponds to. dr_wav only supports a single data chunk so this should always be "data". */
drwav_uint8 dataChunkId[4];
/* Set to 0. This is only relevant if there is a wave list chunk. dr_wav, like lots of readers/writers, do not support this. */
drwav_uint32 chunkStart;
/* Set to 0 for uncompressed formats. Else the last byte in compressed wave data where decompression can begin to find the value of the corresponding sample value. */
drwav_uint32 blockStart;
/* For uncompressed formats this is the byte offset of the cue point into the audio data. For compressed formats this is relative to the block specified with blockStart. */
drwav_uint32 sampleByteOffset;
} drwav_cue_point;
typedef struct
{
drwav_uint32 cuePointCount;
drwav_cue_point *pCuePoints;
} drwav_cue;
/*
Acid Metadata
This chunk contains some information about the time signature and the tempo of the audio.
*/
typedef enum
{
drwav_acid_flag_one_shot = 1, /* If this is not set, then it is a loop instead of a one-shot. */
drwav_acid_flag_root_note_set = 2,
drwav_acid_flag_stretch = 4,
drwav_acid_flag_disk_based = 8,
drwav_acid_flag_acidizer = 16 /* Not sure what this means. */
} drwav_acid_flag;
typedef struct
{
/* A bit-field, see drwav_acid_flag. */
drwav_uint32 flags;
/* Valid if flags contains drwav_acid_flag_root_note_set. It represents the MIDI root note the file - a value from 0 to 127. */
drwav_uint16 midiUnityNote;
/* Reserved values that should probably be ignored. reserved1 seems to often be 128 and reserved2 is 0. */
drwav_uint16 reserved1;
float reserved2;
/* Number of beats. */
drwav_uint32 numBeats;
/* The time signature of the audio. */
drwav_uint16 meterDenominator;
drwav_uint16 meterNumerator;
/* Beats per minute of the track. Setting a value of 0 suggests that there is no tempo. */
float tempo;
} drwav_acid;
/*
Cue Label or Note metadata
These are 2 different types of metadata, but they have the exact same format. Labels tend to be the
more common and represent a short name for a cue point. Notes might be used to represent a longer
comment.
*/
typedef struct
{
/* The ID of a cue point that this label or note corresponds to. */
drwav_uint32 cuePointId;
/* Size of the string not including any null terminator. */
drwav_uint32 stringLength;
/* The string. The *init_with_metadata functions null terminate this for convenience. */
char* pString;
} drwav_list_label_or_note;
/*
BEXT metadata, also known as Broadcast Wave Format (BWF)
This metadata adds some extra description to an audio file. You must check the version field to
determine if the UMID or the loudness fields are valid.
*/
typedef struct
{
/*
These top 3 fields, and the umid field are actually defined in the standard as a statically
sized buffers. In order to reduce the size of this struct (and therefore the union in the
metadata struct), we instead store these as pointers.
*/
char* pDescription; /* Can be NULL or a null-terminated string, must be <= 256 characters. */
char* pOriginatorName; /* Can be NULL or a null-terminated string, must be <= 32 characters. */
char* pOriginatorReference; /* Can be NULL or a null-terminated string, must be <= 32 characters. */
char pOriginationDate[10]; /* ASCII "yyyy:mm:dd". */
char pOriginationTime[8]; /* ASCII "hh:mm:ss". */
drwav_uint64 timeReference; /* First sample count since midnight. */
drwav_uint16 version; /* Version of the BWF, check this to see if the fields below are valid. */
/*
Unrestricted ASCII characters containing a collection of strings terminated by CR/LF. Each
string shall contain a description of a coding process applied to the audio data.
*/
char* pCodingHistory;
drwav_uint32 codingHistorySize;
/* Fields below this point are only valid if the version is 1 or above. */
drwav_uint8* pUMID; /* Exactly 64 bytes of SMPTE UMID */
/* Fields below this point are only valid if the version is 2 or above. */
drwav_uint16 loudnessValue; /* Integrated Loudness Value of the file in LUFS (multiplied by 100). */
drwav_uint16 loudnessRange; /* Loudness Range of the file in LU (multiplied by 100). */
drwav_uint16 maxTruePeakLevel; /* Maximum True Peak Level of the file expressed as dBTP (multiplied by 100). */
drwav_uint16 maxMomentaryLoudness; /* Highest value of the Momentary Loudness Level of the file in LUFS (multiplied by 100). */
drwav_uint16 maxShortTermLoudness; /* Highest value of the Short-Term Loudness Level of the file in LUFS (multiplied by 100). */
} drwav_bext;
/*
Info Text Metadata
There a many different types of information text that can be saved in this format. This is where
things like the album name, the artists, the year it was produced, etc are saved. See
drwav_metadata_type for the full list of types that dr_wav supports.
*/
typedef struct
{
/* Size of the string not including any null terminator. */
drwav_uint32 stringLength;
/* The string. The *init_with_metadata functions null terminate this for convenience. */
char* pString;
} drwav_list_info_text;
/*
Labelled Cue Region Metadata
The labelled cue region metadata is used to associate some region of audio with text. The region
starts at a cue point, and extends for the given number of samples.
*/
typedef struct
{
/* The ID of a cue point that this object corresponds to. */
drwav_uint32 cuePointId;
/* The number of samples from the cue point forwards that should be considered this region */
drwav_uint32 sampleLength;
/* Four characters used to say what the purpose of this region is. */
drwav_uint8 purposeId[4];
/* Unsure of the exact meanings of these. It appears to be acceptable to set them all to 0. */
drwav_uint16 country;
drwav_uint16 language;
drwav_uint16 dialect;
drwav_uint16 codePage;
/* Size of the string not including any null terminator. */
drwav_uint32 stringLength;
/* The string. The *init_with_metadata functions null terminate this for convenience. */
char* pString;
} drwav_list_labelled_cue_region;
/*
Unknown Metadata
This chunk just represents a type of chunk that dr_wav does not understand.
Unknown metadata has a location attached to it. This is because wav files can have a LIST chunk
that contains subchunks. These LIST chunks can be one of two types. An adtl list, or an INFO
list. This enum is used to specify the location of a chunk that dr_wav currently doesn't support.
*/
typedef enum
{
drwav_metadata_location_invalid,
drwav_metadata_location_top_level,
drwav_metadata_location_inside_info_list,
drwav_metadata_location_inside_adtl_list
} drwav_metadata_location;
typedef struct
{
drwav_uint8 id[4];
drwav_metadata_location chunkLocation;
drwav_uint32 dataSizeInBytes;
drwav_uint8* pData;
} drwav_unknown_metadata;
/*
Metadata is saved as a union of all the supported types.
*/
typedef struct
{
/* Determines which item in the union is valid. */
drwav_metadata_type type;
union
{
drwav_cue cue;
drwav_smpl smpl;
drwav_acid acid;
drwav_inst inst;
drwav_bext bext;
drwav_list_label_or_note labelOrNote; /* List label or list note. */
drwav_list_labelled_cue_region labelledCueRegion;
drwav_list_info_text infoText; /* Any of the list info types. */
drwav_unknown_metadata unknown;
} data;
} drwav_metadata;
typedef struct
{
/* A pointer to the function to call when more data is needed. */
drwav_read_proc onRead;
/* A pointer to the function to call when data needs to be written. Only used when the drwav object is opened in write mode. */
drwav_write_proc onWrite;
/* A pointer to the function to call when the wav file needs to be seeked. */
drwav_seek_proc onSeek;
/* The user data to pass to callbacks. */
void* pUserData;
/* Allocation callbacks. */
drwav_allocation_callbacks allocationCallbacks;
/* Whether or not the WAV file is formatted as a standard RIFF file or W64. */
drwav_container container;
/* Structure containing format information exactly as specified by the wav file. */
drwav_fmt fmt;
/* The sample rate. Will be set to something like 44100. */
drwav_uint32 sampleRate;
/* The number of channels. This will be set to 1 for monaural streams, 2 for stereo, etc. */
drwav_uint16 channels;
/* The bits per sample. Will be set to something like 16, 24, etc. */
drwav_uint16 bitsPerSample;
/* Equal to fmt.formatTag, or the value specified by fmt.subFormat if fmt.formatTag is equal to 65534 (WAVE_FORMAT_EXTENSIBLE). */
drwav_uint16 translatedFormatTag;
/* The total number of PCM frames making up the audio data. */
drwav_uint64 totalPCMFrameCount;
/* The size in bytes of the data chunk. */
drwav_uint64 dataChunkDataSize;
/* The position in the stream of the first data byte of the data chunk. This is used for seeking. */
drwav_uint64 dataChunkDataPos;
/* The number of bytes remaining in the data chunk. */
drwav_uint64 bytesRemaining;
/* The current read position in PCM frames. */
drwav_uint64 readCursorInPCMFrames;
/*
Only used in sequential write mode. Keeps track of the desired size of the "data" chunk at the point of initialization time. Always
set to 0 for non-sequential writes and when the drwav object is opened in read mode. Used for validation.
*/
drwav_uint64 dataChunkDataSizeTargetWrite;
/* Keeps track of whether or not the wav writer was initialized in sequential mode. */
drwav_bool32 isSequentialWrite;
/* A array of metadata. This is valid after the *init_with_metadata call returns. It will be valid until drwav_uninit() is called. You can take ownership of this data with drwav_take_ownership_of_metadata(). */
drwav_metadata* pMetadata;
drwav_uint32 metadataCount;
/* A hack to avoid a DRWAV_MALLOC() when opening a decoder with drwav_init_memory(). */
drwav__memory_stream memoryStream;
drwav__memory_stream_write memoryStreamWrite;
/* Microsoft ADPCM specific data. */
struct
{
drwav_uint32 bytesRemainingInBlock;
drwav_uint16 predictor[2];
drwav_int32 delta[2];
drwav_int32 cachedFrames[4]; /* Samples are stored in this cache during decoding. */
drwav_uint32 cachedFrameCount;
drwav_int32 prevFrames[2][2]; /* The previous 2 samples for each channel (2 channels at most). */
} msadpcm;
/* IMA ADPCM specific data. */
struct
{
drwav_uint32 bytesRemainingInBlock;
drwav_int32 predictor[2];
drwav_int32 stepIndex[2];
drwav_int32 cachedFrames[16]; /* Samples are stored in this cache during decoding. */
drwav_uint32 cachedFrameCount;
} ima;
/* AIFF specific data. */
struct
{
drwav_bool8 isLE; /* Will be set to true if the audio data is little-endian encoded. */
drwav_bool8 isUnsigned; /* Only used for 8-bit samples. When set to true, will be treated as unsigned. */
} aiff;
} drwav;
/*
Initializes a pre-allocated drwav object for reading.
pWav [out] A pointer to the drwav object being initialized.
onRead [in] The function to call when data needs to be read from the client.
onSeek [in] The function to call when the read position of the client data needs to move.
onChunk [in, optional] The function to call when a chunk is enumerated at initialized time.
pUserData, pReadSeekUserData [in, optional] A pointer to application defined data that will be passed to onRead and onSeek.
pChunkUserData [in, optional] A pointer to application defined data that will be passed to onChunk.
flags [in, optional] A set of flags for controlling how things are loaded.
Returns true if successful; false otherwise.
Close the loader with drwav_uninit().
This is the lowest level function for initializing a WAV file. You can also use drwav_init_file() and drwav_init_memory()
to open the stream from a file or from a block of memory respectively.
Possible values for flags:
DRWAV_SEQUENTIAL: Never perform a backwards seek while loading. This disables the chunk callback and will cause this function
to return as soon as the data chunk is found. Any chunks after the data chunk will be ignored.
drwav_init() is equivalent to "drwav_init_ex(pWav, onRead, onSeek, NULL, pUserData, NULL, 0);".
The onChunk callback is not called for the WAVE or FMT chunks. The contents of the FMT chunk can be read from pWav->fmt
after the function returns.
See also: drwav_init_file(), drwav_init_memory(), drwav_uninit()
*/
DRWAV_API drwav_bool32 drwav_init(drwav* pWav, drwav_read_proc onRead, drwav_seek_proc onSeek, void* pUserData, const drwav_allocation_callbacks* pAllocationCallbacks);
DRWAV_API drwav_bool32 drwav_init_ex(drwav* pWav, drwav_read_proc onRead, drwav_seek_proc onSeek, drwav_chunk_proc onChunk, void* pReadSeekUserData, void* pChunkUserData, drwav_uint32 flags, const drwav_allocation_callbacks* pAllocationCallbacks);
DRWAV_API drwav_bool32 drwav_init_with_metadata(drwav* pWav, drwav_read_proc onRead, drwav_seek_proc onSeek, void* pUserData, drwav_uint32 flags, const drwav_allocation_callbacks* pAllocationCallbacks);
/*
Initializes a pre-allocated drwav object for writing.
onWrite [in] The function to call when data needs to be written.
onSeek [in] The function to call when the write position needs to move.
pUserData [in, optional] A pointer to application defined data that will be passed to onWrite and onSeek.
metadata, numMetadata [in, optional] An array of metadata objects that should be written to the file. The array is not edited. You are responsible for this metadata memory and it must maintain valid until drwav_uninit() is called.
Returns true if successful; false otherwise.
Close the writer with drwav_uninit().
This is the lowest level function for initializing a WAV file. You can also use drwav_init_file_write() and drwav_init_memory_write()
to open the stream from a file or from a block of memory respectively.
If the total sample count is known, you can use drwav_init_write_sequential(). This avoids the need for dr_wav to perform
a post-processing step for storing the total sample count and the size of the data chunk which requires a backwards seek.
See also: drwav_init_file_write(), drwav_init_memory_write(), drwav_uninit()
*/
DRWAV_API drwav_bool32 drwav_init_write(drwav* pWav, const drwav_data_format* pFormat, drwav_write_proc onWrite, drwav_seek_proc onSeek, void* pUserData, const drwav_allocation_callbacks* pAllocationCallbacks);
DRWAV_API drwav_bool32 drwav_init_write_sequential(drwav* pWav, const drwav_data_format* pFormat, drwav_uint64 totalSampleCount, drwav_write_proc onWrite, void* pUserData, const drwav_allocation_callbacks* pAllocationCallbacks);
DRWAV_API drwav_bool32 drwav_init_write_sequential_pcm_frames(drwav* pWav, const drwav_data_format* pFormat, drwav_uint64 totalPCMFrameCount, drwav_write_proc onWrite, void* pUserData, const drwav_allocation_callbacks* pAllocationCallbacks);
DRWAV_API drwav_bool32 drwav_init_write_with_metadata(drwav* pWav, const drwav_data_format* pFormat, drwav_write_proc onWrite, drwav_seek_proc onSeek, void* pUserData, const drwav_allocation_callbacks* pAllocationCallbacks, drwav_metadata* pMetadata, drwav_uint32 metadataCount);
/*
Utility function to determine the target size of the entire data to be written (including all headers and chunks).
Returns the target size in bytes.
The metadata argument can be NULL meaning no metadata exists.
Useful if the application needs to know the size to allocate.
Only writing to the RIFF chunk and one data chunk is currently supported.
See also: drwav_init_write(), drwav_init_file_write(), drwav_init_memory_write()
*/
DRWAV_API drwav_uint64 drwav_target_write_size_bytes(const drwav_data_format* pFormat, drwav_uint64 totalFrameCount, drwav_metadata* pMetadata, drwav_uint32 metadataCount);
/*
Take ownership of the metadata objects that were allocated via one of the init_with_metadata() function calls. The init_with_metdata functions perform a single heap allocation for this metadata.
Useful if you want the data to persist beyond the lifetime of the drwav object.
You must free the data returned from this function using drwav_free().
*/
DRWAV_API drwav_metadata* drwav_take_ownership_of_metadata(drwav* pWav);
/*
Uninitializes the given drwav object.
Use this only for objects initialized with drwav_init*() functions (drwav_init(), drwav_init_ex(), drwav_init_write(), drwav_init_write_sequential()).
*/
DRWAV_API drwav_result drwav_uninit(drwav* pWav);
/*
Reads raw audio data.
This is the lowest level function for reading audio data. It simply reads the given number of
bytes of the raw internal sample data.
Consider using drwav_read_pcm_frames_s16(), drwav_read_pcm_frames_s32() or drwav_read_pcm_frames_f32() for
reading sample data in a consistent format.
pBufferOut can be NULL in which case a seek will be performed.
Returns the number of bytes actually read.
*/
DRWAV_API size_t drwav_read_raw(drwav* pWav, size_t bytesToRead, void* pBufferOut);
/*
Reads up to the specified number of PCM frames from the WAV file.
The output data will be in the file's internal format, converted to native-endian byte order. Use
drwav_read_pcm_frames_s16/f32/s32() to read data in a specific format.
If the return value is less than <framesToRead> it means the end of the file has been reached or
you have requested more PCM frames than can possibly fit in the output buffer.
This function will only work when sample data is of a fixed size and uncompressed. If you are
using a compressed format consider using drwav_read_raw() or drwav_read_pcm_frames_s16/s32/f32().
pBufferOut can be NULL in which case a seek will be performed.
*/
DRWAV_API drwav_uint64 drwav_read_pcm_frames(drwav* pWav, drwav_uint64 framesToRead, void* pBufferOut);
DRWAV_API drwav_uint64 drwav_read_pcm_frames_le(drwav* pWav, drwav_uint64 framesToRead, void* pBufferOut);
DRWAV_API drwav_uint64 drwav_read_pcm_frames_be(drwav* pWav, drwav_uint64 framesToRead, void* pBufferOut);
/*
Seeks to the given PCM frame.
Returns true if successful; false otherwise.
*/
DRWAV_API drwav_bool32 drwav_seek_to_pcm_frame(drwav* pWav, drwav_uint64 targetFrameIndex);
/*
Retrieves the current read position in pcm frames.
*/
DRWAV_API drwav_result drwav_get_cursor_in_pcm_frames(drwav* pWav, drwav_uint64* pCursor);
/*
Retrieves the length of the file.
*/
DRWAV_API drwav_result drwav_get_length_in_pcm_frames(drwav* pWav, drwav_uint64* pLength);
/*
Writes raw audio data.
Returns the number of bytes actually written. If this differs from bytesToWrite, it indicates an error.
*/
DRWAV_API size_t drwav_write_raw(drwav* pWav, size_t bytesToWrite, const void* pData);
/*
Writes PCM frames.
Returns the number of PCM frames written.
Input samples need to be in native-endian byte order. On big-endian architectures the input data will be converted to
little-endian. Use drwav_write_raw() to write raw audio data without performing any conversion.
*/
DRWAV_API drwav_uint64 drwav_write_pcm_frames(drwav* pWav, drwav_uint64 framesToWrite, const void* pData);
DRWAV_API drwav_uint64 drwav_write_pcm_frames_le(drwav* pWav, drwav_uint64 framesToWrite, const void* pData);
DRWAV_API drwav_uint64 drwav_write_pcm_frames_be(drwav* pWav, drwav_uint64 framesToWrite, const void* pData);
/* Conversion Utilities */
#ifndef DR_WAV_NO_CONVERSION_API
/*
Reads a chunk of audio data and converts it to signed 16-bit PCM samples.
pBufferOut can be NULL in which case a seek will be performed.
Returns the number of PCM frames actually read.
If the return value is less than <framesToRead> it means the end of the file has been reached.
*/
DRWAV_API drwav_uint64 drwav_read_pcm_frames_s16(drwav* pWav, drwav_uint64 framesToRead, drwav_int16* pBufferOut);
DRWAV_API drwav_uint64 drwav_read_pcm_frames_s16le(drwav* pWav, drwav_uint64 framesToRead, drwav_int16* pBufferOut);
DRWAV_API drwav_uint64 drwav_read_pcm_frames_s16be(drwav* pWav, drwav_uint64 framesToRead, drwav_int16* pBufferOut);
/* Low-level function for converting unsigned 8-bit PCM samples to signed 16-bit PCM samples. */
DRWAV_API void drwav_u8_to_s16(drwav_int16* pOut, const drwav_uint8* pIn, size_t sampleCount);
/* Low-level function for converting signed 24-bit PCM samples to signed 16-bit PCM samples. */
DRWAV_API void drwav_s24_to_s16(drwav_int16* pOut, const drwav_uint8* pIn, size_t sampleCount);
/* Low-level function for converting signed 32-bit PCM samples to signed 16-bit PCM samples. */
DRWAV_API void drwav_s32_to_s16(drwav_int16* pOut, const drwav_int32* pIn, size_t sampleCount);
/* Low-level function for converting IEEE 32-bit floating point samples to signed 16-bit PCM samples. */
DRWAV_API void drwav_f32_to_s16(drwav_int16* pOut, const float* pIn, size_t sampleCount);
/* Low-level function for converting IEEE 64-bit floating point samples to signed 16-bit PCM samples. */
DRWAV_API void drwav_f64_to_s16(drwav_int16* pOut, const double* pIn, size_t sampleCount);
/* Low-level function for converting A-law samples to signed 16-bit PCM samples. */
DRWAV_API void drwav_alaw_to_s16(drwav_int16* pOut, const drwav_uint8* pIn, size_t sampleCount);
/* Low-level function for converting u-law samples to signed 16-bit PCM samples. */
DRWAV_API void drwav_mulaw_to_s16(drwav_int16* pOut, const drwav_uint8* pIn, size_t sampleCount);
/*
Reads a chunk of audio data and converts it to IEEE 32-bit floating point samples.
pBufferOut can be NULL in which case a seek will be performed.
Returns the number of PCM frames actually read.
If the return value is less than <framesToRead> it means the end of the file has been reached.
*/
DRWAV_API drwav_uint64 drwav_read_pcm_frames_f32(drwav* pWav, drwav_uint64 framesToRead, float* pBufferOut);
DRWAV_API drwav_uint64 drwav_read_pcm_frames_f32le(drwav* pWav, drwav_uint64 framesToRead, float* pBufferOut);
DRWAV_API drwav_uint64 drwav_read_pcm_frames_f32be(drwav* pWav, drwav_uint64 framesToRead, float* pBufferOut);
/* Low-level function for converting unsigned 8-bit PCM samples to IEEE 32-bit floating point samples. */
DRWAV_API void drwav_u8_to_f32(float* pOut, const drwav_uint8* pIn, size_t sampleCount);
/* Low-level function for converting signed 16-bit PCM samples to IEEE 32-bit floating point samples. */
DRWAV_API void drwav_s16_to_f32(float* pOut, const drwav_int16* pIn, size_t sampleCount);
/* Low-level function for converting signed 24-bit PCM samples to IEEE 32-bit floating point samples. */
DRWAV_API void drwav_s24_to_f32(float* pOut, const drwav_uint8* pIn, size_t sampleCount);
/* Low-level function for converting signed 32-bit PCM samples to IEEE 32-bit floating point samples. */
DRWAV_API void drwav_s32_to_f32(float* pOut, const drwav_int32* pIn, size_t sampleCount);
/* Low-level function for converting IEEE 64-bit floating point samples to IEEE 32-bit floating point samples. */
DRWAV_API void drwav_f64_to_f32(float* pOut, const double* pIn, size_t sampleCount);
/* Low-level function for converting A-law samples to IEEE 32-bit floating point samples. */
DRWAV_API void drwav_alaw_to_f32(float* pOut, const drwav_uint8* pIn, size_t sampleCount);
/* Low-level function for converting u-law samples to IEEE 32-bit floating point samples. */
DRWAV_API void drwav_mulaw_to_f32(float* pOut, const drwav_uint8* pIn, size_t sampleCount);
/*
Reads a chunk of audio data and converts it to signed 32-bit PCM samples.
pBufferOut can be NULL in which case a seek will be performed.
Returns the number of PCM frames actually read.
If the return value is less than <framesToRead> it means the end of the file has been reached.
*/
DRWAV_API drwav_uint64 drwav_read_pcm_frames_s32(drwav* pWav, drwav_uint64 framesToRead, drwav_int32* pBufferOut);
DRWAV_API drwav_uint64 drwav_read_pcm_frames_s32le(drwav* pWav, drwav_uint64 framesToRead, drwav_int32* pBufferOut);
DRWAV_API drwav_uint64 drwav_read_pcm_frames_s32be(drwav* pWav, drwav_uint64 framesToRead, drwav_int32* pBufferOut);
/* Low-level function for converting unsigned 8-bit PCM samples to signed 32-bit PCM samples. */
DRWAV_API void drwav_u8_to_s32(drwav_int32* pOut, const drwav_uint8* pIn, size_t sampleCount);
/* Low-level function for converting signed 16-bit PCM samples to signed 32-bit PCM samples. */
DRWAV_API void drwav_s16_to_s32(drwav_int32* pOut, const drwav_int16* pIn, size_t sampleCount);
/* Low-level function for converting signed 24-bit PCM samples to signed 32-bit PCM samples. */
DRWAV_API void drwav_s24_to_s32(drwav_int32* pOut, const drwav_uint8* pIn, size_t sampleCount);
/* Low-level function for converting IEEE 32-bit floating point samples to signed 32-bit PCM samples. */
DRWAV_API void drwav_f32_to_s32(drwav_int32* pOut, const float* pIn, size_t sampleCount);
/* Low-level function for converting IEEE 64-bit floating point samples to signed 32-bit PCM samples. */
DRWAV_API void drwav_f64_to_s32(drwav_int32* pOut, const double* pIn, size_t sampleCount);
/* Low-level function for converting A-law samples to signed 32-bit PCM samples. */
DRWAV_API void drwav_alaw_to_s32(drwav_int32* pOut, const drwav_uint8* pIn, size_t sampleCount);
/* Low-level function for converting u-law samples to signed 32-bit PCM samples. */
DRWAV_API void drwav_mulaw_to_s32(drwav_int32* pOut, const drwav_uint8* pIn, size_t sampleCount);
#endif /* DR_WAV_NO_CONVERSION_API */
/* High-Level Convenience Helpers */
#ifndef DR_WAV_NO_STDIO
/*
Helper for initializing a wave file for reading using stdio.
This holds the internal FILE object until drwav_uninit() is called. Keep this in mind if you're caching drwav
objects because the operating system may restrict the number of file handles an application can have open at
any given time.
*/
DRWAV_API drwav_bool32 drwav_init_file(drwav* pWav, const char* filename, const drwav_allocation_callbacks* pAllocationCallbacks);
DRWAV_API drwav_bool32 drwav_init_file_ex(drwav* pWav, const char* filename, drwav_chunk_proc onChunk, void* pChunkUserData, drwav_uint32 flags, const drwav_allocation_callbacks* pAllocationCallbacks);
DRWAV_API drwav_bool32 drwav_init_file_w(drwav* pWav, const wchar_t* filename, const drwav_allocation_callbacks* pAllocationCallbacks);
DRWAV_API drwav_bool32 drwav_init_file_ex_w(drwav* pWav, const wchar_t* filename, drwav_chunk_proc onChunk, void* pChunkUserData, drwav_uint32 flags, const drwav_allocation_callbacks* pAllocationCallbacks);
DRWAV_API drwav_bool32 drwav_init_file_with_metadata(drwav* pWav, const char* filename, drwav_uint32 flags, const drwav_allocation_callbacks* pAllocationCallbacks);
DRWAV_API drwav_bool32 drwav_init_file_with_metadata_w(drwav* pWav, const wchar_t* filename, drwav_uint32 flags, const drwav_allocation_callbacks* pAllocationCallbacks);
/*
Helper for initializing a wave file for writing using stdio.
This holds the internal FILE object until drwav_uninit() is called. Keep this in mind if you're caching drwav
objects because the operating system may restrict the number of file handles an application can have open at
any given time.
*/
DRWAV_API drwav_bool32 drwav_init_file_write(drwav* pWav, const char* filename, const drwav_data_format* pFormat, const drwav_allocation_callbacks* pAllocationCallbacks);
DRWAV_API drwav_bool32 drwav_init_file_write_sequential(drwav* pWav, const char* filename, const drwav_data_format* pFormat, drwav_uint64 totalSampleCount, const drwav_allocation_callbacks* pAllocationCallbacks);
DRWAV_API drwav_bool32 drwav_init_file_write_sequential_pcm_frames(drwav* pWav, const char* filename, const drwav_data_format* pFormat, drwav_uint64 totalPCMFrameCount, const drwav_allocation_callbacks* pAllocationCallbacks);
DRWAV_API drwav_bool32 drwav_init_file_write_w(drwav* pWav, const wchar_t* filename, const drwav_data_format* pFormat, const drwav_allocation_callbacks* pAllocationCallbacks);
DRWAV_API drwav_bool32 drwav_init_file_write_sequential_w(drwav* pWav, const wchar_t* filename, const drwav_data_format* pFormat, drwav_uint64 totalSampleCount, const drwav_allocation_callbacks* pAllocationCallbacks);
DRWAV_API drwav_bool32 drwav_init_file_write_sequential_pcm_frames_w(drwav* pWav, const wchar_t* filename, const drwav_data_format* pFormat, drwav_uint64 totalPCMFrameCount, const drwav_allocation_callbacks* pAllocationCallbacks);
#endif /* DR_WAV_NO_STDIO */
/*
Helper for initializing a loader from a pre-allocated memory buffer.
This does not create a copy of the data. It is up to the application to ensure the buffer remains valid for
the lifetime of the drwav object.
The buffer should contain the contents of the entire wave file, not just the sample data.
*/
DRWAV_API drwav_bool32 drwav_init_memory(drwav* pWav, const void* data, size_t dataSize, const drwav_allocation_callbacks* pAllocationCallbacks);
DRWAV_API drwav_bool32 drwav_init_memory_ex(drwav* pWav, const void* data, size_t dataSize, drwav_chunk_proc onChunk, void* pChunkUserData, drwav_uint32 flags, const drwav_allocation_callbacks* pAllocationCallbacks);
DRWAV_API drwav_bool32 drwav_init_memory_with_metadata(drwav* pWav, const void* data, size_t dataSize, drwav_uint32 flags, const drwav_allocation_callbacks* pAllocationCallbacks);
/*
Helper for initializing a writer which outputs data to a memory buffer.
dr_wav will manage the memory allocations, however it is up to the caller to free the data with drwav_free().
The buffer will remain allocated even after drwav_uninit() is called. The buffer should not be considered valid
until after drwav_uninit() has been called.
*/
DRWAV_API drwav_bool32 drwav_init_memory_write(drwav* pWav, void** ppData, size_t* pDataSize, const drwav_data_format* pFormat, const drwav_allocation_callbacks* pAllocationCallbacks);
DRWAV_API drwav_bool32 drwav_init_memory_write_sequential(drwav* pWav, void** ppData, size_t* pDataSize, const drwav_data_format* pFormat, drwav_uint64 totalSampleCount, const drwav_allocation_callbacks* pAllocationCallbacks);
DRWAV_API drwav_bool32 drwav_init_memory_write_sequential_pcm_frames(drwav* pWav, void** ppData, size_t* pDataSize, const drwav_data_format* pFormat, drwav_uint64 totalPCMFrameCount, const drwav_allocation_callbacks* pAllocationCallbacks);
#ifndef DR_WAV_NO_CONVERSION_API
/*
Opens and reads an entire wav file in a single operation.
The return value is a heap-allocated buffer containing the audio data. Use drwav_free() to free the buffer.
*/
DRWAV_API drwav_int16* drwav_open_and_read_pcm_frames_s16(drwav_read_proc onRead, drwav_seek_proc onSeek, void* pUserData, unsigned int* channelsOut, unsigned int* sampleRateOut, drwav_uint64* totalFrameCountOut, const drwav_allocation_callbacks* pAllocationCallbacks);
DRWAV_API float* drwav_open_and_read_pcm_frames_f32(drwav_read_proc onRead, drwav_seek_proc onSeek, void* pUserData, unsigned int* channelsOut, unsigned int* sampleRateOut, drwav_uint64* totalFrameCountOut, const drwav_allocation_callbacks* pAllocationCallbacks);
DRWAV_API drwav_int32* drwav_open_and_read_pcm_frames_s32(drwav_read_proc onRead, drwav_seek_proc onSeek, void* pUserData, unsigned int* channelsOut, unsigned int* sampleRateOut, drwav_uint64* totalFrameCountOut, const drwav_allocation_callbacks* pAllocationCallbacks);
#ifndef DR_WAV_NO_STDIO
/*
Opens and decodes an entire wav file in a single operation.
The return value is a heap-allocated buffer containing the audio data. Use drwav_free() to free the buffer.
*/
DRWAV_API drwav_int16* drwav_open_file_and_read_pcm_frames_s16(const char* filename, unsigned int* channelsOut, unsigned int* sampleRateOut, drwav_uint64* totalFrameCountOut, const drwav_allocation_callbacks* pAllocationCallbacks);
DRWAV_API float* drwav_open_file_and_read_pcm_frames_f32(const char* filename, unsigned int* channelsOut, unsigned int* sampleRateOut, drwav_uint64* totalFrameCountOut, const drwav_allocation_callbacks* pAllocationCallbacks);
DRWAV_API drwav_int32* drwav_open_file_and_read_pcm_frames_s32(const char* filename, unsigned int* channelsOut, unsigned int* sampleRateOut, drwav_uint64* totalFrameCountOut, const drwav_allocation_callbacks* pAllocationCallbacks);
DRWAV_API drwav_int16* drwav_open_file_and_read_pcm_frames_s16_w(const wchar_t* filename, unsigned int* channelsOut, unsigned int* sampleRateOut, drwav_uint64* totalFrameCountOut, const drwav_allocation_callbacks* pAllocationCallbacks);
DRWAV_API float* drwav_open_file_and_read_pcm_frames_f32_w(const wchar_t* filename, unsigned int* channelsOut, unsigned int* sampleRateOut, drwav_uint64* totalFrameCountOut, const drwav_allocation_callbacks* pAllocationCallbacks);
DRWAV_API drwav_int32* drwav_open_file_and_read_pcm_frames_s32_w(const wchar_t* filename, unsigned int* channelsOut, unsigned int* sampleRateOut, drwav_uint64* totalFrameCountOut, const drwav_allocation_callbacks* pAllocationCallbacks);
#endif
/*
Opens and decodes an entire wav file from a block of memory in a single operation.
The return value is a heap-allocated buffer containing the audio data. Use drwav_free() to free the buffer.
*/
DRWAV_API drwav_int16* drwav_open_memory_and_read_pcm_frames_s16(const void* data, size_t dataSize, unsigned int* channelsOut, unsigned int* sampleRateOut, drwav_uint64* totalFrameCountOut, const drwav_allocation_callbacks* pAllocationCallbacks);
DRWAV_API float* drwav_open_memory_and_read_pcm_frames_f32(const void* data, size_t dataSize, unsigned int* channelsOut, unsigned int* sampleRateOut, drwav_uint64* totalFrameCountOut, const drwav_allocation_callbacks* pAllocationCallbacks);
DRWAV_API drwav_int32* drwav_open_memory_and_read_pcm_frames_s32(const void* data, size_t dataSize, unsigned int* channelsOut, unsigned int* sampleRateOut, drwav_uint64* totalFrameCountOut, const drwav_allocation_callbacks* pAllocationCallbacks);
#endif
/* Frees data that was allocated internally by dr_wav. */
DRWAV_API void drwav_free(void* p, const drwav_allocation_callbacks* pAllocationCallbacks);
/* Converts bytes from a wav stream to a sized type of native endian. */
DRWAV_API drwav_uint16 drwav_bytes_to_u16(const drwav_uint8* data);
DRWAV_API drwav_int16 drwav_bytes_to_s16(const drwav_uint8* data);
DRWAV_API drwav_uint32 drwav_bytes_to_u32(const drwav_uint8* data);
DRWAV_API drwav_int32 drwav_bytes_to_s32(const drwav_uint8* data);
DRWAV_API drwav_uint64 drwav_bytes_to_u64(const drwav_uint8* data);
DRWAV_API drwav_int64 drwav_bytes_to_s64(const drwav_uint8* data);
DRWAV_API float drwav_bytes_to_f32(const drwav_uint8* data);
/* Compares a GUID for the purpose of checking the type of a Wave64 chunk. */
DRWAV_API drwav_bool32 drwav_guid_equal(const drwav_uint8 a[16], const drwav_uint8 b[16]);
/* Compares a four-character-code for the purpose of checking the type of a RIFF chunk. */
DRWAV_API drwav_bool32 drwav_fourcc_equal(const drwav_uint8* a, const char* b);
#ifdef __cplusplus
}
#endif
#endif /* dr_wav_h */
/************************************************************************************************************************************************************
************************************************************************************************************************************************************
IMPLEMENTATION
************************************************************************************************************************************************************
************************************************************************************************************************************************************/
#if defined(DR_WAV_IMPLEMENTATION) || defined(DRWAV_IMPLEMENTATION)
#ifndef dr_wav_c
#define dr_wav_c
#ifdef __MRC__
/* MrC currently doesn't compile dr_wav correctly with any optimizations enabled. */
#pragma options opt off
#endif
#include <stdlib.h>
#include <string.h>
#include <limits.h> /* For INT_MAX */
#ifndef DR_WAV_NO_STDIO
#include <stdio.h>
#ifndef DR_WAV_NO_WCHAR
#include <wchar.h>
#endif
#endif
/* Standard library stuff. */
#ifndef DRWAV_ASSERT
#include <assert.h>
#define DRWAV_ASSERT(expression) assert(expression)
#endif
#ifndef DRWAV_MALLOC
#define DRWAV_MALLOC(sz) malloc((sz))
#endif
#ifndef DRWAV_REALLOC
#define DRWAV_REALLOC(p, sz) realloc((p), (sz))
#endif
#ifndef DRWAV_FREE
#define DRWAV_FREE(p) free((p))
#endif
#ifndef DRWAV_COPY_MEMORY
#define DRWAV_COPY_MEMORY(dst, src, sz) memcpy((dst), (src), (sz))
#endif
#ifndef DRWAV_ZERO_MEMORY
#define DRWAV_ZERO_MEMORY(p, sz) memset((p), 0, (sz))
#endif
#ifndef DRWAV_ZERO_OBJECT
#define DRWAV_ZERO_OBJECT(p) DRWAV_ZERO_MEMORY((p), sizeof(*p))
#endif
#define drwav_countof(x) (sizeof(x) / sizeof(x[0]))
#define drwav_align(x, a) ((((x) + (a) - 1) / (a)) * (a))
#define drwav_min(a, b) (((a) < (b)) ? (a) : (b))
#define drwav_max(a, b) (((a) > (b)) ? (a) : (b))
#define drwav_clamp(x, lo, hi) (drwav_max((lo), drwav_min((hi), (x))))
#define drwav_offset_ptr(p, offset) (((drwav_uint8*)(p)) + (offset))
#define DRWAV_MAX_SIMD_VECTOR_SIZE 32
/* Architecture Detection */
#if defined(__x86_64__) || defined(_M_X64)
#define DRWAV_X64
#elif defined(__i386) || defined(_M_IX86)
#define DRWAV_X86
#elif defined(__arm__) || defined(_M_ARM)
#define DRWAV_ARM
#endif
/* End Architecture Detection */
/* Inline */
#ifdef _MSC_VER
#define DRWAV_INLINE __forceinline
#elif defined(__GNUC__)
/*
I've had a bug report where GCC is emitting warnings about functions possibly not being inlineable. This warning happens when
the __attribute__((always_inline)) attribute is defined without an "inline" statement. I think therefore there must be some
case where "__inline__" is not always defined, thus the compiler emitting these warnings. When using -std=c89 or -ansi on the
command line, we cannot use the "inline" keyword and instead need to use "__inline__". In an attempt to work around this issue
I am using "__inline__" only when we're compiling in strict ANSI mode.
*/
#if defined(__STRICT_ANSI__)
#define DRWAV_GNUC_INLINE_HINT __inline__
#else
#define DRWAV_GNUC_INLINE_HINT inline
#endif
#if (__GNUC__ > 3 || (__GNUC__ == 3 && __GNUC_MINOR__ >= 2)) || defined(__clang__)
#define DRWAV_INLINE DRWAV_GNUC_INLINE_HINT __attribute__((always_inline))
#else
#define DRWAV_INLINE DRWAV_GNUC_INLINE_HINT
#endif
#elif defined(__WATCOMC__)
#define DRWAV_INLINE __inline
#else
#define DRWAV_INLINE
#endif
/* End Inline */
/* SIZE_MAX */
#if defined(SIZE_MAX)
#define DRWAV_SIZE_MAX SIZE_MAX
#else
#if defined(_WIN64) || defined(_LP64) || defined(__LP64__)
#define DRWAV_SIZE_MAX ((drwav_uint64)0xFFFFFFFFFFFFFFFF)
#else
#define DRWAV_SIZE_MAX 0xFFFFFFFF
#endif
#endif
/* End SIZE_MAX */
/* Weird bit manipulation is for C89 compatibility (no direct support for 64-bit integers). */
#define DRWAV_INT64_MIN ((drwav_int64) ((drwav_uint64)0x80000000 << 32))
#define DRWAV_INT64_MAX ((drwav_int64)(((drwav_uint64)0x7FFFFFFF << 32) | 0xFFFFFFFF))
#if defined(_MSC_VER) && _MSC_VER >= 1400
#define DRWAV_HAS_BYTESWAP16_INTRINSIC
#define DRWAV_HAS_BYTESWAP32_INTRINSIC
#define DRWAV_HAS_BYTESWAP64_INTRINSIC
#elif defined(__clang__)
#if defined(__has_builtin)
#if __has_builtin(__builtin_bswap16)
#define DRWAV_HAS_BYTESWAP16_INTRINSIC
#endif
#if __has_builtin(__builtin_bswap32)
#define DRWAV_HAS_BYTESWAP32_INTRINSIC
#endif
#if __has_builtin(__builtin_bswap64)
#define DRWAV_HAS_BYTESWAP64_INTRINSIC
#endif
#endif
#elif defined(__GNUC__)
#if ((__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ >= 3))
#define DRWAV_HAS_BYTESWAP32_INTRINSIC
#define DRWAV_HAS_BYTESWAP64_INTRINSIC
#endif
#if ((__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ >= 8))
#define DRWAV_HAS_BYTESWAP16_INTRINSIC
#endif
#endif
DRWAV_API void drwav_version(drwav_uint32* pMajor, drwav_uint32* pMinor, drwav_uint32* pRevision)
{
if (pMajor) {
*pMajor = DRWAV_VERSION_MAJOR;
}
if (pMinor) {
*pMinor = DRWAV_VERSION_MINOR;
}
if (pRevision) {
*pRevision = DRWAV_VERSION_REVISION;
}
}
DRWAV_API const char* drwav_version_string(void)
{
return DRWAV_VERSION_STRING;
}
/*
These limits are used for basic validation when initializing the decoder. If you exceed these limits, first of all: what on Earth are
you doing?! (Let me know, I'd be curious!) Second, you can adjust these by #define-ing them before the dr_wav implementation.
*/
#ifndef DRWAV_MAX_SAMPLE_RATE
#define DRWAV_MAX_SAMPLE_RATE 384000
#endif
#ifndef DRWAV_MAX_CHANNELS
#define DRWAV_MAX_CHANNELS 256
#endif
#ifndef DRWAV_MAX_BITS_PER_SAMPLE
#define DRWAV_MAX_BITS_PER_SAMPLE 64
#endif
static const drwav_uint8 drwavGUID_W64_RIFF[16] = {0x72,0x69,0x66,0x66, 0x2E,0x91, 0xCF,0x11, 0xA5,0xD6, 0x28,0xDB,0x04,0xC1,0x00,0x00}; /* 66666972-912E-11CF-A5D6-28DB04C10000 */
static const drwav_uint8 drwavGUID_W64_WAVE[16] = {0x77,0x61,0x76,0x65, 0xF3,0xAC, 0xD3,0x11, 0x8C,0xD1, 0x00,0xC0,0x4F,0x8E,0xDB,0x8A}; /* 65766177-ACF3-11D3-8CD1-00C04F8EDB8A */
/*static const drwav_uint8 drwavGUID_W64_JUNK[16] = {0x6A,0x75,0x6E,0x6B, 0xF3,0xAC, 0xD3,0x11, 0x8C,0xD1, 0x00,0xC0,0x4F,0x8E,0xDB,0x8A};*/ /* 6B6E756A-ACF3-11D3-8CD1-00C04F8EDB8A */
static const drwav_uint8 drwavGUID_W64_FMT [16] = {0x66,0x6D,0x74,0x20, 0xF3,0xAC, 0xD3,0x11, 0x8C,0xD1, 0x00,0xC0,0x4F,0x8E,0xDB,0x8A}; /* 20746D66-ACF3-11D3-8CD1-00C04F8EDB8A */
static const drwav_uint8 drwavGUID_W64_FACT[16] = {0x66,0x61,0x63,0x74, 0xF3,0xAC, 0xD3,0x11, 0x8C,0xD1, 0x00,0xC0,0x4F,0x8E,0xDB,0x8A}; /* 74636166-ACF3-11D3-8CD1-00C04F8EDB8A */
static const drwav_uint8 drwavGUID_W64_DATA[16] = {0x64,0x61,0x74,0x61, 0xF3,0xAC, 0xD3,0x11, 0x8C,0xD1, 0x00,0xC0,0x4F,0x8E,0xDB,0x8A}; /* 61746164-ACF3-11D3-8CD1-00C04F8EDB8A */
/*static const drwav_uint8 drwavGUID_W64_SMPL[16] = {0x73,0x6D,0x70,0x6C, 0xF3,0xAC, 0xD3,0x11, 0x8C,0xD1, 0x00,0xC0,0x4F,0x8E,0xDB,0x8A};*/ /* 6C706D73-ACF3-11D3-8CD1-00C04F8EDB8A */
static DRWAV_INLINE int drwav__is_little_endian(void)
{
#if defined(DRWAV_X86) || defined(DRWAV_X64)
return DRWAV_TRUE;
#elif defined(__BYTE_ORDER) && defined(__LITTLE_ENDIAN) && __BYTE_ORDER == __LITTLE_ENDIAN
return DRWAV_TRUE;
#else
int n = 1;
return (*(char*)&n) == 1;
#endif
}
static DRWAV_INLINE void drwav_bytes_to_guid(const drwav_uint8* data, drwav_uint8* guid)
{
int i;
for (i = 0; i < 16; ++i) {
guid[i] = data[i];
}
}
static DRWAV_INLINE drwav_uint16 drwav__bswap16(drwav_uint16 n)
{
#ifdef DRWAV_HAS_BYTESWAP16_INTRINSIC
#if defined(_MSC_VER)
return _byteswap_ushort(n);
#elif defined(__GNUC__) || defined(__clang__)
return __builtin_bswap16(n);
#else
#error "This compiler does not support the byte swap intrinsic."
#endif
#else
return ((n & 0xFF00) >> 8) |
((n & 0x00FF) << 8);
#endif
}
static DRWAV_INLINE drwav_uint32 drwav__bswap32(drwav_uint32 n)
{
#ifdef DRWAV_HAS_BYTESWAP32_INTRINSIC
#if defined(_MSC_VER)
return _byteswap_ulong(n);
#elif defined(__GNUC__) || defined(__clang__)
#if defined(DRWAV_ARM) && (defined(__ARM_ARCH) && __ARM_ARCH >= 6) && !defined(DRWAV_64BIT) /* <-- 64-bit inline assembly has not been tested, so disabling for now. */
/* Inline assembly optimized implementation for ARM. In my testing, GCC does not generate optimized code with __builtin_bswap32(). */
drwav_uint32 r;
__asm__ __volatile__ (
#if defined(DRWAV_64BIT)
"rev %w[out], %w[in]" : [out]"=r"(r) : [in]"r"(n) /* <-- This is untested. If someone in the community could test this, that would be appreciated! */
#else
"rev %[out], %[in]" : [out]"=r"(r) : [in]"r"(n)
#endif
);
return r;
#else
return __builtin_bswap32(n);
#endif
#else
#error "This compiler does not support the byte swap intrinsic."
#endif
#else
return ((n & 0xFF000000) >> 24) |
((n & 0x00FF0000) >> 8) |
((n & 0x0000FF00) << 8) |
((n & 0x000000FF) << 24);
#endif
}
static DRWAV_INLINE drwav_uint64 drwav__bswap64(drwav_uint64 n)
{
#ifdef DRWAV_HAS_BYTESWAP64_INTRINSIC
#if defined(_MSC_VER)
return _byteswap_uint64(n);
#elif defined(__GNUC__) || defined(__clang__)
return __builtin_bswap64(n);
#else
#error "This compiler does not support the byte swap intrinsic."
#endif
#else
/* Weird "<< 32" bitshift is required for C89 because it doesn't support 64-bit constants. Should be optimized out by a good compiler. */
return ((n & ((drwav_uint64)0xFF000000 << 32)) >> 56) |
((n & ((drwav_uint64)0x00FF0000 << 32)) >> 40) |
((n & ((drwav_uint64)0x0000FF00 << 32)) >> 24) |
((n & ((drwav_uint64)0x000000FF << 32)) >> 8) |
((n & ((drwav_uint64)0xFF000000 )) << 8) |
((n & ((drwav_uint64)0x00FF0000 )) << 24) |
((n & ((drwav_uint64)0x0000FF00 )) << 40) |
((n & ((drwav_uint64)0x000000FF )) << 56);
#endif
}
static DRWAV_INLINE drwav_int16 drwav__bswap_s16(drwav_int16 n)
{
return (drwav_int16)drwav__bswap16((drwav_uint16)n);
}
static DRWAV_INLINE void drwav__bswap_samples_s16(drwav_int16* pSamples, drwav_uint64 sampleCount)
{
drwav_uint64 iSample;
for (iSample = 0; iSample < sampleCount; iSample += 1) {
pSamples[iSample] = drwav__bswap_s16(pSamples[iSample]);
}
}
static DRWAV_INLINE void drwav__bswap_s24(drwav_uint8* p)
{
drwav_uint8 t;
t = p[0];
p[0] = p[2];
p[2] = t;
}
static DRWAV_INLINE void drwav__bswap_samples_s24(drwav_uint8* pSamples, drwav_uint64 sampleCount)
{
drwav_uint64 iSample;
for (iSample = 0; iSample < sampleCount; iSample += 1) {
drwav_uint8* pSample = pSamples + (iSample*3);
drwav__bswap_s24(pSample);
}
}
static DRWAV_INLINE drwav_int32 drwav__bswap_s32(drwav_int32 n)
{
return (drwav_int32)drwav__bswap32((drwav_uint32)n);
}
static DRWAV_INLINE void drwav__bswap_samples_s32(drwav_int32* pSamples, drwav_uint64 sampleCount)
{
drwav_uint64 iSample;
for (iSample = 0; iSample < sampleCount; iSample += 1) {
pSamples[iSample] = drwav__bswap_s32(pSamples[iSample]);
}
}
static DRWAV_INLINE drwav_int64 drwav__bswap_s64(drwav_int64 n)
{
return (drwav_int64)drwav__bswap64((drwav_uint64)n);
}
static DRWAV_INLINE void drwav__bswap_samples_s64(drwav_int64* pSamples, drwav_uint64 sampleCount)
{
drwav_uint64 iSample;
for (iSample = 0; iSample < sampleCount; iSample += 1) {
pSamples[iSample] = drwav__bswap_s64(pSamples[iSample]);
}
}
static DRWAV_INLINE float drwav__bswap_f32(float n)
{
union {
drwav_uint32 i;
float f;
} x;
x.f = n;
x.i = drwav__bswap32(x.i);
return x.f;
}
static DRWAV_INLINE void drwav__bswap_samples_f32(float* pSamples, drwav_uint64 sampleCount)
{
drwav_uint64 iSample;
for (iSample = 0; iSample < sampleCount; iSample += 1) {
pSamples[iSample] = drwav__bswap_f32(pSamples[iSample]);
}
}
static DRWAV_INLINE void drwav__bswap_samples(void* pSamples, drwav_uint64 sampleCount, drwav_uint32 bytesPerSample)
{
switch (bytesPerSample)
{
case 1:
{
/* No-op. */
} break;
case 2:
{
drwav__bswap_samples_s16((drwav_int16*)pSamples, sampleCount);
} break;
case 3:
{
drwav__bswap_samples_s24((drwav_uint8*)pSamples, sampleCount);
} break;
case 4:
{
drwav__bswap_samples_s32((drwav_int32*)pSamples, sampleCount);
} break;
case 8:
{
drwav__bswap_samples_s64((drwav_int64*)pSamples, sampleCount);
} break;
default:
{
/* Unsupported format. */
DRWAV_ASSERT(DRWAV_FALSE);
} break;
}
}
DRWAV_PRIVATE DRWAV_INLINE drwav_bool32 drwav_is_container_be(drwav_container container)
{
if (container == drwav_container_rifx || container == drwav_container_aiff) {
return DRWAV_TRUE;
} else {
return DRWAV_FALSE;
}
}
DRWAV_PRIVATE DRWAV_INLINE drwav_uint16 drwav_bytes_to_u16_le(const drwav_uint8* data)
{
return ((drwav_uint16)data[0] << 0) | ((drwav_uint16)data[1] << 8);
}
DRWAV_PRIVATE DRWAV_INLINE drwav_uint16 drwav_bytes_to_u16_be(const drwav_uint8* data)
{
return ((drwav_uint16)data[1] << 0) | ((drwav_uint16)data[0] << 8);
}
DRWAV_PRIVATE DRWAV_INLINE drwav_uint16 drwav_bytes_to_u16_ex(const drwav_uint8* data, drwav_container container)
{
if (drwav_is_container_be(container)) {
return drwav_bytes_to_u16_be(data);
} else {
return drwav_bytes_to_u16_le(data);
}
}
DRWAV_PRIVATE DRWAV_INLINE drwav_uint32 drwav_bytes_to_u32_le(const drwav_uint8* data)
{
return ((drwav_uint32)data[0] << 0) | ((drwav_uint32)data[1] << 8) | ((drwav_uint32)data[2] << 16) | ((drwav_uint32)data[3] << 24);
}
DRWAV_PRIVATE DRWAV_INLINE drwav_uint32 drwav_bytes_to_u32_be(const drwav_uint8* data)
{
return ((drwav_uint32)data[3] << 0) | ((drwav_uint32)data[2] << 8) | ((drwav_uint32)data[1] << 16) | ((drwav_uint32)data[0] << 24);
}
DRWAV_PRIVATE DRWAV_INLINE drwav_uint32 drwav_bytes_to_u32_ex(const drwav_uint8* data, drwav_container container)
{
if (drwav_is_container_be(container)) {
return drwav_bytes_to_u32_be(data);
} else {
return drwav_bytes_to_u32_le(data);
}
}
DRWAV_PRIVATE drwav_int64 drwav_aiff_extented_to_s64(const drwav_uint8* data)
{
drwav_uint32 exponent = ((drwav_uint32)data[0] << 8) | data[1];
drwav_uint64 hi = ((drwav_uint64)data[2] << 24) | ((drwav_uint64)data[3] << 16) | ((drwav_uint64)data[4] << 8) | ((drwav_uint64)data[5] << 0);
drwav_uint64 lo = ((drwav_uint64)data[6] << 24) | ((drwav_uint64)data[7] << 16) | ((drwav_uint64)data[8] << 8) | ((drwav_uint64)data[9] << 0);
drwav_uint64 significand = (hi << 32) | lo;
int sign = exponent >> 15;
/* Remove sign bit. */
exponent &= 0x7FFF;
/* Special cases. */
if (exponent == 0 && significand == 0) {
return 0;
} else if (exponent == 0x7FFF) {
return sign ? DRWAV_INT64_MIN : DRWAV_INT64_MAX; /* Infinite. */
}
exponent -= 16383;
if (exponent > 63) {
return sign ? DRWAV_INT64_MIN : DRWAV_INT64_MAX; /* Too big for a 64-bit integer. */
} else if (exponent < 1) {
return 0; /* Number is less than 1, so rounds down to 0. */
}
significand >>= (63 - exponent);
if (sign) {
return -(drwav_int64)significand;
} else {
return (drwav_int64)significand;
}
}
DRWAV_PRIVATE void* drwav__malloc_default(size_t sz, void* pUserData)
{
(void)pUserData;
return DRWAV_MALLOC(sz);
}
DRWAV_PRIVATE void* drwav__realloc_default(void* p, size_t sz, void* pUserData)
{
(void)pUserData;
return DRWAV_REALLOC(p, sz);
}
DRWAV_PRIVATE void drwav__free_default(void* p, void* pUserData)
{
(void)pUserData;
DRWAV_FREE(p);
}
DRWAV_PRIVATE void* drwav__malloc_from_callbacks(size_t sz, const drwav_allocation_callbacks* pAllocationCallbacks)
{
if (pAllocationCallbacks == NULL) {
return NULL;
}
if (pAllocationCallbacks->onMalloc != NULL) {
return pAllocationCallbacks->onMalloc(sz, pAllocationCallbacks->pUserData);
}
/* Try using realloc(). */
if (pAllocationCallbacks->onRealloc != NULL) {
return pAllocationCallbacks->onRealloc(NULL, sz, pAllocationCallbacks->pUserData);
}
return NULL;
}
DRWAV_PRIVATE void* drwav__realloc_from_callbacks(void* p, size_t szNew, size_t szOld, const drwav_allocation_callbacks* pAllocationCallbacks)
{
if (pAllocationCallbacks == NULL) {
return NULL;
}
if (pAllocationCallbacks->onRealloc != NULL) {
return pAllocationCallbacks->onRealloc(p, szNew, pAllocationCallbacks->pUserData);
}
/* Try emulating realloc() in terms of malloc()/free(). */
if (pAllocationCallbacks->onMalloc != NULL && pAllocationCallbacks->onFree != NULL) {
void* p2;
p2 = pAllocationCallbacks->onMalloc(szNew, pAllocationCallbacks->pUserData);
if (p2 == NULL) {
return NULL;
}
if (p != NULL) {
DRWAV_COPY_MEMORY(p2, p, szOld);
pAllocationCallbacks->onFree(p, pAllocationCallbacks->pUserData);
}
return p2;
}
return NULL;
}
DRWAV_PRIVATE void drwav__free_from_callbacks(void* p, const drwav_allocation_callbacks* pAllocationCallbacks)
{
if (p == NULL || pAllocationCallbacks == NULL) {
return;
}
if (pAllocationCallbacks->onFree != NULL) {
pAllocationCallbacks->onFree(p, pAllocationCallbacks->pUserData);
}
}
DRWAV_PRIVATE drwav_allocation_callbacks drwav_copy_allocation_callbacks_or_defaults(const drwav_allocation_callbacks* pAllocationCallbacks)
{
if (pAllocationCallbacks != NULL) {
/* Copy. */
return *pAllocationCallbacks;
} else {
/* Defaults. */
drwav_allocation_callbacks allocationCallbacks;
allocationCallbacks.pUserData = NULL;
allocationCallbacks.onMalloc = drwav__malloc_default;
allocationCallbacks.onRealloc = drwav__realloc_default;
allocationCallbacks.onFree = drwav__free_default;
return allocationCallbacks;
}
}
static DRWAV_INLINE drwav_bool32 drwav__is_compressed_format_tag(drwav_uint16 formatTag)
{
return
formatTag == DR_WAVE_FORMAT_ADPCM ||
formatTag == DR_WAVE_FORMAT_DVI_ADPCM;
}
DRWAV_PRIVATE unsigned int drwav__chunk_padding_size_riff(drwav_uint64 chunkSize)
{
return (unsigned int)(chunkSize % 2);
}
DRWAV_PRIVATE unsigned int drwav__chunk_padding_size_w64(drwav_uint64 chunkSize)
{
return (unsigned int)(chunkSize % 8);
}
DRWAV_PRIVATE drwav_uint64 drwav_read_pcm_frames_s16__msadpcm(drwav* pWav, drwav_uint64 samplesToRead, drwav_int16* pBufferOut);
DRWAV_PRIVATE drwav_uint64 drwav_read_pcm_frames_s16__ima(drwav* pWav, drwav_uint64 samplesToRead, drwav_int16* pBufferOut);
DRWAV_PRIVATE drwav_bool32 drwav_init_write__internal(drwav* pWav, const drwav_data_format* pFormat, drwav_uint64 totalSampleCount);
DRWAV_PRIVATE drwav_result drwav__read_chunk_header(drwav_read_proc onRead, void* pUserData, drwav_container container, drwav_uint64* pRunningBytesReadOut, drwav_chunk_header* pHeaderOut)
{
if (container == drwav_container_riff || container == drwav_container_rifx || container == drwav_container_rf64 || container == drwav_container_aiff) {
drwav_uint8 sizeInBytes[4];
if (onRead(pUserData, pHeaderOut->id.fourcc, 4) != 4) {
return DRWAV_AT_END;
}
if (onRead(pUserData, sizeInBytes, 4) != 4) {
return DRWAV_INVALID_FILE;
}
pHeaderOut->sizeInBytes = drwav_bytes_to_u32_ex(sizeInBytes, container);
pHeaderOut->paddingSize = drwav__chunk_padding_size_riff(pHeaderOut->sizeInBytes);
*pRunningBytesReadOut += 8;
} else if (container == drwav_container_w64) {
drwav_uint8 sizeInBytes[8];
if (onRead(pUserData, pHeaderOut->id.guid, 16) != 16) {
return DRWAV_AT_END;
}
if (onRead(pUserData, sizeInBytes, 8) != 8) {
return DRWAV_INVALID_FILE;
}
pHeaderOut->sizeInBytes = drwav_bytes_to_u64(sizeInBytes) - 24; /* <-- Subtract 24 because w64 includes the size of the header. */
pHeaderOut->paddingSize = drwav__chunk_padding_size_w64(pHeaderOut->sizeInBytes);
*pRunningBytesReadOut += 24;
} else {
return DRWAV_INVALID_FILE;
}
return DRWAV_SUCCESS;
}
DRWAV_PRIVATE drwav_bool32 drwav__seek_forward(drwav_seek_proc onSeek, drwav_uint64 offset, void* pUserData)
{
drwav_uint64 bytesRemainingToSeek = offset;
while (bytesRemainingToSeek > 0) {
if (bytesRemainingToSeek > 0x7FFFFFFF) {
if (!onSeek(pUserData, 0x7FFFFFFF, drwav_seek_origin_current)) {
return DRWAV_FALSE;
}
bytesRemainingToSeek -= 0x7FFFFFFF;
} else {
if (!onSeek(pUserData, (int)bytesRemainingToSeek, drwav_seek_origin_current)) {
return DRWAV_FALSE;
}
bytesRemainingToSeek = 0;
}
}
return DRWAV_TRUE;
}
DRWAV_PRIVATE drwav_bool32 drwav__seek_from_start(drwav_seek_proc onSeek, drwav_uint64 offset, void* pUserData)
{
if (offset <= 0x7FFFFFFF) {
return onSeek(pUserData, (int)offset, drwav_seek_origin_start);
}
/* Larger than 32-bit seek. */
if (!onSeek(pUserData, 0x7FFFFFFF, drwav_seek_origin_start)) {
return DRWAV_FALSE;
}
offset -= 0x7FFFFFFF;
for (;;) {
if (offset <= 0x7FFFFFFF) {
return onSeek(pUserData, (int)offset, drwav_seek_origin_current);
}
if (!onSeek(pUserData, 0x7FFFFFFF, drwav_seek_origin_current)) {
return DRWAV_FALSE;
}
offset -= 0x7FFFFFFF;
}
/* Should never get here. */
/*return DRWAV_TRUE; */
}
DRWAV_PRIVATE size_t drwav__on_read(drwav_read_proc onRead, void* pUserData, void* pBufferOut, size_t bytesToRead, drwav_uint64* pCursor)
{
size_t bytesRead;
DRWAV_ASSERT(onRead != NULL);
DRWAV_ASSERT(pCursor != NULL);
bytesRead = onRead(pUserData, pBufferOut, bytesToRead);
*pCursor += bytesRead;
return bytesRead;
}
#if 0
DRWAV_PRIVATE drwav_bool32 drwav__on_seek(drwav_seek_proc onSeek, void* pUserData, int offset, drwav_seek_origin origin, drwav_uint64* pCursor)
{
DRWAV_ASSERT(onSeek != NULL);
DRWAV_ASSERT(pCursor != NULL);
if (!onSeek(pUserData, offset, origin)) {
return DRWAV_FALSE;
}
if (origin == drwav_seek_origin_start) {
*pCursor = offset;
} else {
*pCursor += offset;
}
return DRWAV_TRUE;
}
#endif
#define DRWAV_SMPL_BYTES 36
#define DRWAV_SMPL_LOOP_BYTES 24
#define DRWAV_INST_BYTES 7
#define DRWAV_ACID_BYTES 24
#define DRWAV_CUE_BYTES 4
#define DRWAV_BEXT_BYTES 602
#define DRWAV_BEXT_DESCRIPTION_BYTES 256
#define DRWAV_BEXT_ORIGINATOR_NAME_BYTES 32
#define DRWAV_BEXT_ORIGINATOR_REF_BYTES 32
#define DRWAV_BEXT_RESERVED_BYTES 180
#define DRWAV_BEXT_UMID_BYTES 64
#define DRWAV_CUE_POINT_BYTES 24
#define DRWAV_LIST_LABEL_OR_NOTE_BYTES 4
#define DRWAV_LIST_LABELLED_TEXT_BYTES 20
#define DRWAV_METADATA_ALIGNMENT 8
typedef enum
{
drwav__metadata_parser_stage_count,
drwav__metadata_parser_stage_read
} drwav__metadata_parser_stage;
typedef struct
{
drwav_read_proc onRead;
drwav_seek_proc onSeek;
void *pReadSeekUserData;
drwav__metadata_parser_stage stage;
drwav_metadata *pMetadata;
drwav_uint32 metadataCount;
drwav_uint8 *pData;
drwav_uint8 *pDataCursor;
drwav_uint64 metadataCursor;
drwav_uint64 extraCapacity;
} drwav__metadata_parser;
DRWAV_PRIVATE size_t drwav__metadata_memory_capacity(drwav__metadata_parser* pParser)
{
drwav_uint64 cap = sizeof(drwav_metadata) * (drwav_uint64)pParser->metadataCount + pParser->extraCapacity;
if (cap > DRWAV_SIZE_MAX) {
return 0; /* Too big. */
}
return (size_t)cap; /* Safe cast thanks to the check above. */
}
DRWAV_PRIVATE drwav_uint8* drwav__metadata_get_memory(drwav__metadata_parser* pParser, size_t size, size_t align)
{
drwav_uint8* pResult;
if (align) {
drwav_uintptr modulo = (drwav_uintptr)pParser->pDataCursor % align;
if (modulo != 0) {
pParser->pDataCursor += align - modulo;
}
}
pResult = pParser->pDataCursor;
/*
Getting to the point where this function is called means there should always be memory
available. Out of memory checks should have been done at an earlier stage.
*/
DRWAV_ASSERT((pResult + size) <= (pParser->pData + drwav__metadata_memory_capacity(pParser)));
pParser->pDataCursor += size;
return pResult;
}
DRWAV_PRIVATE void drwav__metadata_request_extra_memory_for_stage_2(drwav__metadata_parser* pParser, size_t bytes, size_t align)
{
size_t extra = bytes + (align ? (align - 1) : 0);
pParser->extraCapacity += extra;
}
DRWAV_PRIVATE drwav_result drwav__metadata_alloc(drwav__metadata_parser* pParser, drwav_allocation_callbacks* pAllocationCallbacks)
{
if (pParser->extraCapacity != 0 || pParser->metadataCount != 0) {
pAllocationCallbacks->onFree(pParser->pData, pAllocationCallbacks->pUserData);
pParser->pData = (drwav_uint8*)pAllocationCallbacks->onMalloc(drwav__metadata_memory_capacity(pParser), pAllocationCallbacks->pUserData);
pParser->pDataCursor = pParser->pData;
if (pParser->pData == NULL) {
return DRWAV_OUT_OF_MEMORY;
}
/*
We don't need to worry about specifying an alignment here because malloc always returns something
of suitable alignment. This also means pParser->pMetadata is all that we need to store in order
for us to free when we are done.
*/
pParser->pMetadata = (drwav_metadata*)drwav__metadata_get_memory(pParser, sizeof(drwav_metadata) * pParser->metadataCount, 1);
pParser->metadataCursor = 0;
}
return DRWAV_SUCCESS;
}
DRWAV_PRIVATE size_t drwav__metadata_parser_read(drwav__metadata_parser* pParser, void* pBufferOut, size_t bytesToRead, drwav_uint64* pCursor)
{
if (pCursor != NULL) {
return drwav__on_read(pParser->onRead, pParser->pReadSeekUserData, pBufferOut, bytesToRead, pCursor);
} else {
return pParser->onRead(pParser->pReadSeekUserData, pBufferOut, bytesToRead);
}
}
DRWAV_PRIVATE drwav_uint64 drwav__read_smpl_to_metadata_obj(drwav__metadata_parser* pParser, const drwav_chunk_header* pChunkHeader, drwav_metadata* pMetadata)
{
drwav_uint8 smplHeaderData[DRWAV_SMPL_BYTES];
drwav_uint64 totalBytesRead = 0;
size_t bytesJustRead;
if (pMetadata == NULL) {
return 0;
}
bytesJustRead = drwav__metadata_parser_read(pParser, smplHeaderData, sizeof(smplHeaderData), &totalBytesRead);
DRWAV_ASSERT(pParser->stage == drwav__metadata_parser_stage_read);
DRWAV_ASSERT(pChunkHeader != NULL);
if (pMetadata != NULL && bytesJustRead == sizeof(smplHeaderData)) {
drwav_uint32 iSampleLoop;
pMetadata->type = drwav_metadata_type_smpl;
pMetadata->data.smpl.manufacturerId = drwav_bytes_to_u32(smplHeaderData + 0);
pMetadata->data.smpl.productId = drwav_bytes_to_u32(smplHeaderData + 4);
pMetadata->data.smpl.samplePeriodNanoseconds = drwav_bytes_to_u32(smplHeaderData + 8);
pMetadata->data.smpl.midiUnityNote = drwav_bytes_to_u32(smplHeaderData + 12);
pMetadata->data.smpl.midiPitchFraction = drwav_bytes_to_u32(smplHeaderData + 16);
pMetadata->data.smpl.smpteFormat = drwav_bytes_to_u32(smplHeaderData + 20);
pMetadata->data.smpl.smpteOffset = drwav_bytes_to_u32(smplHeaderData + 24);
pMetadata->data.smpl.sampleLoopCount = drwav_bytes_to_u32(smplHeaderData + 28);
pMetadata->data.smpl.samplerSpecificDataSizeInBytes = drwav_bytes_to_u32(smplHeaderData + 32);
/*
The loop count needs to be validated against the size of the chunk for safety so we don't
attempt to read over the boundary of the chunk.
*/
if (pMetadata->data.smpl.sampleLoopCount == (pChunkHeader->sizeInBytes - DRWAV_SMPL_BYTES) / DRWAV_SMPL_LOOP_BYTES) {
pMetadata->data.smpl.pLoops = (drwav_smpl_loop*)drwav__metadata_get_memory(pParser, sizeof(drwav_smpl_loop) * pMetadata->data.smpl.sampleLoopCount, DRWAV_METADATA_ALIGNMENT);
for (iSampleLoop = 0; iSampleLoop < pMetadata->data.smpl.sampleLoopCount; ++iSampleLoop) {
drwav_uint8 smplLoopData[DRWAV_SMPL_LOOP_BYTES];
bytesJustRead = drwav__metadata_parser_read(pParser, smplLoopData, sizeof(smplLoopData), &totalBytesRead);
if (bytesJustRead == sizeof(smplLoopData)) {
pMetadata->data.smpl.pLoops[iSampleLoop].cuePointId = drwav_bytes_to_u32(smplLoopData + 0);
pMetadata->data.smpl.pLoops[iSampleLoop].type = drwav_bytes_to_u32(smplLoopData + 4);
pMetadata->data.smpl.pLoops[iSampleLoop].firstSampleByteOffset = drwav_bytes_to_u32(smplLoopData + 8);
pMetadata->data.smpl.pLoops[iSampleLoop].lastSampleByteOffset = drwav_bytes_to_u32(smplLoopData + 12);
pMetadata->data.smpl.pLoops[iSampleLoop].sampleFraction = drwav_bytes_to_u32(smplLoopData + 16);
pMetadata->data.smpl.pLoops[iSampleLoop].playCount = drwav_bytes_to_u32(smplLoopData + 20);
} else {
break;
}
}
if (pMetadata->data.smpl.samplerSpecificDataSizeInBytes > 0) {
pMetadata->data.smpl.pSamplerSpecificData = drwav__metadata_get_memory(pParser, pMetadata->data.smpl.samplerSpecificDataSizeInBytes, 1);
DRWAV_ASSERT(pMetadata->data.smpl.pSamplerSpecificData != NULL);
drwav__metadata_parser_read(pParser, pMetadata->data.smpl.pSamplerSpecificData, pMetadata->data.smpl.samplerSpecificDataSizeInBytes, &totalBytesRead);
}
}
}
return totalBytesRead;
}
DRWAV_PRIVATE drwav_uint64 drwav__read_cue_to_metadata_obj(drwav__metadata_parser* pParser, const drwav_chunk_header* pChunkHeader, drwav_metadata* pMetadata)
{
drwav_uint8 cueHeaderSectionData[DRWAV_CUE_BYTES];
drwav_uint64 totalBytesRead = 0;
size_t bytesJustRead;
if (pMetadata == NULL) {
return 0;
}
bytesJustRead = drwav__metadata_parser_read(pParser, cueHeaderSectionData, sizeof(cueHeaderSectionData), &totalBytesRead);
DRWAV_ASSERT(pParser->stage == drwav__metadata_parser_stage_read);
if (bytesJustRead == sizeof(cueHeaderSectionData)) {
pMetadata->type = drwav_metadata_type_cue;
pMetadata->data.cue.cuePointCount = drwav_bytes_to_u32(cueHeaderSectionData);
/*
We need to validate the cue point count against the size of the chunk so we don't read
beyond the chunk.
*/
if (pMetadata->data.cue.cuePointCount == (pChunkHeader->sizeInBytes - DRWAV_CUE_BYTES) / DRWAV_CUE_POINT_BYTES) {
pMetadata->data.cue.pCuePoints = (drwav_cue_point*)drwav__metadata_get_memory(pParser, sizeof(drwav_cue_point) * pMetadata->data.cue.cuePointCount, DRWAV_METADATA_ALIGNMENT);
DRWAV_ASSERT(pMetadata->data.cue.pCuePoints != NULL);
if (pMetadata->data.cue.cuePointCount > 0) {
drwav_uint32 iCuePoint;
for (iCuePoint = 0; iCuePoint < pMetadata->data.cue.cuePointCount; ++iCuePoint) {
drwav_uint8 cuePointData[DRWAV_CUE_POINT_BYTES];
bytesJustRead = drwav__metadata_parser_read(pParser, cuePointData, sizeof(cuePointData), &totalBytesRead);
if (bytesJustRead == sizeof(cuePointData)) {
pMetadata->data.cue.pCuePoints[iCuePoint].id = drwav_bytes_to_u32(cuePointData + 0);
pMetadata->data.cue.pCuePoints[iCuePoint].playOrderPosition = drwav_bytes_to_u32(cuePointData + 4);
pMetadata->data.cue.pCuePoints[iCuePoint].dataChunkId[0] = cuePointData[8];
pMetadata->data.cue.pCuePoints[iCuePoint].dataChunkId[1] = cuePointData[9];
pMetadata->data.cue.pCuePoints[iCuePoint].dataChunkId[2] = cuePointData[10];
pMetadata->data.cue.pCuePoints[iCuePoint].dataChunkId[3] = cuePointData[11];
pMetadata->data.cue.pCuePoints[iCuePoint].chunkStart = drwav_bytes_to_u32(cuePointData + 12);
pMetadata->data.cue.pCuePoints[iCuePoint].blockStart = drwav_bytes_to_u32(cuePointData + 16);
pMetadata->data.cue.pCuePoints[iCuePoint].sampleByteOffset = drwav_bytes_to_u32(cuePointData + 20);
} else {
break;
}
}
}
}
}
return totalBytesRead;
}
DRWAV_PRIVATE drwav_uint64 drwav__read_inst_to_metadata_obj(drwav__metadata_parser* pParser, drwav_metadata* pMetadata)
{
drwav_uint8 instData[DRWAV_INST_BYTES];
drwav_uint64 bytesRead;
if (pMetadata == NULL) {
return 0;
}
bytesRead = drwav__metadata_parser_read(pParser, instData, sizeof(instData), NULL);
DRWAV_ASSERT(pParser->stage == drwav__metadata_parser_stage_read);
if (bytesRead == sizeof(instData)) {
pMetadata->type = drwav_metadata_type_inst;
pMetadata->data.inst.midiUnityNote = (drwav_int8)instData[0];
pMetadata->data.inst.fineTuneCents = (drwav_int8)instData[1];
pMetadata->data.inst.gainDecibels = (drwav_int8)instData[2];
pMetadata->data.inst.lowNote = (drwav_int8)instData[3];
pMetadata->data.inst.highNote = (drwav_int8)instData[4];
pMetadata->data.inst.lowVelocity = (drwav_int8)instData[5];
pMetadata->data.inst.highVelocity = (drwav_int8)instData[6];
}
return bytesRead;
}
DRWAV_PRIVATE drwav_uint64 drwav__read_acid_to_metadata_obj(drwav__metadata_parser* pParser, drwav_metadata* pMetadata)
{
drwav_uint8 acidData[DRWAV_ACID_BYTES];
drwav_uint64 bytesRead;
if (pMetadata == NULL) {
return 0;
}
bytesRead = drwav__metadata_parser_read(pParser, acidData, sizeof(acidData), NULL);
DRWAV_ASSERT(pParser->stage == drwav__metadata_parser_stage_read);
if (bytesRead == sizeof(acidData)) {
pMetadata->type = drwav_metadata_type_acid;
pMetadata->data.acid.flags = drwav_bytes_to_u32(acidData + 0);
pMetadata->data.acid.midiUnityNote = drwav_bytes_to_u16(acidData + 4);
pMetadata->data.acid.reserved1 = drwav_bytes_to_u16(acidData + 6);
pMetadata->data.acid.reserved2 = drwav_bytes_to_f32(acidData + 8);
pMetadata->data.acid.numBeats = drwav_bytes_to_u32(acidData + 12);
pMetadata->data.acid.meterDenominator = drwav_bytes_to_u16(acidData + 16);
pMetadata->data.acid.meterNumerator = drwav_bytes_to_u16(acidData + 18);
pMetadata->data.acid.tempo = drwav_bytes_to_f32(acidData + 20);
}
return bytesRead;
}
DRWAV_PRIVATE size_t drwav__strlen(const char* str)
{
size_t result = 0;
while (*str++) {
result += 1;
}
return result;
}
DRWAV_PRIVATE size_t drwav__strlen_clamped(const char* str, size_t maxToRead)
{
size_t result = 0;
while (*str++ && result < maxToRead) {
result += 1;
}
return result;
}
DRWAV_PRIVATE char* drwav__metadata_copy_string(drwav__metadata_parser* pParser, const char* str, size_t maxToRead)
{
size_t len = drwav__strlen_clamped(str, maxToRead);
if (len) {
char* result = (char*)drwav__metadata_get_memory(pParser, len + 1, 1);
DRWAV_ASSERT(result != NULL);
DRWAV_COPY_MEMORY(result, str, len);
result[len] = '\0';
return result;
} else {
return NULL;
}
}
typedef struct
{
const void* pBuffer;
size_t sizeInBytes;
size_t cursor;
} drwav_buffer_reader;
DRWAV_PRIVATE drwav_result drwav_buffer_reader_init(const void* pBuffer, size_t sizeInBytes, drwav_buffer_reader* pReader)
{
DRWAV_ASSERT(pBuffer != NULL);
DRWAV_ASSERT(pReader != NULL);
DRWAV_ZERO_OBJECT(pReader);
pReader->pBuffer = pBuffer;
pReader->sizeInBytes = sizeInBytes;
pReader->cursor = 0;
return DRWAV_SUCCESS;
}
DRWAV_PRIVATE const void* drwav_buffer_reader_ptr(const drwav_buffer_reader* pReader)
{
DRWAV_ASSERT(pReader != NULL);
return drwav_offset_ptr(pReader->pBuffer, pReader->cursor);
}
DRWAV_PRIVATE drwav_result drwav_buffer_reader_seek(drwav_buffer_reader* pReader, size_t bytesToSeek)
{
DRWAV_ASSERT(pReader != NULL);
if (pReader->cursor + bytesToSeek > pReader->sizeInBytes) {
return DRWAV_BAD_SEEK; /* Seeking too far forward. */
}
pReader->cursor += bytesToSeek;
return DRWAV_SUCCESS;
}
DRWAV_PRIVATE drwav_result drwav_buffer_reader_read(drwav_buffer_reader* pReader, void* pDst, size_t bytesToRead, size_t* pBytesRead)
{
drwav_result result = DRWAV_SUCCESS;
size_t bytesRemaining;
DRWAV_ASSERT(pReader != NULL);
if (pBytesRead != NULL) {
*pBytesRead = 0;
}
bytesRemaining = (pReader->sizeInBytes - pReader->cursor);
if (bytesToRead > bytesRemaining) {
bytesToRead = bytesRemaining;
}
if (pDst == NULL) {
/* Seek. */
result = drwav_buffer_reader_seek(pReader, bytesToRead);
} else {
/* Read. */
DRWAV_COPY_MEMORY(pDst, drwav_buffer_reader_ptr(pReader), bytesToRead);
pReader->cursor += bytesToRead;
}
DRWAV_ASSERT(pReader->cursor <= pReader->sizeInBytes);
if (result == DRWAV_SUCCESS) {
if (pBytesRead != NULL) {
*pBytesRead = bytesToRead;
}
}
return DRWAV_SUCCESS;
}
DRWAV_PRIVATE drwav_result drwav_buffer_reader_read_u16(drwav_buffer_reader* pReader, drwav_uint16* pDst)
{
drwav_result result;
size_t bytesRead;
drwav_uint8 data[2];
DRWAV_ASSERT(pReader != NULL);
DRWAV_ASSERT(pDst != NULL);
*pDst = 0; /* Safety. */
result = drwav_buffer_reader_read(pReader, data, sizeof(*pDst), &bytesRead);
if (result != DRWAV_SUCCESS || bytesRead != sizeof(*pDst)) {
return result;
}
*pDst = drwav_bytes_to_u16(data);
return DRWAV_SUCCESS;
}
DRWAV_PRIVATE drwav_result drwav_buffer_reader_read_u32(drwav_buffer_reader* pReader, drwav_uint32* pDst)
{
drwav_result result;
size_t bytesRead;
drwav_uint8 data[4];
DRWAV_ASSERT(pReader != NULL);
DRWAV_ASSERT(pDst != NULL);
*pDst = 0; /* Safety. */
result = drwav_buffer_reader_read(pReader, data, sizeof(*pDst), &bytesRead);
if (result != DRWAV_SUCCESS || bytesRead != sizeof(*pDst)) {
return result;
}
*pDst = drwav_bytes_to_u32(data);
return DRWAV_SUCCESS;
}
DRWAV_PRIVATE drwav_uint64 drwav__read_bext_to_metadata_obj(drwav__metadata_parser* pParser, drwav_metadata* pMetadata, drwav_uint64 chunkSize)
{
drwav_uint8 bextData[DRWAV_BEXT_BYTES];
size_t bytesRead = drwav__metadata_parser_read(pParser, bextData, sizeof(bextData), NULL);
DRWAV_ASSERT(pParser->stage == drwav__metadata_parser_stage_read);
if (bytesRead == sizeof(bextData)) {
drwav_buffer_reader reader;
drwav_uint32 timeReferenceLow;
drwav_uint32 timeReferenceHigh;
size_t extraBytes;
pMetadata->type = drwav_metadata_type_bext;
if (drwav_buffer_reader_init(bextData, bytesRead, &reader) == DRWAV_SUCCESS) {
pMetadata->data.bext.pDescription = drwav__metadata_copy_string(pParser, (const char*)drwav_buffer_reader_ptr(&reader), DRWAV_BEXT_DESCRIPTION_BYTES);
drwav_buffer_reader_seek(&reader, DRWAV_BEXT_DESCRIPTION_BYTES);
pMetadata->data.bext.pOriginatorName = drwav__metadata_copy_string(pParser, (const char*)drwav_buffer_reader_ptr(&reader), DRWAV_BEXT_ORIGINATOR_NAME_BYTES);
drwav_buffer_reader_seek(&reader, DRWAV_BEXT_ORIGINATOR_NAME_BYTES);
pMetadata->data.bext.pOriginatorReference = drwav__metadata_copy_string(pParser, (const char*)drwav_buffer_reader_ptr(&reader), DRWAV_BEXT_ORIGINATOR_REF_BYTES);
drwav_buffer_reader_seek(&reader, DRWAV_BEXT_ORIGINATOR_REF_BYTES);
drwav_buffer_reader_read(&reader, pMetadata->data.bext.pOriginationDate, sizeof(pMetadata->data.bext.pOriginationDate), NULL);
drwav_buffer_reader_read(&reader, pMetadata->data.bext.pOriginationTime, sizeof(pMetadata->data.bext.pOriginationTime), NULL);
drwav_buffer_reader_read_u32(&reader, &timeReferenceLow);
drwav_buffer_reader_read_u32(&reader, &timeReferenceHigh);
pMetadata->data.bext.timeReference = ((drwav_uint64)timeReferenceHigh << 32) + timeReferenceLow;
drwav_buffer_reader_read_u16(&reader, &pMetadata->data.bext.version);
pMetadata->data.bext.pUMID = drwav__metadata_get_memory(pParser, DRWAV_BEXT_UMID_BYTES, 1);
drwav_buffer_reader_read(&reader, pMetadata->data.bext.pUMID, DRWAV_BEXT_UMID_BYTES, NULL);
drwav_buffer_reader_read_u16(&reader, &pMetadata->data.bext.loudnessValue);
drwav_buffer_reader_read_u16(&reader, &pMetadata->data.bext.loudnessRange);
drwav_buffer_reader_read_u16(&reader, &pMetadata->data.bext.maxTruePeakLevel);
drwav_buffer_reader_read_u16(&reader, &pMetadata->data.bext.maxMomentaryLoudness);
drwav_buffer_reader_read_u16(&reader, &pMetadata->data.bext.maxShortTermLoudness);
DRWAV_ASSERT((drwav_offset_ptr(drwav_buffer_reader_ptr(&reader), DRWAV_BEXT_RESERVED_BYTES)) == (bextData + DRWAV_BEXT_BYTES));
extraBytes = (size_t)(chunkSize - DRWAV_BEXT_BYTES);
if (extraBytes > 0) {
pMetadata->data.bext.pCodingHistory = (char*)drwav__metadata_get_memory(pParser, extraBytes + 1, 1);
DRWAV_ASSERT(pMetadata->data.bext.pCodingHistory != NULL);
bytesRead += drwav__metadata_parser_read(pParser, pMetadata->data.bext.pCodingHistory, extraBytes, NULL);
pMetadata->data.bext.codingHistorySize = (drwav_uint32)drwav__strlen(pMetadata->data.bext.pCodingHistory);
} else {
pMetadata->data.bext.pCodingHistory = NULL;
pMetadata->data.bext.codingHistorySize = 0;
}
}
}
return bytesRead;
}
DRWAV_PRIVATE drwav_uint64 drwav__read_list_label_or_note_to_metadata_obj(drwav__metadata_parser* pParser, drwav_metadata* pMetadata, drwav_uint64 chunkSize, drwav_metadata_type type)
{
drwav_uint8 cueIDBuffer[DRWAV_LIST_LABEL_OR_NOTE_BYTES];
drwav_uint64 totalBytesRead = 0;
size_t bytesJustRead = drwav__metadata_parser_read(pParser, cueIDBuffer, sizeof(cueIDBuffer), &totalBytesRead);
DRWAV_ASSERT(pParser->stage == drwav__metadata_parser_stage_read);
if (bytesJustRead == sizeof(cueIDBuffer)) {
drwav_uint32 sizeIncludingNullTerminator;
pMetadata->type = type;
pMetadata->data.labelOrNote.cuePointId = drwav_bytes_to_u32(cueIDBuffer);
sizeIncludingNullTerminator = (drwav_uint32)chunkSize - DRWAV_LIST_LABEL_OR_NOTE_BYTES;
if (sizeIncludingNullTerminator > 0) {
pMetadata->data.labelOrNote.stringLength = sizeIncludingNullTerminator - 1;
pMetadata->data.labelOrNote.pString = (char*)drwav__metadata_get_memory(pParser, sizeIncludingNullTerminator, 1);
DRWAV_ASSERT(pMetadata->data.labelOrNote.pString != NULL);
drwav__metadata_parser_read(pParser, pMetadata->data.labelOrNote.pString, sizeIncludingNullTerminator, &totalBytesRead);
} else {
pMetadata->data.labelOrNote.stringLength = 0;
pMetadata->data.labelOrNote.pString = NULL;
}
}
return totalBytesRead;
}
DRWAV_PRIVATE drwav_uint64 drwav__read_list_labelled_cue_region_to_metadata_obj(drwav__metadata_parser* pParser, drwav_metadata* pMetadata, drwav_uint64 chunkSize)
{
drwav_uint8 buffer[DRWAV_LIST_LABELLED_TEXT_BYTES];
drwav_uint64 totalBytesRead = 0;
size_t bytesJustRead = drwav__metadata_parser_read(pParser, buffer, sizeof(buffer), &totalBytesRead);
DRWAV_ASSERT(pParser->stage == drwav__metadata_parser_stage_read);
if (bytesJustRead == sizeof(buffer)) {
drwav_uint32 sizeIncludingNullTerminator;
pMetadata->type = drwav_metadata_type_list_labelled_cue_region;
pMetadata->data.labelledCueRegion.cuePointId = drwav_bytes_to_u32(buffer + 0);
pMetadata->data.labelledCueRegion.sampleLength = drwav_bytes_to_u32(buffer + 4);
pMetadata->data.labelledCueRegion.purposeId[0] = buffer[8];
pMetadata->data.labelledCueRegion.purposeId[1] = buffer[9];
pMetadata->data.labelledCueRegion.purposeId[2] = buffer[10];
pMetadata->data.labelledCueRegion.purposeId[3] = buffer[11];
pMetadata->data.labelledCueRegion.country = drwav_bytes_to_u16(buffer + 12);
pMetadata->data.labelledCueRegion.language = drwav_bytes_to_u16(buffer + 14);
pMetadata->data.labelledCueRegion.dialect = drwav_bytes_to_u16(buffer + 16);
pMetadata->data.labelledCueRegion.codePage = drwav_bytes_to_u16(buffer + 18);
sizeIncludingNullTerminator = (drwav_uint32)chunkSize - DRWAV_LIST_LABELLED_TEXT_BYTES;
if (sizeIncludingNullTerminator > 0) {
pMetadata->data.labelledCueRegion.stringLength = sizeIncludingNullTerminator - 1;
pMetadata->data.labelledCueRegion.pString = (char*)drwav__metadata_get_memory(pParser, sizeIncludingNullTerminator, 1);
DRWAV_ASSERT(pMetadata->data.labelledCueRegion.pString != NULL);
drwav__metadata_parser_read(pParser, pMetadata->data.labelledCueRegion.pString, sizeIncludingNullTerminator, &totalBytesRead);
} else {
pMetadata->data.labelledCueRegion.stringLength = 0;
pMetadata->data.labelledCueRegion.pString = NULL;
}
}
return totalBytesRead;
}
DRWAV_PRIVATE drwav_uint64 drwav__metadata_process_info_text_chunk(drwav__metadata_parser* pParser, drwav_uint64 chunkSize, drwav_metadata_type type)
{
drwav_uint64 bytesRead = 0;
drwav_uint32 stringSizeWithNullTerminator = (drwav_uint32)chunkSize;
if (pParser->stage == drwav__metadata_parser_stage_count) {
pParser->metadataCount += 1;
drwav__metadata_request_extra_memory_for_stage_2(pParser, stringSizeWithNullTerminator, 1);
} else {
drwav_metadata* pMetadata = &pParser->pMetadata[pParser->metadataCursor];
pMetadata->type = type;
if (stringSizeWithNullTerminator > 0) {
pMetadata->data.infoText.stringLength = stringSizeWithNullTerminator - 1;
pMetadata->data.infoText.pString = (char*)drwav__metadata_get_memory(pParser, stringSizeWithNullTerminator, 1);
DRWAV_ASSERT(pMetadata->data.infoText.pString != NULL);
bytesRead = drwav__metadata_parser_read(pParser, pMetadata->data.infoText.pString, (size_t)stringSizeWithNullTerminator, NULL);
if (bytesRead == chunkSize) {
pParser->metadataCursor += 1;
} else {
/* Failed to parse. */
}
} else {
pMetadata->data.infoText.stringLength = 0;
pMetadata->data.infoText.pString = NULL;
pParser->metadataCursor += 1;
}
}
return bytesRead;
}
DRWAV_PRIVATE drwav_uint64 drwav__metadata_process_unknown_chunk(drwav__metadata_parser* pParser, const drwav_uint8* pChunkId, drwav_uint64 chunkSize, drwav_metadata_location location)
{
drwav_uint64 bytesRead = 0;
if (location == drwav_metadata_location_invalid) {
return 0;
}
if (drwav_fourcc_equal(pChunkId, "data") || drwav_fourcc_equal(pChunkId, "fmt ") || drwav_fourcc_equal(pChunkId, "fact")) {
return 0;
}
if (pParser->stage == drwav__metadata_parser_stage_count) {
pParser->metadataCount += 1;
drwav__metadata_request_extra_memory_for_stage_2(pParser, (size_t)chunkSize, 1);
} else {
drwav_metadata* pMetadata = &pParser->pMetadata[pParser->metadataCursor];
pMetadata->type = drwav_metadata_type_unknown;
pMetadata->data.unknown.chunkLocation = location;
pMetadata->data.unknown.id[0] = pChunkId[0];
pMetadata->data.unknown.id[1] = pChunkId[1];
pMetadata->data.unknown.id[2] = pChunkId[2];
pMetadata->data.unknown.id[3] = pChunkId[3];
pMetadata->data.unknown.dataSizeInBytes = (drwav_uint32)chunkSize;
pMetadata->data.unknown.pData = (drwav_uint8 *)drwav__metadata_get_memory(pParser, (size_t)chunkSize, 1);
DRWAV_ASSERT(pMetadata->data.unknown.pData != NULL);
bytesRead = drwav__metadata_parser_read(pParser, pMetadata->data.unknown.pData, pMetadata->data.unknown.dataSizeInBytes, NULL);
if (bytesRead == pMetadata->data.unknown.dataSizeInBytes) {
pParser->metadataCursor += 1;
} else {
/* Failed to read. */
}
}
return bytesRead;
}
DRWAV_PRIVATE drwav_bool32 drwav__chunk_matches(drwav_metadata_type allowedMetadataTypes, const drwav_uint8* pChunkID, drwav_metadata_type type, const char* pID)
{
return (allowedMetadataTypes & type) && drwav_fourcc_equal(pChunkID, pID);
}
DRWAV_PRIVATE drwav_uint64 drwav__metadata_process_chunk(drwav__metadata_parser* pParser, const drwav_chunk_header* pChunkHeader, drwav_metadata_type allowedMetadataTypes)
{
const drwav_uint8 *pChunkID = pChunkHeader->id.fourcc;
drwav_uint64 bytesRead = 0;
if (drwav__chunk_matches(allowedMetadataTypes, pChunkID, drwav_metadata_type_smpl, "smpl")) {
if (pChunkHeader->sizeInBytes >= DRWAV_SMPL_BYTES) {
if (pParser->stage == drwav__metadata_parser_stage_count) {
drwav_uint8 buffer[4];
size_t bytesJustRead;
if (!pParser->onSeek(pParser->pReadSeekUserData, 28, drwav_seek_origin_current)) {
return bytesRead;
}
bytesRead += 28;
bytesJustRead = drwav__metadata_parser_read(pParser, buffer, sizeof(buffer), &bytesRead);
if (bytesJustRead == sizeof(buffer)) {
drwav_uint32 loopCount = drwav_bytes_to_u32(buffer);
drwav_uint64 calculatedLoopCount;
/* The loop count must be validated against the size of the chunk. */
calculatedLoopCount = (pChunkHeader->sizeInBytes - DRWAV_SMPL_BYTES) / DRWAV_SMPL_LOOP_BYTES;
if (calculatedLoopCount == loopCount) {
bytesJustRead = drwav__metadata_parser_read(pParser, buffer, sizeof(buffer), &bytesRead);
if (bytesJustRead == sizeof(buffer)) {
drwav_uint32 samplerSpecificDataSizeInBytes = drwav_bytes_to_u32(buffer);
pParser->metadataCount += 1;
drwav__metadata_request_extra_memory_for_stage_2(pParser, sizeof(drwav_smpl_loop) * loopCount, DRWAV_METADATA_ALIGNMENT);
drwav__metadata_request_extra_memory_for_stage_2(pParser, samplerSpecificDataSizeInBytes, 1);
}
} else {
/* Loop count in header does not match the size of the chunk. */
}
}
} else {
bytesRead = drwav__read_smpl_to_metadata_obj(pParser, pChunkHeader, &pParser->pMetadata[pParser->metadataCursor]);
if (bytesRead == pChunkHeader->sizeInBytes) {
pParser->metadataCursor += 1;
} else {
/* Failed to parse. */
}
}
} else {
/* Incorrectly formed chunk. */
}
} else if (drwav__chunk_matches(allowedMetadataTypes, pChunkID, drwav_metadata_type_inst, "inst")) {
if (pChunkHeader->sizeInBytes == DRWAV_INST_BYTES) {
if (pParser->stage == drwav__metadata_parser_stage_count) {
pParser->metadataCount += 1;
} else {
bytesRead = drwav__read_inst_to_metadata_obj(pParser, &pParser->pMetadata[pParser->metadataCursor]);
if (bytesRead == pChunkHeader->sizeInBytes) {
pParser->metadataCursor += 1;
} else {
/* Failed to parse. */
}
}
} else {
/* Incorrectly formed chunk. */
}
} else if (drwav__chunk_matches(allowedMetadataTypes, pChunkID, drwav_metadata_type_acid, "acid")) {
if (pChunkHeader->sizeInBytes == DRWAV_ACID_BYTES) {
if (pParser->stage == drwav__metadata_parser_stage_count) {
pParser->metadataCount += 1;
} else {
bytesRead = drwav__read_acid_to_metadata_obj(pParser, &pParser->pMetadata[pParser->metadataCursor]);
if (bytesRead == pChunkHeader->sizeInBytes) {
pParser->metadataCursor += 1;
} else {
/* Failed to parse. */
}
}
} else {
/* Incorrectly formed chunk. */
}
} else if (drwav__chunk_matches(allowedMetadataTypes, pChunkID, drwav_metadata_type_cue, "cue ")) {
if (pChunkHeader->sizeInBytes >= DRWAV_CUE_BYTES) {
if (pParser->stage == drwav__metadata_parser_stage_count) {
size_t cueCount;
pParser->metadataCount += 1;
cueCount = (size_t)(pChunkHeader->sizeInBytes - DRWAV_CUE_BYTES) / DRWAV_CUE_POINT_BYTES;
drwav__metadata_request_extra_memory_for_stage_2(pParser, sizeof(drwav_cue_point) * cueCount, DRWAV_METADATA_ALIGNMENT);
} else {
bytesRead = drwav__read_cue_to_metadata_obj(pParser, pChunkHeader, &pParser->pMetadata[pParser->metadataCursor]);
if (bytesRead == pChunkHeader->sizeInBytes) {
pParser->metadataCursor += 1;
} else {
/* Failed to parse. */
}
}
} else {
/* Incorrectly formed chunk. */
}
} else if (drwav__chunk_matches(allowedMetadataTypes, pChunkID, drwav_metadata_type_bext, "bext")) {
if (pChunkHeader->sizeInBytes >= DRWAV_BEXT_BYTES) {
if (pParser->stage == drwav__metadata_parser_stage_count) {
/* The description field is the largest one in a bext chunk, so that is the max size of this temporary buffer. */
char buffer[DRWAV_BEXT_DESCRIPTION_BYTES + 1];
size_t allocSizeNeeded = DRWAV_BEXT_UMID_BYTES; /* We know we will need SMPTE umid size. */
size_t bytesJustRead;
buffer[DRWAV_BEXT_DESCRIPTION_BYTES] = '\0';
bytesJustRead = drwav__metadata_parser_read(pParser, buffer, DRWAV_BEXT_DESCRIPTION_BYTES, &bytesRead);
if (bytesJustRead != DRWAV_BEXT_DESCRIPTION_BYTES) {
return bytesRead;
}
allocSizeNeeded += drwav__strlen(buffer) + 1;
buffer[DRWAV_BEXT_ORIGINATOR_NAME_BYTES] = '\0';
bytesJustRead = drwav__metadata_parser_read(pParser, buffer, DRWAV_BEXT_ORIGINATOR_NAME_BYTES, &bytesRead);
if (bytesJustRead != DRWAV_BEXT_ORIGINATOR_NAME_BYTES) {
return bytesRead;
}
allocSizeNeeded += drwav__strlen(buffer) + 1;
buffer[DRWAV_BEXT_ORIGINATOR_REF_BYTES] = '\0';
bytesJustRead = drwav__metadata_parser_read(pParser, buffer, DRWAV_BEXT_ORIGINATOR_REF_BYTES, &bytesRead);
if (bytesJustRead != DRWAV_BEXT_ORIGINATOR_REF_BYTES) {
return bytesRead;
}
allocSizeNeeded += drwav__strlen(buffer) + 1;
allocSizeNeeded += (size_t)pChunkHeader->sizeInBytes - DRWAV_BEXT_BYTES; /* Coding history. */
drwav__metadata_request_extra_memory_for_stage_2(pParser, allocSizeNeeded, 1);
pParser->metadataCount += 1;
} else {
bytesRead = drwav__read_bext_to_metadata_obj(pParser, &pParser->pMetadata[pParser->metadataCursor], pChunkHeader->sizeInBytes);
if (bytesRead == pChunkHeader->sizeInBytes) {
pParser->metadataCursor += 1;
} else {
/* Failed to parse. */
}
}
} else {
/* Incorrectly formed chunk. */
}
} else if (drwav_fourcc_equal(pChunkID, "LIST") || drwav_fourcc_equal(pChunkID, "list")) {
drwav_metadata_location listType = drwav_metadata_location_invalid;
while (bytesRead < pChunkHeader->sizeInBytes) {
drwav_uint8 subchunkId[4];
drwav_uint8 subchunkSizeBuffer[4];
drwav_uint64 subchunkDataSize;
drwav_uint64 subchunkBytesRead = 0;
drwav_uint64 bytesJustRead = drwav__metadata_parser_read(pParser, subchunkId, sizeof(subchunkId), &bytesRead);
if (bytesJustRead != sizeof(subchunkId)) {
break;
}
/*
The first thing in a list chunk should be "adtl" or "INFO".
- adtl means this list is a Associated Data List Chunk and will contain labels, notes
or labelled cue regions.
- INFO means this list is an Info List Chunk containing info text chunks such as IPRD
which would specifies the album of this wav file.
No data follows the adtl or INFO id so we just make note of what type this list is and
continue.
*/
if (drwav_fourcc_equal(subchunkId, "adtl")) {
listType = drwav_metadata_location_inside_adtl_list;
continue;
} else if (drwav_fourcc_equal(subchunkId, "INFO")) {
listType = drwav_metadata_location_inside_info_list;
continue;
}
bytesJustRead = drwav__metadata_parser_read(pParser, subchunkSizeBuffer, sizeof(subchunkSizeBuffer), &bytesRead);
if (bytesJustRead != sizeof(subchunkSizeBuffer)) {
break;
}
subchunkDataSize = drwav_bytes_to_u32(subchunkSizeBuffer);
if (drwav__chunk_matches(allowedMetadataTypes, subchunkId, drwav_metadata_type_list_label, "labl") || drwav__chunk_matches(allowedMetadataTypes, subchunkId, drwav_metadata_type_list_note, "note")) {
if (subchunkDataSize >= DRWAV_LIST_LABEL_OR_NOTE_BYTES) {
drwav_uint64 stringSizeWithNullTerm = subchunkDataSize - DRWAV_LIST_LABEL_OR_NOTE_BYTES;
if (pParser->stage == drwav__metadata_parser_stage_count) {
pParser->metadataCount += 1;
drwav__metadata_request_extra_memory_for_stage_2(pParser, (size_t)stringSizeWithNullTerm, 1);
} else {
subchunkBytesRead = drwav__read_list_label_or_note_to_metadata_obj(pParser, &pParser->pMetadata[pParser->metadataCursor], subchunkDataSize, drwav_fourcc_equal(subchunkId, "labl") ? drwav_metadata_type_list_label : drwav_metadata_type_list_note);
if (subchunkBytesRead == subchunkDataSize) {
pParser->metadataCursor += 1;
} else {
/* Failed to parse. */
}
}
} else {
/* Incorrectly formed chunk. */
}
} else if (drwav__chunk_matches(allowedMetadataTypes, subchunkId, drwav_metadata_type_list_labelled_cue_region, "ltxt")) {
if (subchunkDataSize >= DRWAV_LIST_LABELLED_TEXT_BYTES) {
drwav_uint64 stringSizeWithNullTerminator = subchunkDataSize - DRWAV_LIST_LABELLED_TEXT_BYTES;
if (pParser->stage == drwav__metadata_parser_stage_count) {
pParser->metadataCount += 1;
drwav__metadata_request_extra_memory_for_stage_2(pParser, (size_t)stringSizeWithNullTerminator, 1);
} else {
subchunkBytesRead = drwav__read_list_labelled_cue_region_to_metadata_obj(pParser, &pParser->pMetadata[pParser->metadataCursor], subchunkDataSize);
if (subchunkBytesRead == subchunkDataSize) {
pParser->metadataCursor += 1;
} else {
/* Failed to parse. */
}
}
} else {
/* Incorrectly formed chunk. */
}
} else if (drwav__chunk_matches(allowedMetadataTypes, subchunkId, drwav_metadata_type_list_info_software, "ISFT")) {
subchunkBytesRead = drwav__metadata_process_info_text_chunk(pParser, subchunkDataSize, drwav_metadata_type_list_info_software);
} else if (drwav__chunk_matches(allowedMetadataTypes, subchunkId, drwav_metadata_type_list_info_copyright, "ICOP")) {
subchunkBytesRead = drwav__metadata_process_info_text_chunk(pParser, subchunkDataSize, drwav_metadata_type_list_info_copyright);
} else if (drwav__chunk_matches(allowedMetadataTypes, subchunkId, drwav_metadata_type_list_info_title, "INAM")) {
subchunkBytesRead = drwav__metadata_process_info_text_chunk(pParser, subchunkDataSize, drwav_metadata_type_list_info_title);
} else if (drwav__chunk_matches(allowedMetadataTypes, subchunkId, drwav_metadata_type_list_info_artist, "IART")) {
subchunkBytesRead = drwav__metadata_process_info_text_chunk(pParser, subchunkDataSize, drwav_metadata_type_list_info_artist);
} else if (drwav__chunk_matches(allowedMetadataTypes, subchunkId, drwav_metadata_type_list_info_comment, "ICMT")) {
subchunkBytesRead = drwav__metadata_process_info_text_chunk(pParser, subchunkDataSize, drwav_metadata_type_list_info_comment);
} else if (drwav__chunk_matches(allowedMetadataTypes, subchunkId, drwav_metadata_type_list_info_date, "ICRD")) {
subchunkBytesRead = drwav__metadata_process_info_text_chunk(pParser, subchunkDataSize, drwav_metadata_type_list_info_date);
} else if (drwav__chunk_matches(allowedMetadataTypes, subchunkId, drwav_metadata_type_list_info_genre, "IGNR")) {
subchunkBytesRead = drwav__metadata_process_info_text_chunk(pParser, subchunkDataSize, drwav_metadata_type_list_info_genre);
} else if (drwav__chunk_matches(allowedMetadataTypes, subchunkId, drwav_metadata_type_list_info_album, "IPRD")) {
subchunkBytesRead = drwav__metadata_process_info_text_chunk(pParser, subchunkDataSize, drwav_metadata_type_list_info_album);
} else if (drwav__chunk_matches(allowedMetadataTypes, subchunkId, drwav_metadata_type_list_info_tracknumber, "ITRK")) {
subchunkBytesRead = drwav__metadata_process_info_text_chunk(pParser, subchunkDataSize, drwav_metadata_type_list_info_tracknumber);
} else if ((allowedMetadataTypes & drwav_metadata_type_unknown) != 0) {
subchunkBytesRead = drwav__metadata_process_unknown_chunk(pParser, subchunkId, subchunkDataSize, listType);
}
bytesRead += subchunkBytesRead;
DRWAV_ASSERT(subchunkBytesRead <= subchunkDataSize);
if (subchunkBytesRead < subchunkDataSize) {
drwav_uint64 bytesToSeek = subchunkDataSize - subchunkBytesRead;
if (!pParser->onSeek(pParser->pReadSeekUserData, (int)bytesToSeek, drwav_seek_origin_current)) {
break;
}
bytesRead += bytesToSeek;
}
if ((subchunkDataSize % 2) == 1) {
if (!pParser->onSeek(pParser->pReadSeekUserData, 1, drwav_seek_origin_current)) {
break;
}
bytesRead += 1;
}
}
} else if ((allowedMetadataTypes & drwav_metadata_type_unknown) != 0) {
bytesRead = drwav__metadata_process_unknown_chunk(pParser, pChunkID, pChunkHeader->sizeInBytes, drwav_metadata_location_top_level);
}
return bytesRead;
}
DRWAV_PRIVATE drwav_uint32 drwav_get_bytes_per_pcm_frame(drwav* pWav)
{
drwav_uint32 bytesPerFrame;
/*
The bytes per frame is a bit ambiguous. It can be either be based on the bits per sample, or the block align. The way I'm doing it here
is that if the bits per sample is a multiple of 8, use floor(bitsPerSample*channels/8), otherwise fall back to the block align.
*/
if ((pWav->bitsPerSample & 0x7) == 0) {
/* Bits per sample is a multiple of 8. */
bytesPerFrame = (pWav->bitsPerSample * pWav->fmt.channels) >> 3;
} else {
bytesPerFrame = pWav->fmt.blockAlign;
}
/* Validation for known formats. a-law and mu-law should be 1 byte per channel. If it's not, it's not decodable. */
if (pWav->translatedFormatTag == DR_WAVE_FORMAT_ALAW || pWav->translatedFormatTag == DR_WAVE_FORMAT_MULAW) {
if (bytesPerFrame != pWav->fmt.channels) {
return 0; /* Invalid file. */
}
}
return bytesPerFrame;
}
DRWAV_API drwav_uint16 drwav_fmt_get_format(const drwav_fmt* pFMT)
{
if (pFMT == NULL) {
return 0;
}
if (pFMT->formatTag != DR_WAVE_FORMAT_EXTENSIBLE) {
return pFMT->formatTag;
} else {
return drwav_bytes_to_u16(pFMT->subFormat); /* Only the first two bytes are required. */
}
}
DRWAV_PRIVATE drwav_bool32 drwav_preinit(drwav* pWav, drwav_read_proc onRead, drwav_seek_proc onSeek, void* pReadSeekUserData, const drwav_allocation_callbacks* pAllocationCallbacks)
{
if (pWav == NULL || onRead == NULL || onSeek == NULL) {
return DRWAV_FALSE;
}
DRWAV_ZERO_MEMORY(pWav, sizeof(*pWav));
pWav->onRead = onRead;
pWav->onSeek = onSeek;
pWav->pUserData = pReadSeekUserData;
pWav->allocationCallbacks = drwav_copy_allocation_callbacks_or_defaults(pAllocationCallbacks);
if (pWav->allocationCallbacks.onFree == NULL || (pWav->allocationCallbacks.onMalloc == NULL && pWav->allocationCallbacks.onRealloc == NULL)) {
return DRWAV_FALSE; /* Invalid allocation callbacks. */
}
return DRWAV_TRUE;
}
DRWAV_PRIVATE drwav_bool32 drwav_init__internal(drwav* pWav, drwav_chunk_proc onChunk, void* pChunkUserData, drwav_uint32 flags)
{
/* This function assumes drwav_preinit() has been called beforehand. */
drwav_result result;
drwav_uint64 cursor; /* <-- Keeps track of the byte position so we can seek to specific locations. */
drwav_bool32 sequential;
drwav_uint8 riff[4];
drwav_fmt fmt;
unsigned short translatedFormatTag;
drwav_uint64 dataChunkSize = 0; /* <-- Important! Don't explicitly set this to 0 anywhere else. Calculation of the size of the data chunk is performed in different paths depending on the container. */
drwav_uint64 sampleCountFromFactChunk = 0; /* Same as dataChunkSize - make sure this is the only place this is initialized to 0. */
drwav_uint64 metadataStartPos;
drwav__metadata_parser metadataParser;
drwav_bool8 isProcessingMetadata = DRWAV_FALSE;
drwav_bool8 foundChunk_fmt = DRWAV_FALSE;
drwav_bool8 foundChunk_data = DRWAV_FALSE;
drwav_bool8 isAIFCFormType = DRWAV_FALSE; /* Only used with AIFF. */
drwav_uint64 aiffFrameCount = 0;
cursor = 0;
sequential = (flags & DRWAV_SEQUENTIAL) != 0;
DRWAV_ZERO_OBJECT(&fmt);
/* The first 4 bytes should be the RIFF identifier. */
if (drwav__on_read(pWav->onRead, pWav->pUserData, riff, sizeof(riff), &cursor) != sizeof(riff)) {
return DRWAV_FALSE;
}
/*
The first 4 bytes can be used to identify the container. For RIFF files it will start with "RIFF" and for
w64 it will start with "riff".
*/
if (drwav_fourcc_equal(riff, "RIFF")) {
pWav->container = drwav_container_riff;
} else if (drwav_fourcc_equal(riff, "RIFX")) {
pWav->container = drwav_container_rifx;
} else if (drwav_fourcc_equal(riff, "riff")) {
int i;
drwav_uint8 riff2[12];
pWav->container = drwav_container_w64;
/* Check the rest of the GUID for validity. */
if (drwav__on_read(pWav->onRead, pWav->pUserData, riff2, sizeof(riff2), &cursor) != sizeof(riff2)) {
return DRWAV_FALSE;
}
for (i = 0; i < 12; ++i) {
if (riff2[i] != drwavGUID_W64_RIFF[i+4]) {
return DRWAV_FALSE;
}
}
} else if (drwav_fourcc_equal(riff, "RF64")) {
pWav->container = drwav_container_rf64;
} else if (drwav_fourcc_equal(riff, "FORM")) {
pWav->container = drwav_container_aiff;
} else {
return DRWAV_FALSE; /* Unknown or unsupported container. */
}
if (pWav->container == drwav_container_riff || pWav->container == drwav_container_rifx || pWav->container == drwav_container_rf64) {
drwav_uint8 chunkSizeBytes[4];
drwav_uint8 wave[4];
if (drwav__on_read(pWav->onRead, pWav->pUserData, chunkSizeBytes, sizeof(chunkSizeBytes), &cursor) != sizeof(chunkSizeBytes)) {
return DRWAV_FALSE;
}
if (pWav->container == drwav_container_riff || pWav->container == drwav_container_rifx) {
if (drwav_bytes_to_u32_ex(chunkSizeBytes, pWav->container) < 36) {
/*
I've had a report of a WAV file failing to load when the size of the WAVE chunk is not encoded
and is instead just set to 0. I'm going to relax the validation here to allow these files to
load. Considering the chunk size isn't actually used this should be safe. With this change my
test suite still passes.
*/
/*return DRWAV_FALSE;*/ /* Chunk size should always be at least 36 bytes. */
}
} else if (pWav->container == drwav_container_rf64) {
if (drwav_bytes_to_u32_le(chunkSizeBytes) != 0xFFFFFFFF) {
return DRWAV_FALSE; /* Chunk size should always be set to -1/0xFFFFFFFF for RF64. The actual size is retrieved later. */
}
} else {
return DRWAV_FALSE; /* Should never hit this. */
}
if (drwav__on_read(pWav->onRead, pWav->pUserData, wave, sizeof(wave), &cursor) != sizeof(wave)) {
return DRWAV_FALSE;
}
if (!drwav_fourcc_equal(wave, "WAVE")) {
return DRWAV_FALSE; /* Expecting "WAVE". */
}
} else if (pWav->container == drwav_container_w64) {
drwav_uint8 chunkSizeBytes[8];
drwav_uint8 wave[16];
if (drwav__on_read(pWav->onRead, pWav->pUserData, chunkSizeBytes, sizeof(chunkSizeBytes), &cursor) != sizeof(chunkSizeBytes)) {
return DRWAV_FALSE;
}
if (drwav_bytes_to_u64(chunkSizeBytes) < 80) {
return DRWAV_FALSE;
}
if (drwav__on_read(pWav->onRead, pWav->pUserData, wave, sizeof(wave), &cursor) != sizeof(wave)) {
return DRWAV_FALSE;
}
if (!drwav_guid_equal(wave, drwavGUID_W64_WAVE)) {
return DRWAV_FALSE;
}
} else if (pWav->container == drwav_container_aiff) {
drwav_uint8 chunkSizeBytes[4];
drwav_uint8 aiff[4];
if (drwav__on_read(pWav->onRead, pWav->pUserData, chunkSizeBytes, sizeof(chunkSizeBytes), &cursor) != sizeof(chunkSizeBytes)) {
return DRWAV_FALSE;
}
if (drwav_bytes_to_u32_be(chunkSizeBytes) < 18) {
return DRWAV_FALSE;
}
if (drwav__on_read(pWav->onRead, pWav->pUserData, aiff, sizeof(aiff), &cursor) != sizeof(aiff)) {
return DRWAV_FALSE;
}
if (drwav_fourcc_equal(aiff, "AIFF")) {
isAIFCFormType = DRWAV_FALSE;
} else if (drwav_fourcc_equal(aiff, "AIFC")) {
isAIFCFormType = DRWAV_TRUE;
} else {
return DRWAV_FALSE; /* Expecting "AIFF" or "AIFC". */
}
} else {
return DRWAV_FALSE;
}
/* For RF64, the "ds64" chunk must come next, before the "fmt " chunk. */
if (pWav->container == drwav_container_rf64) {
drwav_uint8 sizeBytes[8];
drwav_uint64 bytesRemainingInChunk;
drwav_chunk_header header;
result = drwav__read_chunk_header(pWav->onRead, pWav->pUserData, pWav->container, &cursor, &header);
if (result != DRWAV_SUCCESS) {
return DRWAV_FALSE;
}
if (!drwav_fourcc_equal(header.id.fourcc, "ds64")) {
return DRWAV_FALSE; /* Expecting "ds64". */
}
bytesRemainingInChunk = header.sizeInBytes + header.paddingSize;
/* We don't care about the size of the RIFF chunk - skip it. */
if (!drwav__seek_forward(pWav->onSeek, 8, pWav->pUserData)) {
return DRWAV_FALSE;
}
bytesRemainingInChunk -= 8;
cursor += 8;
/* Next 8 bytes is the size of the "data" chunk. */
if (drwav__on_read(pWav->onRead, pWav->pUserData, sizeBytes, sizeof(sizeBytes), &cursor) != sizeof(sizeBytes)) {
return DRWAV_FALSE;
}
bytesRemainingInChunk -= 8;
dataChunkSize = drwav_bytes_to_u64(sizeBytes);
/* Next 8 bytes is the same count which we would usually derived from the FACT chunk if it was available. */
if (drwav__on_read(pWav->onRead, pWav->pUserData, sizeBytes, sizeof(sizeBytes), &cursor) != sizeof(sizeBytes)) {
return DRWAV_FALSE;
}
bytesRemainingInChunk -= 8;
sampleCountFromFactChunk = drwav_bytes_to_u64(sizeBytes);
/* Skip over everything else. */
if (!drwav__seek_forward(pWav->onSeek, bytesRemainingInChunk, pWav->pUserData)) {
return DRWAV_FALSE;
}
cursor += bytesRemainingInChunk;
}
metadataStartPos = cursor;
/*
Whether or not we are processing metadata controls how we load. We can load more efficiently when
metadata is not being processed, but we also cannot process metadata for Wave64 because I have not
been able to test it. If someone is able to test this and provide a patch I'm happy to enable it.
Seqential mode cannot support metadata because it involves seeking backwards.
*/
isProcessingMetadata = !sequential && ((flags & DRWAV_WITH_METADATA) != 0);
/* Don't allow processing of metadata with untested containers. */
if (pWav->container != drwav_container_riff && pWav->container != drwav_container_rf64) {
isProcessingMetadata = DRWAV_FALSE;
}
DRWAV_ZERO_MEMORY(&metadataParser, sizeof(metadataParser));
if (isProcessingMetadata) {
metadataParser.onRead = pWav->onRead;
metadataParser.onSeek = pWav->onSeek;
metadataParser.pReadSeekUserData = pWav->pUserData;
metadataParser.stage = drwav__metadata_parser_stage_count;
}
/*
From here on out, chunks might be in any order. In order to robustly handle metadata we'll need
to loop through every chunk and handle them as we find them. In sequential mode we need to get
out of the loop as soon as we find the data chunk because we won't be able to seek back.
*/
for (;;) { /* For each chunk... */
drwav_chunk_header header;
drwav_uint64 chunkSize;
result = drwav__read_chunk_header(pWav->onRead, pWav->pUserData, pWav->container, &cursor, &header);
if (result != DRWAV_SUCCESS) {
break;
}
chunkSize = header.sizeInBytes;
/*
Always tell the caller about this chunk. We cannot do this in sequential mode because the
callback is allowed to read from the file, in which case we'll need to rewind.
*/
if (!sequential && onChunk != NULL) {
drwav_uint64 callbackBytesRead = onChunk(pChunkUserData, pWav->onRead, pWav->onSeek, pWav->pUserData, &header, pWav->container, &fmt);
/*
dr_wav may need to read the contents of the chunk, so we now need to seek back to the position before
we called the callback.
*/
if (callbackBytesRead > 0) {
if (drwav__seek_from_start(pWav->onSeek, cursor, pWav->pUserData) == DRWAV_FALSE) {
return DRWAV_FALSE;
}
}
}
/* Explicitly handle known chunks first. */
/* "fmt " */
if (((pWav->container == drwav_container_riff || pWav->container == drwav_container_rifx || pWav->container == drwav_container_rf64) && drwav_fourcc_equal(header.id.fourcc, "fmt ")) ||
((pWav->container == drwav_container_w64) && drwav_guid_equal(header.id.guid, drwavGUID_W64_FMT))) {
drwav_uint8 fmtData[16];
foundChunk_fmt = DRWAV_TRUE;
if (pWav->onRead(pWav->pUserData, fmtData, sizeof(fmtData)) != sizeof(fmtData)) {
return DRWAV_FALSE;
}
cursor += sizeof(fmtData);
fmt.formatTag = drwav_bytes_to_u16_ex(fmtData + 0, pWav->container);
fmt.channels = drwav_bytes_to_u16_ex(fmtData + 2, pWav->container);
fmt.sampleRate = drwav_bytes_to_u32_ex(fmtData + 4, pWav->container);
fmt.avgBytesPerSec = drwav_bytes_to_u32_ex(fmtData + 8, pWav->container);
fmt.blockAlign = drwav_bytes_to_u16_ex(fmtData + 12, pWav->container);
fmt.bitsPerSample = drwav_bytes_to_u16_ex(fmtData + 14, pWav->container);
fmt.extendedSize = 0;
fmt.validBitsPerSample = 0;
fmt.channelMask = 0;
DRWAV_ZERO_MEMORY(fmt.subFormat, sizeof(fmt.subFormat));
if (header.sizeInBytes > 16) {
drwav_uint8 fmt_cbSize[2];
int bytesReadSoFar = 0;
if (pWav->onRead(pWav->pUserData, fmt_cbSize, sizeof(fmt_cbSize)) != sizeof(fmt_cbSize)) {
return DRWAV_FALSE; /* Expecting more data. */
}
cursor += sizeof(fmt_cbSize);
bytesReadSoFar = 18;
fmt.extendedSize = drwav_bytes_to_u16_ex(fmt_cbSize, pWav->container);
if (fmt.extendedSize > 0) {
/* Simple validation. */
if (fmt.formatTag == DR_WAVE_FORMAT_EXTENSIBLE) {
if (fmt.extendedSize != 22) {
return DRWAV_FALSE;
}
}
if (fmt.formatTag == DR_WAVE_FORMAT_EXTENSIBLE) {
drwav_uint8 fmtext[22];
if (pWav->onRead(pWav->pUserData, fmtext, fmt.extendedSize) != fmt.extendedSize) {
return DRWAV_FALSE; /* Expecting more data. */
}
fmt.validBitsPerSample = drwav_bytes_to_u16_ex(fmtext + 0, pWav->container);
fmt.channelMask = drwav_bytes_to_u32_ex(fmtext + 2, pWav->container);
drwav_bytes_to_guid(fmtext + 6, fmt.subFormat);
} else {
if (pWav->onSeek(pWav->pUserData, fmt.extendedSize, drwav_seek_origin_current) == DRWAV_FALSE) {
return DRWAV_FALSE;
}
}
cursor += fmt.extendedSize;
bytesReadSoFar += fmt.extendedSize;
}
/* Seek past any leftover bytes. For w64 the leftover will be defined based on the chunk size. */
if (pWav->onSeek(pWav->pUserData, (int)(header.sizeInBytes - bytesReadSoFar), drwav_seek_origin_current) == DRWAV_FALSE) {
return DRWAV_FALSE;
}
cursor += (header.sizeInBytes - bytesReadSoFar);
}
if (header.paddingSize > 0) {
if (drwav__seek_forward(pWav->onSeek, header.paddingSize, pWav->pUserData) == DRWAV_FALSE) {
break;
}
cursor += header.paddingSize;
}
/* Go to the next chunk. Don't include this chunk in metadata. */
continue;
}
/* "data" */
if (((pWav->container == drwav_container_riff || pWav->container == drwav_container_rifx || pWav->container == drwav_container_rf64) && drwav_fourcc_equal(header.id.fourcc, "data")) ||
((pWav->container == drwav_container_w64) && drwav_guid_equal(header.id.guid, drwavGUID_W64_DATA))) {
foundChunk_data = DRWAV_TRUE;
pWav->dataChunkDataPos = cursor;
if (pWav->container != drwav_container_rf64) { /* The data chunk size for RF64 will always be set to 0xFFFFFFFF here. It was set to it's true value earlier. */
dataChunkSize = chunkSize;
}
/* If we're running in sequential mode, or we're not reading metadata, we have enough now that we can get out of the loop. */
if (sequential || !isProcessingMetadata) {
break; /* No need to keep reading beyond the data chunk. */
} else {
chunkSize += header.paddingSize; /* <-- Make sure we seek past the padding. */
if (drwav__seek_forward(pWav->onSeek, chunkSize, pWav->pUserData) == DRWAV_FALSE) {
break;
}
cursor += chunkSize;
continue; /* There may be some more metadata to read. */
}
}
/* "fact". This is optional. Can use this to get the sample count which is useful for compressed formats. For RF64 we retrieved the sample count from the ds64 chunk earlier. */
if (((pWav->container == drwav_container_riff || pWav->container == drwav_container_rifx || pWav->container == drwav_container_rf64) && drwav_fourcc_equal(header.id.fourcc, "fact")) ||
((pWav->container == drwav_container_w64) && drwav_guid_equal(header.id.guid, drwavGUID_W64_FACT))) {
if (pWav->container == drwav_container_riff || pWav->container == drwav_container_rifx) {
drwav_uint8 sampleCount[4];
if (drwav__on_read(pWav->onRead, pWav->pUserData, &sampleCount, 4, &cursor) != 4) {
return DRWAV_FALSE;
}
chunkSize -= 4;
/*
The sample count in the "fact" chunk is either unreliable, or I'm not understanding it properly. For now I am only enabling this
for Microsoft ADPCM formats.
*/
if (pWav->translatedFormatTag == DR_WAVE_FORMAT_ADPCM) {
sampleCountFromFactChunk = drwav_bytes_to_u32_ex(sampleCount, pWav->container);
} else {
sampleCountFromFactChunk = 0;
}
} else if (pWav->container == drwav_container_w64) {
if (drwav__on_read(pWav->onRead, pWav->pUserData, &sampleCountFromFactChunk, 8, &cursor) != 8) {
return DRWAV_FALSE;
}
chunkSize -= 8;
} else if (pWav->container == drwav_container_rf64) {
/* We retrieved the sample count from the ds64 chunk earlier so no need to do that here. */
}
/* Seek to the next chunk in preparation for the next iteration. */
chunkSize += header.paddingSize; /* <-- Make sure we seek past the padding. */
if (drwav__seek_forward(pWav->onSeek, chunkSize, pWav->pUserData) == DRWAV_FALSE) {
break;
}
cursor += chunkSize;
continue;
}
/* "COMM". AIFF/AIFC only. */
if (pWav->container == drwav_container_aiff && drwav_fourcc_equal(header.id.fourcc, "COMM")) {
drwav_uint8 commData[24];
drwav_uint32 commDataBytesToRead;
drwav_uint16 channels;
drwav_uint32 frameCount;
drwav_uint16 sampleSizeInBits;
drwav_int64 sampleRate;
drwav_uint16 compressionFormat;
foundChunk_fmt = DRWAV_TRUE;
if (isAIFCFormType) {
commDataBytesToRead = 24;
if (header.sizeInBytes < commDataBytesToRead) {
return DRWAV_FALSE; /* Invalid COMM chunk. */
}
} else {
commDataBytesToRead = 18;
if (header.sizeInBytes != commDataBytesToRead) {
return DRWAV_FALSE; /* INVALID COMM chunk. */
}
}
if (drwav__on_read(pWav->onRead, pWav->pUserData, commData, commDataBytesToRead, &cursor) != commDataBytesToRead) {
return DRWAV_FALSE;
}
channels = drwav_bytes_to_u16_ex (commData + 0, pWav->container);
frameCount = drwav_bytes_to_u32_ex (commData + 2, pWav->container);
sampleSizeInBits = drwav_bytes_to_u16_ex (commData + 6, pWav->container);
sampleRate = drwav_aiff_extented_to_s64(commData + 8);
if (sampleRate < 0 || sampleRate > 0xFFFFFFFF) {
return DRWAV_FALSE; /* Invalid sample rate. */
}
if (isAIFCFormType) {
const drwav_uint8* type = commData + 18;
if (drwav_fourcc_equal(type, "NONE")) {
compressionFormat = DR_WAVE_FORMAT_PCM; /* PCM, big-endian. */
} else if (drwav_fourcc_equal(type, "raw ")) {
compressionFormat = DR_WAVE_FORMAT_PCM;
/* In my testing, it looks like when the "raw " compression type is used, 8-bit samples should be considered unsigned. */
if (sampleSizeInBits == 8) {
pWav->aiff.isUnsigned = DRWAV_TRUE;
}
} else if (drwav_fourcc_equal(type, "sowt")) {
compressionFormat = DR_WAVE_FORMAT_PCM; /* PCM, little-endian. */
pWav->aiff.isLE = DRWAV_TRUE;
} else if (drwav_fourcc_equal(type, "fl32") || drwav_fourcc_equal(type, "fl64") || drwav_fourcc_equal(type, "FL32") || drwav_fourcc_equal(type, "FL64")) {
compressionFormat = DR_WAVE_FORMAT_IEEE_FLOAT;
} else if (drwav_fourcc_equal(type, "alaw") || drwav_fourcc_equal(type, "ALAW")) {
compressionFormat = DR_WAVE_FORMAT_ALAW;
} else if (drwav_fourcc_equal(type, "ulaw") || drwav_fourcc_equal(type, "ULAW")) {
compressionFormat = DR_WAVE_FORMAT_MULAW;
} else if (drwav_fourcc_equal(type, "ima4")) {
compressionFormat = DR_WAVE_FORMAT_DVI_ADPCM;
sampleSizeInBits = 4;
/*
I haven't been able to figure out how to get correct decoding for IMA ADPCM. Until this is figured out
we'll need to abort when we encounter such an encoding. Advice welcome!
*/
return DRWAV_FALSE;
} else {
return DRWAV_FALSE; /* Unknown or unsupported compression format. Need to abort. */
}
} else {
compressionFormat = DR_WAVE_FORMAT_PCM; /* It's a standard AIFF form which is always compressed. */
}
/* With AIFF we want to use the explicitly defined frame count rather than deriving it from the size of the chunk. */
aiffFrameCount = frameCount;
/* We should now have enough information to fill out our fmt structure. */
fmt.formatTag = compressionFormat;
fmt.channels = channels;
fmt.sampleRate = (drwav_uint32)sampleRate;
fmt.bitsPerSample = sampleSizeInBits;
fmt.blockAlign = (drwav_uint16)(fmt.channels * fmt.bitsPerSample / 8);
fmt.avgBytesPerSec = fmt.blockAlign * fmt.sampleRate;
if (fmt.blockAlign == 0 && compressionFormat == DR_WAVE_FORMAT_DVI_ADPCM) {
fmt.blockAlign = 34 * fmt.channels;
}
/*
Weird one. I've seen some alaw and ulaw encoded files that for some reason set the bits per sample to 16 when
it should be 8. To get this working I need to explicitly check for this and change it.
*/
if (compressionFormat == DR_WAVE_FORMAT_ALAW || compressionFormat == DR_WAVE_FORMAT_MULAW) {
if (fmt.bitsPerSample > 8) {
fmt.bitsPerSample = 8;
fmt.blockAlign = fmt.channels;
}
}
/* In AIFF, samples are padded to 8 byte boundaries. We need to round up our bits per sample here. */
fmt.bitsPerSample += (fmt.bitsPerSample & 7);
/* If the form type is AIFC there will be some additional data in the chunk. We need to seek past it. */
if (isAIFCFormType) {
if (drwav__seek_forward(pWav->onSeek, (chunkSize - commDataBytesToRead), pWav->pUserData) == DRWAV_FALSE) {
return DRWAV_FALSE;
}
cursor += (chunkSize - commDataBytesToRead);
}
/* Don't fall through or else we'll end up treating this chunk as metadata which is incorrect. */
continue;
}
/* "SSND". AIFF/AIFC only. This is the AIFF equivalent of the "data" chunk. */
if (pWav->container == drwav_container_aiff && drwav_fourcc_equal(header.id.fourcc, "SSND")) {
drwav_uint8 offsetAndBlockSizeData[8];
drwav_uint32 offset;
foundChunk_data = DRWAV_TRUE;
if (drwav__on_read(pWav->onRead, pWav->pUserData, offsetAndBlockSizeData, sizeof(offsetAndBlockSizeData), &cursor) != sizeof(offsetAndBlockSizeData)) {
return DRWAV_FALSE;
}
/* We need to seek forward by the offset. */
offset = drwav_bytes_to_u32_ex(offsetAndBlockSizeData + 0, pWav->container);
if (drwav__seek_forward(pWav->onSeek, offset, pWav->pUserData) == DRWAV_FALSE) {
return DRWAV_FALSE;
}
cursor += offset;
pWav->dataChunkDataPos = cursor;
dataChunkSize = chunkSize;
/* If we're running in sequential mode, or we're not reading metadata, we have enough now that we can get out of the loop. */
if (sequential || !isProcessingMetadata) {
break; /* No need to keep reading beyond the data chunk. */
} else {
if (drwav__seek_forward(pWav->onSeek, chunkSize, pWav->pUserData) == DRWAV_FALSE) {
break;
}
cursor += chunkSize;
continue; /* There may be some more metadata to read. */
}
}
/* Getting here means it's not a chunk that we care about internally, but might need to be handled as metadata by the caller. */
if (isProcessingMetadata) {
drwav__metadata_process_chunk(&metadataParser, &header, drwav_metadata_type_all_including_unknown);
/* Go back to the start of the chunk so we can normalize the position of the cursor. */
if (drwav__seek_from_start(pWav->onSeek, cursor, pWav->pUserData) == DRWAV_FALSE) {
break; /* Failed to seek. Can't reliable read the remaining chunks. Get out. */
}
}
/* Make sure we skip past the content of this chunk before we go to the next one. */
chunkSize += header.paddingSize; /* <-- Make sure we seek past the padding. */
if (drwav__seek_forward(pWav->onSeek, chunkSize, pWav->pUserData) == DRWAV_FALSE) {
break;
}
cursor += chunkSize;
}
/* There's some mandatory chunks that must exist. If they were not found in the iteration above we must abort. */
if (!foundChunk_fmt || !foundChunk_data) {
return DRWAV_FALSE;
}
/* Basic validation. */
if ((fmt.sampleRate == 0 || fmt.sampleRate > DRWAV_MAX_SAMPLE_RATE ) ||
(fmt.channels == 0 || fmt.channels > DRWAV_MAX_CHANNELS ) ||
(fmt.bitsPerSample == 0 || fmt.bitsPerSample > DRWAV_MAX_BITS_PER_SAMPLE) ||
fmt.blockAlign == 0) {
return DRWAV_FALSE; /* Probably an invalid WAV file. */
}
/* Translate the internal format. */
translatedFormatTag = fmt.formatTag;
if (translatedFormatTag == DR_WAVE_FORMAT_EXTENSIBLE) {
translatedFormatTag = drwav_bytes_to_u16_ex(fmt.subFormat + 0, pWav->container);
}
/* We may have moved passed the data chunk. If so we need to move back. If running in sequential mode we can assume we are already sitting on the data chunk. */
if (!sequential) {
if (!drwav__seek_from_start(pWav->onSeek, pWav->dataChunkDataPos, pWav->pUserData)) {
return DRWAV_FALSE;
}
cursor = pWav->dataChunkDataPos;
}
/*
At this point we should have done the initial parsing of each of our chunks, but we now need to
do a second pass to extract the actual contents of the metadata (the first pass just calculated
the length of the memory allocation).
We only do this if we've actually got metadata to parse.
*/
if (isProcessingMetadata && metadataParser.metadataCount > 0) {
if (drwav__seek_from_start(pWav->onSeek, metadataStartPos, pWav->pUserData) == DRWAV_FALSE) {
return DRWAV_FALSE;
}
result = drwav__metadata_alloc(&metadataParser, &pWav->allocationCallbacks);
if (result != DRWAV_SUCCESS) {
return DRWAV_FALSE;
}
metadataParser.stage = drwav__metadata_parser_stage_read;
for (;;) {
drwav_chunk_header header;
drwav_uint64 metadataBytesRead;
result = drwav__read_chunk_header(pWav->onRead, pWav->pUserData, pWav->container, &cursor, &header);
if (result != DRWAV_SUCCESS) {
break;
}
metadataBytesRead = drwav__metadata_process_chunk(&metadataParser, &header, drwav_metadata_type_all_including_unknown);
/* Move to the end of the chunk so we can keep iterating. */
if (drwav__seek_forward(pWav->onSeek, (header.sizeInBytes + header.paddingSize) - metadataBytesRead, pWav->pUserData) == DRWAV_FALSE) {
drwav_free(metadataParser.pMetadata, &pWav->allocationCallbacks);
return DRWAV_FALSE;
}
}
/* Getting here means we're finished parsing the metadata. */
pWav->pMetadata = metadataParser.pMetadata;
pWav->metadataCount = metadataParser.metadataCount;
}
/* At this point we should be sitting on the first byte of the raw audio data. */
/*
I've seen a WAV file in the wild where a RIFF-ecapsulated file has the size of it's "RIFF" and
"data" chunks set to 0xFFFFFFFF when the file is definitely not that big. In this case we're
going to have to calculate the size by reading and discarding bytes, and then seeking back. We
cannot do this in sequential mode. We just assume that the rest of the file is audio data.
*/
if (dataChunkSize == 0xFFFFFFFF && (pWav->container == drwav_container_riff || pWav->container == drwav_container_rifx) && pWav->isSequentialWrite == DRWAV_FALSE) {
dataChunkSize = 0;
for (;;) {
drwav_uint8 temp[4096];
size_t bytesRead = pWav->onRead(pWav->pUserData, temp, sizeof(temp));
dataChunkSize += bytesRead;
if (bytesRead < sizeof(temp)) {
break;
}
}
}
if (drwav__seek_from_start(pWav->onSeek, pWav->dataChunkDataPos, pWav->pUserData) == DRWAV_FALSE) {
drwav_free(pWav->pMetadata, &pWav->allocationCallbacks);
return DRWAV_FALSE;
}
pWav->fmt = fmt;
pWav->sampleRate = fmt.sampleRate;
pWav->channels = fmt.channels;
pWav->bitsPerSample = fmt.bitsPerSample;
pWav->bytesRemaining = dataChunkSize;
pWav->translatedFormatTag = translatedFormatTag;
pWav->dataChunkDataSize = dataChunkSize;
if (sampleCountFromFactChunk != 0) {
pWav->totalPCMFrameCount = sampleCountFromFactChunk;
} else if (aiffFrameCount != 0) {
pWav->totalPCMFrameCount = aiffFrameCount;
} else {
drwav_uint32 bytesPerFrame = drwav_get_bytes_per_pcm_frame(pWav);
if (bytesPerFrame == 0) {
drwav_free(pWav->pMetadata, &pWav->allocationCallbacks);
return DRWAV_FALSE; /* Invalid file. */
}
pWav->totalPCMFrameCount = dataChunkSize / bytesPerFrame;
if (pWav->translatedFormatTag == DR_WAVE_FORMAT_ADPCM) {
drwav_uint64 totalBlockHeaderSizeInBytes;
drwav_uint64 blockCount = dataChunkSize / fmt.blockAlign;
/* Make sure any trailing partial block is accounted for. */
if ((blockCount * fmt.blockAlign) < dataChunkSize) {
blockCount += 1;
}
/* We decode two samples per byte. There will be blockCount headers in the data chunk. This is enough to know how to calculate the total PCM frame count. */
totalBlockHeaderSizeInBytes = blockCount * (6*fmt.channels);
pWav->totalPCMFrameCount = ((dataChunkSize - totalBlockHeaderSizeInBytes) * 2) / fmt.channels;
}
if (pWav->translatedFormatTag == DR_WAVE_FORMAT_DVI_ADPCM) {
drwav_uint64 totalBlockHeaderSizeInBytes;
drwav_uint64 blockCount = dataChunkSize / fmt.blockAlign;
/* Make sure any trailing partial block is accounted for. */
if ((blockCount * fmt.blockAlign) < dataChunkSize) {
blockCount += 1;
}
/* We decode two samples per byte. There will be blockCount headers in the data chunk. This is enough to know how to calculate the total PCM frame count. */
totalBlockHeaderSizeInBytes = blockCount * (4*fmt.channels);
pWav->totalPCMFrameCount = ((dataChunkSize - totalBlockHeaderSizeInBytes) * 2) / fmt.channels;
/* The header includes a decoded sample for each channel which acts as the initial predictor sample. */
pWav->totalPCMFrameCount += blockCount;
}
}
/* Some formats only support a certain number of channels. */
if (pWav->translatedFormatTag == DR_WAVE_FORMAT_ADPCM || pWav->translatedFormatTag == DR_WAVE_FORMAT_DVI_ADPCM) {
if (pWav->channels > 2) {
drwav_free(pWav->pMetadata, &pWav->allocationCallbacks);
return DRWAV_FALSE;
}
}
/* The number of bytes per frame must be known. If not, it's an invalid file and not decodable. */
if (drwav_get_bytes_per_pcm_frame(pWav) == 0) {
drwav_free(pWav->pMetadata, &pWav->allocationCallbacks);
return DRWAV_FALSE;
}
#ifdef DR_WAV_LIBSNDFILE_COMPAT
/*
I use libsndfile as a benchmark for testing, however in the version I'm using (from the Windows installer on the libsndfile website),
it appears the total sample count libsndfile uses for MS-ADPCM is incorrect. It would seem they are computing the total sample count
from the number of blocks, however this results in the inclusion of extra silent samples at the end of the last block. The correct
way to know the total sample count is to inspect the "fact" chunk, which should always be present for compressed formats, and should
always include the sample count. This little block of code below is only used to emulate the libsndfile logic so I can properly run my
correctness tests against libsndfile, and is disabled by default.
*/
if (pWav->translatedFormatTag == DR_WAVE_FORMAT_ADPCM) {
drwav_uint64 blockCount = dataChunkSize / fmt.blockAlign;
pWav->totalPCMFrameCount = (((blockCount * (fmt.blockAlign - (6*pWav->channels))) * 2)) / fmt.channels; /* x2 because two samples per byte. */
}
if (pWav->translatedFormatTag == DR_WAVE_FORMAT_DVI_ADPCM) {
drwav_uint64 blockCount = dataChunkSize / fmt.blockAlign;
pWav->totalPCMFrameCount = (((blockCount * (fmt.blockAlign - (4*pWav->channels))) * 2) + (blockCount * pWav->channels)) / fmt.channels;
}
#endif
return DRWAV_TRUE;
}
DRWAV_API drwav_bool32 drwav_init(drwav* pWav, drwav_read_proc onRead, drwav_seek_proc onSeek, void* pUserData, const drwav_allocation_callbacks* pAllocationCallbacks)
{
return drwav_init_ex(pWav, onRead, onSeek, NULL, pUserData, NULL, 0, pAllocationCallbacks);
}
DRWAV_API drwav_bool32 drwav_init_ex(drwav* pWav, drwav_read_proc onRead, drwav_seek_proc onSeek, drwav_chunk_proc onChunk, void* pReadSeekUserData, void* pChunkUserData, drwav_uint32 flags, const drwav_allocation_callbacks* pAllocationCallbacks)
{
if (!drwav_preinit(pWav, onRead, onSeek, pReadSeekUserData, pAllocationCallbacks)) {
return DRWAV_FALSE;
}
return drwav_init__internal(pWav, onChunk, pChunkUserData, flags);
}
DRWAV_API drwav_bool32 drwav_init_with_metadata(drwav* pWav, drwav_read_proc onRead, drwav_seek_proc onSeek, void* pUserData, drwav_uint32 flags, const drwav_allocation_callbacks* pAllocationCallbacks)
{
if (!drwav_preinit(pWav, onRead, onSeek, pUserData, pAllocationCallbacks)) {
return DRWAV_FALSE;
}
return drwav_init__internal(pWav, NULL, NULL, flags | DRWAV_WITH_METADATA);
}
DRWAV_API drwav_metadata* drwav_take_ownership_of_metadata(drwav* pWav)
{
drwav_metadata *result = pWav->pMetadata;
pWav->pMetadata = NULL;
pWav->metadataCount = 0;
return result;
}
DRWAV_PRIVATE size_t drwav__write(drwav* pWav, const void* pData, size_t dataSize)
{
DRWAV_ASSERT(pWav != NULL);
DRWAV_ASSERT(pWav->onWrite != NULL);
/* Generic write. Assumes no byte reordering required. */
return pWav->onWrite(pWav->pUserData, pData, dataSize);
}
DRWAV_PRIVATE size_t drwav__write_byte(drwav* pWav, drwav_uint8 byte)
{
DRWAV_ASSERT(pWav != NULL);
DRWAV_ASSERT(pWav->onWrite != NULL);
return pWav->onWrite(pWav->pUserData, &byte, 1);
}
DRWAV_PRIVATE size_t drwav__write_u16ne_to_le(drwav* pWav, drwav_uint16 value)
{
DRWAV_ASSERT(pWav != NULL);
DRWAV_ASSERT(pWav->onWrite != NULL);
if (!drwav__is_little_endian()) {
value = drwav__bswap16(value);
}
return drwav__write(pWav, &value, 2);
}
DRWAV_PRIVATE size_t drwav__write_u32ne_to_le(drwav* pWav, drwav_uint32 value)
{
DRWAV_ASSERT(pWav != NULL);
DRWAV_ASSERT(pWav->onWrite != NULL);
if (!drwav__is_little_endian()) {
value = drwav__bswap32(value);
}
return drwav__write(pWav, &value, 4);
}
DRWAV_PRIVATE size_t drwav__write_u64ne_to_le(drwav* pWav, drwav_uint64 value)
{
DRWAV_ASSERT(pWav != NULL);
DRWAV_ASSERT(pWav->onWrite != NULL);
if (!drwav__is_little_endian()) {
value = drwav__bswap64(value);
}
return drwav__write(pWav, &value, 8);
}
DRWAV_PRIVATE size_t drwav__write_f32ne_to_le(drwav* pWav, float value)
{
union {
drwav_uint32 u32;
float f32;
} u;
DRWAV_ASSERT(pWav != NULL);
DRWAV_ASSERT(pWav->onWrite != NULL);
u.f32 = value;
if (!drwav__is_little_endian()) {
u.u32 = drwav__bswap32(u.u32);
}
return drwav__write(pWav, &u.u32, 4);
}
DRWAV_PRIVATE size_t drwav__write_or_count(drwav* pWav, const void* pData, size_t dataSize)
{
if (pWav == NULL) {
return dataSize;
}
return drwav__write(pWav, pData, dataSize);
}
DRWAV_PRIVATE size_t drwav__write_or_count_byte(drwav* pWav, drwav_uint8 byte)
{
if (pWav == NULL) {
return 1;
}
return drwav__write_byte(pWav, byte);
}
DRWAV_PRIVATE size_t drwav__write_or_count_u16ne_to_le(drwav* pWav, drwav_uint16 value)
{
if (pWav == NULL) {
return 2;
}
return drwav__write_u16ne_to_le(pWav, value);
}
DRWAV_PRIVATE size_t drwav__write_or_count_u32ne_to_le(drwav* pWav, drwav_uint32 value)
{
if (pWav == NULL) {
return 4;
}
return drwav__write_u32ne_to_le(pWav, value);
}
#if 0 /* Unused for now. */
DRWAV_PRIVATE size_t drwav__write_or_count_u64ne_to_le(drwav* pWav, drwav_uint64 value)
{
if (pWav == NULL) {
return 8;
}
return drwav__write_u64ne_to_le(pWav, value);
}
#endif
DRWAV_PRIVATE size_t drwav__write_or_count_f32ne_to_le(drwav* pWav, float value)
{
if (pWav == NULL) {
return 4;
}
return drwav__write_f32ne_to_le(pWav, value);
}
DRWAV_PRIVATE size_t drwav__write_or_count_string_to_fixed_size_buf(drwav* pWav, char* str, size_t bufFixedSize)
{
size_t len;
if (pWav == NULL) {
return bufFixedSize;
}
len = drwav__strlen_clamped(str, bufFixedSize);
drwav__write_or_count(pWav, str, len);
if (len < bufFixedSize) {
size_t i;
for (i = 0; i < bufFixedSize - len; ++i) {
drwav__write_byte(pWav, 0);
}
}
return bufFixedSize;
}
/* pWav can be NULL meaning just count the bytes that would be written. */
DRWAV_PRIVATE size_t drwav__write_or_count_metadata(drwav* pWav, drwav_metadata* pMetadatas, drwav_uint32 metadataCount)
{
size_t bytesWritten = 0;
drwav_bool32 hasListAdtl = DRWAV_FALSE;
drwav_bool32 hasListInfo = DRWAV_FALSE;
drwav_uint32 iMetadata;
if (pMetadatas == NULL || metadataCount == 0) {
return 0;
}
for (iMetadata = 0; iMetadata < metadataCount; ++iMetadata) {
drwav_metadata* pMetadata = &pMetadatas[iMetadata];
drwav_uint32 chunkSize = 0;
if ((pMetadata->type & drwav_metadata_type_list_all_info_strings) || (pMetadata->type == drwav_metadata_type_unknown && pMetadata->data.unknown.chunkLocation == drwav_metadata_location_inside_info_list)) {
hasListInfo = DRWAV_TRUE;
}
if ((pMetadata->type & drwav_metadata_type_list_all_adtl) || (pMetadata->type == drwav_metadata_type_unknown && pMetadata->data.unknown.chunkLocation == drwav_metadata_location_inside_adtl_list)) {
hasListAdtl = DRWAV_TRUE;
}
switch (pMetadata->type) {
case drwav_metadata_type_smpl:
{
drwav_uint32 iLoop;
chunkSize = DRWAV_SMPL_BYTES + DRWAV_SMPL_LOOP_BYTES * pMetadata->data.smpl.sampleLoopCount + pMetadata->data.smpl.samplerSpecificDataSizeInBytes;
bytesWritten += drwav__write_or_count(pWav, "smpl", 4);
bytesWritten += drwav__write_or_count_u32ne_to_le(pWav, chunkSize);
bytesWritten += drwav__write_or_count_u32ne_to_le(pWav, pMetadata->data.smpl.manufacturerId);
bytesWritten += drwav__write_or_count_u32ne_to_le(pWav, pMetadata->data.smpl.productId);
bytesWritten += drwav__write_or_count_u32ne_to_le(pWav, pMetadata->data.smpl.samplePeriodNanoseconds);
bytesWritten += drwav__write_or_count_u32ne_to_le(pWav, pMetadata->data.smpl.midiUnityNote);
bytesWritten += drwav__write_or_count_u32ne_to_le(pWav, pMetadata->data.smpl.midiPitchFraction);
bytesWritten += drwav__write_or_count_u32ne_to_le(pWav, pMetadata->data.smpl.smpteFormat);
bytesWritten += drwav__write_or_count_u32ne_to_le(pWav, pMetadata->data.smpl.smpteOffset);
bytesWritten += drwav__write_or_count_u32ne_to_le(pWav, pMetadata->data.smpl.sampleLoopCount);
bytesWritten += drwav__write_or_count_u32ne_to_le(pWav, pMetadata->data.smpl.samplerSpecificDataSizeInBytes);
for (iLoop = 0; iLoop < pMetadata->data.smpl.sampleLoopCount; ++iLoop) {
bytesWritten += drwav__write_or_count_u32ne_to_le(pWav, pMetadata->data.smpl.pLoops[iLoop].cuePointId);
bytesWritten += drwav__write_or_count_u32ne_to_le(pWav, pMetadata->data.smpl.pLoops[iLoop].type);
bytesWritten += drwav__write_or_count_u32ne_to_le(pWav, pMetadata->data.smpl.pLoops[iLoop].firstSampleByteOffset);
bytesWritten += drwav__write_or_count_u32ne_to_le(pWav, pMetadata->data.smpl.pLoops[iLoop].lastSampleByteOffset);
bytesWritten += drwav__write_or_count_u32ne_to_le(pWav, pMetadata->data.smpl.pLoops[iLoop].sampleFraction);
bytesWritten += drwav__write_or_count_u32ne_to_le(pWav, pMetadata->data.smpl.pLoops[iLoop].playCount);
}
if (pMetadata->data.smpl.samplerSpecificDataSizeInBytes > 0) {
bytesWritten += drwav__write_or_count(pWav, pMetadata->data.smpl.pSamplerSpecificData, pMetadata->data.smpl.samplerSpecificDataSizeInBytes);
}
} break;
case drwav_metadata_type_inst:
{
chunkSize = DRWAV_INST_BYTES;
bytesWritten += drwav__write_or_count(pWav, "inst", 4);
bytesWritten += drwav__write_or_count_u32ne_to_le(pWav, chunkSize);
bytesWritten += drwav__write_or_count(pWav, &pMetadata->data.inst.midiUnityNote, 1);
bytesWritten += drwav__write_or_count(pWav, &pMetadata->data.inst.fineTuneCents, 1);
bytesWritten += drwav__write_or_count(pWav, &pMetadata->data.inst.gainDecibels, 1);
bytesWritten += drwav__write_or_count(pWav, &pMetadata->data.inst.lowNote, 1);
bytesWritten += drwav__write_or_count(pWav, &pMetadata->data.inst.highNote, 1);
bytesWritten += drwav__write_or_count(pWav, &pMetadata->data.inst.lowVelocity, 1);
bytesWritten += drwav__write_or_count(pWav, &pMetadata->data.inst.highVelocity, 1);
} break;
case drwav_metadata_type_cue:
{
drwav_uint32 iCuePoint;
chunkSize = DRWAV_CUE_BYTES + DRWAV_CUE_POINT_BYTES * pMetadata->data.cue.cuePointCount;
bytesWritten += drwav__write_or_count(pWav, "cue ", 4);
bytesWritten += drwav__write_or_count_u32ne_to_le(pWav, chunkSize);
bytesWritten += drwav__write_or_count_u32ne_to_le(pWav, pMetadata->data.cue.cuePointCount);
for (iCuePoint = 0; iCuePoint < pMetadata->data.cue.cuePointCount; ++iCuePoint) {
bytesWritten += drwav__write_or_count_u32ne_to_le(pWav, pMetadata->data.cue.pCuePoints[iCuePoint].id);
bytesWritten += drwav__write_or_count_u32ne_to_le(pWav, pMetadata->data.cue.pCuePoints[iCuePoint].playOrderPosition);
bytesWritten += drwav__write_or_count(pWav, pMetadata->data.cue.pCuePoints[iCuePoint].dataChunkId, 4);
bytesWritten += drwav__write_or_count_u32ne_to_le(pWav, pMetadata->data.cue.pCuePoints[iCuePoint].chunkStart);
bytesWritten += drwav__write_or_count_u32ne_to_le(pWav, pMetadata->data.cue.pCuePoints[iCuePoint].blockStart);
bytesWritten += drwav__write_or_count_u32ne_to_le(pWav, pMetadata->data.cue.pCuePoints[iCuePoint].sampleByteOffset);
}
} break;
case drwav_metadata_type_acid:
{
chunkSize = DRWAV_ACID_BYTES;
bytesWritten += drwav__write_or_count(pWav, "acid", 4);
bytesWritten += drwav__write_or_count_u32ne_to_le(pWav, chunkSize);
bytesWritten += drwav__write_or_count_u32ne_to_le(pWav, pMetadata->data.acid.flags);
bytesWritten += drwav__write_or_count_u16ne_to_le(pWav, pMetadata->data.acid.midiUnityNote);
bytesWritten += drwav__write_or_count_u16ne_to_le(pWav, pMetadata->data.acid.reserved1);
bytesWritten += drwav__write_or_count_f32ne_to_le(pWav, pMetadata->data.acid.reserved2);
bytesWritten += drwav__write_or_count_u32ne_to_le(pWav, pMetadata->data.acid.numBeats);
bytesWritten += drwav__write_or_count_u16ne_to_le(pWav, pMetadata->data.acid.meterDenominator);
bytesWritten += drwav__write_or_count_u16ne_to_le(pWav, pMetadata->data.acid.meterNumerator);
bytesWritten += drwav__write_or_count_f32ne_to_le(pWav, pMetadata->data.acid.tempo);
} break;
case drwav_metadata_type_bext:
{
char reservedBuf[DRWAV_BEXT_RESERVED_BYTES];
drwav_uint32 timeReferenceLow;
drwav_uint32 timeReferenceHigh;
chunkSize = DRWAV_BEXT_BYTES + pMetadata->data.bext.codingHistorySize;
bytesWritten += drwav__write_or_count(pWav, "bext", 4);
bytesWritten += drwav__write_or_count_u32ne_to_le(pWav, chunkSize);
bytesWritten += drwav__write_or_count_string_to_fixed_size_buf(pWav, pMetadata->data.bext.pDescription, DRWAV_BEXT_DESCRIPTION_BYTES);
bytesWritten += drwav__write_or_count_string_to_fixed_size_buf(pWav, pMetadata->data.bext.pOriginatorName, DRWAV_BEXT_ORIGINATOR_NAME_BYTES);
bytesWritten += drwav__write_or_count_string_to_fixed_size_buf(pWav, pMetadata->data.bext.pOriginatorReference, DRWAV_BEXT_ORIGINATOR_REF_BYTES);
bytesWritten += drwav__write_or_count(pWav, pMetadata->data.bext.pOriginationDate, sizeof(pMetadata->data.bext.pOriginationDate));
bytesWritten += drwav__write_or_count(pWav, pMetadata->data.bext.pOriginationTime, sizeof(pMetadata->data.bext.pOriginationTime));
timeReferenceLow = (drwav_uint32)(pMetadata->data.bext.timeReference & 0xFFFFFFFF);
timeReferenceHigh = (drwav_uint32)(pMetadata->data.bext.timeReference >> 32);
bytesWritten += drwav__write_or_count_u32ne_to_le(pWav, timeReferenceLow);
bytesWritten += drwav__write_or_count_u32ne_to_le(pWav, timeReferenceHigh);
bytesWritten += drwav__write_or_count_u16ne_to_le(pWav, pMetadata->data.bext.version);
bytesWritten += drwav__write_or_count(pWav, pMetadata->data.bext.pUMID, DRWAV_BEXT_UMID_BYTES);
bytesWritten += drwav__write_or_count_u16ne_to_le(pWav, pMetadata->data.bext.loudnessValue);
bytesWritten += drwav__write_or_count_u16ne_to_le(pWav, pMetadata->data.bext.loudnessRange);
bytesWritten += drwav__write_or_count_u16ne_to_le(pWav, pMetadata->data.bext.maxTruePeakLevel);
bytesWritten += drwav__write_or_count_u16ne_to_le(pWav, pMetadata->data.bext.maxMomentaryLoudness);
bytesWritten += drwav__write_or_count_u16ne_to_le(pWav, pMetadata->data.bext.maxShortTermLoudness);
DRWAV_ZERO_MEMORY(reservedBuf, sizeof(reservedBuf));
bytesWritten += drwav__write_or_count(pWav, reservedBuf, sizeof(reservedBuf));
if (pMetadata->data.bext.codingHistorySize > 0) {
bytesWritten += drwav__write_or_count(pWav, pMetadata->data.bext.pCodingHistory, pMetadata->data.bext.codingHistorySize);
}
} break;
case drwav_metadata_type_unknown:
{
if (pMetadata->data.unknown.chunkLocation == drwav_metadata_location_top_level) {
chunkSize = pMetadata->data.unknown.dataSizeInBytes;
bytesWritten += drwav__write_or_count(pWav, pMetadata->data.unknown.id, 4);
bytesWritten += drwav__write_or_count_u32ne_to_le(pWav, chunkSize);
bytesWritten += drwav__write_or_count(pWav, pMetadata->data.unknown.pData, pMetadata->data.unknown.dataSizeInBytes);
}
} break;
default: break;
}
if ((chunkSize % 2) != 0) {
bytesWritten += drwav__write_or_count_byte(pWav, 0);
}
}
if (hasListInfo) {
drwav_uint32 chunkSize = 4; /* Start with 4 bytes for "INFO". */
for (iMetadata = 0; iMetadata < metadataCount; ++iMetadata) {
drwav_metadata* pMetadata = &pMetadatas[iMetadata];
if ((pMetadata->type & drwav_metadata_type_list_all_info_strings)) {
chunkSize += 8; /* For id and string size. */
chunkSize += pMetadata->data.infoText.stringLength + 1; /* Include null terminator. */
} else if (pMetadata->type == drwav_metadata_type_unknown && pMetadata->data.unknown.chunkLocation == drwav_metadata_location_inside_info_list) {
chunkSize += 8; /* For id string size. */
chunkSize += pMetadata->data.unknown.dataSizeInBytes;
}
if ((chunkSize % 2) != 0) {
chunkSize += 1;
}
}
bytesWritten += drwav__write_or_count(pWav, "LIST", 4);
bytesWritten += drwav__write_or_count_u32ne_to_le(pWav, chunkSize);
bytesWritten += drwav__write_or_count(pWav, "INFO", 4);
for (iMetadata = 0; iMetadata < metadataCount; ++iMetadata) {
drwav_metadata* pMetadata = &pMetadatas[iMetadata];
drwav_uint32 subchunkSize = 0;
if (pMetadata->type & drwav_metadata_type_list_all_info_strings) {
const char* pID = NULL;
switch (pMetadata->type) {
case drwav_metadata_type_list_info_software: pID = "ISFT"; break;
case drwav_metadata_type_list_info_copyright: pID = "ICOP"; break;
case drwav_metadata_type_list_info_title: pID = "INAM"; break;
case drwav_metadata_type_list_info_artist: pID = "IART"; break;
case drwav_metadata_type_list_info_comment: pID = "ICMT"; break;
case drwav_metadata_type_list_info_date: pID = "ICRD"; break;
case drwav_metadata_type_list_info_genre: pID = "IGNR"; break;
case drwav_metadata_type_list_info_album: pID = "IPRD"; break;
case drwav_metadata_type_list_info_tracknumber: pID = "ITRK"; break;
default: break;
}
DRWAV_ASSERT(pID != NULL);
if (pMetadata->data.infoText.stringLength) {
subchunkSize = pMetadata->data.infoText.stringLength + 1;
bytesWritten += drwav__write_or_count(pWav, pID, 4);
bytesWritten += drwav__write_or_count_u32ne_to_le(pWav, subchunkSize);
bytesWritten += drwav__write_or_count(pWav, pMetadata->data.infoText.pString, pMetadata->data.infoText.stringLength);
bytesWritten += drwav__write_or_count_byte(pWav, '\0');
}
} else if (pMetadata->type == drwav_metadata_type_unknown && pMetadata->data.unknown.chunkLocation == drwav_metadata_location_inside_info_list) {
if (pMetadata->data.unknown.dataSizeInBytes) {
subchunkSize = pMetadata->data.unknown.dataSizeInBytes;
bytesWritten += drwav__write_or_count(pWav, pMetadata->data.unknown.id, 4);
bytesWritten += drwav__write_or_count_u32ne_to_le(pWav, pMetadata->data.unknown.dataSizeInBytes);
bytesWritten += drwav__write_or_count(pWav, pMetadata->data.unknown.pData, subchunkSize);
}
}
if ((subchunkSize % 2) != 0) {
bytesWritten += drwav__write_or_count_byte(pWav, 0);
}
}
}
if (hasListAdtl) {
drwav_uint32 chunkSize = 4; /* start with 4 bytes for "adtl" */
for (iMetadata = 0; iMetadata < metadataCount; ++iMetadata) {
drwav_metadata* pMetadata = &pMetadatas[iMetadata];
switch (pMetadata->type)
{
case drwav_metadata_type_list_label:
case drwav_metadata_type_list_note:
{
chunkSize += 8; /* for id and chunk size */
chunkSize += DRWAV_LIST_LABEL_OR_NOTE_BYTES;
if (pMetadata->data.labelOrNote.stringLength > 0) {
chunkSize += pMetadata->data.labelOrNote.stringLength + 1;
}
} break;
case drwav_metadata_type_list_labelled_cue_region:
{
chunkSize += 8; /* for id and chunk size */
chunkSize += DRWAV_LIST_LABELLED_TEXT_BYTES;
if (pMetadata->data.labelledCueRegion.stringLength > 0) {
chunkSize += pMetadata->data.labelledCueRegion.stringLength + 1;
}
} break;
case drwav_metadata_type_unknown:
{
if (pMetadata->data.unknown.chunkLocation == drwav_metadata_location_inside_adtl_list) {
chunkSize += 8; /* for id and chunk size */
chunkSize += pMetadata->data.unknown.dataSizeInBytes;
}
} break;
default: break;
}
if ((chunkSize % 2) != 0) {
chunkSize += 1;
}
}
bytesWritten += drwav__write_or_count(pWav, "LIST", 4);
bytesWritten += drwav__write_or_count_u32ne_to_le(pWav, chunkSize);
bytesWritten += drwav__write_or_count(pWav, "adtl", 4);
for (iMetadata = 0; iMetadata < metadataCount; ++iMetadata) {
drwav_metadata* pMetadata = &pMetadatas[iMetadata];
drwav_uint32 subchunkSize = 0;
switch (pMetadata->type)
{
case drwav_metadata_type_list_label:
case drwav_metadata_type_list_note:
{
if (pMetadata->data.labelOrNote.stringLength > 0) {
const char *pID = NULL;
if (pMetadata->type == drwav_metadata_type_list_label) {
pID = "labl";
}
else if (pMetadata->type == drwav_metadata_type_list_note) {
pID = "note";
}
DRWAV_ASSERT(pID != NULL);
DRWAV_ASSERT(pMetadata->data.labelOrNote.pString != NULL);
subchunkSize = DRWAV_LIST_LABEL_OR_NOTE_BYTES;
bytesWritten += drwav__write_or_count(pWav, pID, 4);
subchunkSize += pMetadata->data.labelOrNote.stringLength + 1;
bytesWritten += drwav__write_or_count_u32ne_to_le(pWav, subchunkSize);
bytesWritten += drwav__write_or_count_u32ne_to_le(pWav, pMetadata->data.labelOrNote.cuePointId);
bytesWritten += drwav__write_or_count(pWav, pMetadata->data.labelOrNote.pString, pMetadata->data.labelOrNote.stringLength);
bytesWritten += drwav__write_or_count_byte(pWav, '\0');
}
} break;
case drwav_metadata_type_list_labelled_cue_region:
{
subchunkSize = DRWAV_LIST_LABELLED_TEXT_BYTES;
bytesWritten += drwav__write_or_count(pWav, "ltxt", 4);
if (pMetadata->data.labelledCueRegion.stringLength > 0) {
subchunkSize += pMetadata->data.labelledCueRegion.stringLength + 1;
}
bytesWritten += drwav__write_or_count_u32ne_to_le(pWav, subchunkSize);
bytesWritten += drwav__write_or_count_u32ne_to_le(pWav, pMetadata->data.labelledCueRegion.cuePointId);
bytesWritten += drwav__write_or_count_u32ne_to_le(pWav, pMetadata->data.labelledCueRegion.sampleLength);
bytesWritten += drwav__write_or_count(pWav, pMetadata->data.labelledCueRegion.purposeId, 4);
bytesWritten += drwav__write_or_count_u16ne_to_le(pWav, pMetadata->data.labelledCueRegion.country);
bytesWritten += drwav__write_or_count_u16ne_to_le(pWav, pMetadata->data.labelledCueRegion.language);
bytesWritten += drwav__write_or_count_u16ne_to_le(pWav, pMetadata->data.labelledCueRegion.dialect);
bytesWritten += drwav__write_or_count_u16ne_to_le(pWav, pMetadata->data.labelledCueRegion.codePage);
if (pMetadata->data.labelledCueRegion.stringLength > 0) {
DRWAV_ASSERT(pMetadata->data.labelledCueRegion.pString != NULL);
bytesWritten += drwav__write_or_count(pWav, pMetadata->data.labelledCueRegion.pString, pMetadata->data.labelledCueRegion.stringLength);
bytesWritten += drwav__write_or_count_byte(pWav, '\0');
}
} break;
case drwav_metadata_type_unknown:
{
if (pMetadata->data.unknown.chunkLocation == drwav_metadata_location_inside_adtl_list) {
subchunkSize = pMetadata->data.unknown.dataSizeInBytes;
DRWAV_ASSERT(pMetadata->data.unknown.pData != NULL);
bytesWritten += drwav__write_or_count(pWav, pMetadata->data.unknown.id, 4);
bytesWritten += drwav__write_or_count_u32ne_to_le(pWav, subchunkSize);
bytesWritten += drwav__write_or_count(pWav, pMetadata->data.unknown.pData, subchunkSize);
}
} break;
default: break;
}
if ((subchunkSize % 2) != 0) {
bytesWritten += drwav__write_or_count_byte(pWav, 0);
}
}
}
DRWAV_ASSERT((bytesWritten % 2) == 0);
return bytesWritten;
}
DRWAV_PRIVATE drwav_uint32 drwav__riff_chunk_size_riff(drwav_uint64 dataChunkSize, drwav_metadata* pMetadata, drwav_uint32 metadataCount)
{
drwav_uint64 chunkSize = 4 + 24 + (drwav_uint64)drwav__write_or_count_metadata(NULL, pMetadata, metadataCount) + 8 + dataChunkSize + drwav__chunk_padding_size_riff(dataChunkSize); /* 4 = "WAVE". 24 = "fmt " chunk. 8 = "data" + u32 data size. */
if (chunkSize > 0xFFFFFFFFUL) {
chunkSize = 0xFFFFFFFFUL;
}
return (drwav_uint32)chunkSize; /* Safe cast due to the clamp above. */
}
DRWAV_PRIVATE drwav_uint32 drwav__data_chunk_size_riff(drwav_uint64 dataChunkSize)
{
if (dataChunkSize <= 0xFFFFFFFFUL) {
return (drwav_uint32)dataChunkSize;
} else {
return 0xFFFFFFFFUL;
}
}
DRWAV_PRIVATE drwav_uint64 drwav__riff_chunk_size_w64(drwav_uint64 dataChunkSize)
{
drwav_uint64 dataSubchunkPaddingSize = drwav__chunk_padding_size_w64(dataChunkSize);
return 80 + 24 + dataChunkSize + dataSubchunkPaddingSize; /* +24 because W64 includes the size of the GUID and size fields. */
}
DRWAV_PRIVATE drwav_uint64 drwav__data_chunk_size_w64(drwav_uint64 dataChunkSize)
{
return 24 + dataChunkSize; /* +24 because W64 includes the size of the GUID and size fields. */
}
DRWAV_PRIVATE drwav_uint64 drwav__riff_chunk_size_rf64(drwav_uint64 dataChunkSize, drwav_metadata *metadata, drwav_uint32 numMetadata)
{
drwav_uint64 chunkSize = 4 + 36 + 24 + (drwav_uint64)drwav__write_or_count_metadata(NULL, metadata, numMetadata) + 8 + dataChunkSize + drwav__chunk_padding_size_riff(dataChunkSize); /* 4 = "WAVE". 36 = "ds64" chunk. 24 = "fmt " chunk. 8 = "data" + u32 data size. */
if (chunkSize > 0xFFFFFFFFUL) {
chunkSize = 0xFFFFFFFFUL;
}
return chunkSize;
}
DRWAV_PRIVATE drwav_uint64 drwav__data_chunk_size_rf64(drwav_uint64 dataChunkSize)
{
return dataChunkSize;
}
DRWAV_PRIVATE drwav_bool32 drwav_preinit_write(drwav* pWav, const drwav_data_format* pFormat, drwav_bool32 isSequential, drwav_write_proc onWrite, drwav_seek_proc onSeek, void* pUserData, const drwav_allocation_callbacks* pAllocationCallbacks)
{
if (pWav == NULL || onWrite == NULL) {
return DRWAV_FALSE;
}
if (!isSequential && onSeek == NULL) {
return DRWAV_FALSE; /* <-- onSeek is required when in non-sequential mode. */
}
/* Not currently supporting compressed formats. Will need to add support for the "fact" chunk before we enable this. */
if (pFormat->format == DR_WAVE_FORMAT_EXTENSIBLE) {
return DRWAV_FALSE;
}
if (pFormat->format == DR_WAVE_FORMAT_ADPCM || pFormat->format == DR_WAVE_FORMAT_DVI_ADPCM) {
return DRWAV_FALSE;
}
DRWAV_ZERO_MEMORY(pWav, sizeof(*pWav));
pWav->onWrite = onWrite;
pWav->onSeek = onSeek;
pWav->pUserData = pUserData;
pWav->allocationCallbacks = drwav_copy_allocation_callbacks_or_defaults(pAllocationCallbacks);
if (pWav->allocationCallbacks.onFree == NULL || (pWav->allocationCallbacks.onMalloc == NULL && pWav->allocationCallbacks.onRealloc == NULL)) {
return DRWAV_FALSE; /* Invalid allocation callbacks. */
}
pWav->fmt.formatTag = (drwav_uint16)pFormat->format;
pWav->fmt.channels = (drwav_uint16)pFormat->channels;
pWav->fmt.sampleRate = pFormat->sampleRate;
pWav->fmt.avgBytesPerSec = (drwav_uint32)((pFormat->bitsPerSample * pFormat->sampleRate * pFormat->channels) / 8);
pWav->fmt.blockAlign = (drwav_uint16)((pFormat->channels * pFormat->bitsPerSample) / 8);
pWav->fmt.bitsPerSample = (drwav_uint16)pFormat->bitsPerSample;
pWav->fmt.extendedSize = 0;
pWav->isSequentialWrite = isSequential;
return DRWAV_TRUE;
}
DRWAV_PRIVATE drwav_bool32 drwav_init_write__internal(drwav* pWav, const drwav_data_format* pFormat, drwav_uint64 totalSampleCount)
{
/* The function assumes drwav_preinit_write() was called beforehand. */
size_t runningPos = 0;
drwav_uint64 initialDataChunkSize = 0;
drwav_uint64 chunkSizeFMT;
/*
The initial values for the "RIFF" and "data" chunks depends on whether or not we are initializing in sequential mode or not. In
sequential mode we set this to its final values straight away since they can be calculated from the total sample count. In non-
sequential mode we initialize it all to zero and fill it out in drwav_uninit() using a backwards seek.
*/
if (pWav->isSequentialWrite) {
initialDataChunkSize = (totalSampleCount * pWav->fmt.bitsPerSample) / 8;
/*
The RIFF container has a limit on the number of samples. drwav is not allowing this. There's no practical limits for Wave64
so for the sake of simplicity I'm not doing any validation for that.
*/
if (pFormat->container == drwav_container_riff) {
if (initialDataChunkSize > (0xFFFFFFFFUL - 36)) {
return DRWAV_FALSE; /* Not enough room to store every sample. */
}
}
}
pWav->dataChunkDataSizeTargetWrite = initialDataChunkSize;
/* "RIFF" chunk. */
if (pFormat->container == drwav_container_riff) {
drwav_uint32 chunkSizeRIFF = 28 + (drwav_uint32)initialDataChunkSize; /* +28 = "WAVE" + [sizeof "fmt " chunk] */
runningPos += drwav__write(pWav, "RIFF", 4);
runningPos += drwav__write_u32ne_to_le(pWav, chunkSizeRIFF);
runningPos += drwav__write(pWav, "WAVE", 4);
} else if (pFormat->container == drwav_container_w64) {
drwav_uint64 chunkSizeRIFF = 80 + 24 + initialDataChunkSize; /* +24 because W64 includes the size of the GUID and size fields. */
runningPos += drwav__write(pWav, drwavGUID_W64_RIFF, 16);
runningPos += drwav__write_u64ne_to_le(pWav, chunkSizeRIFF);
runningPos += drwav__write(pWav, drwavGUID_W64_WAVE, 16);
} else if (pFormat->container == drwav_container_rf64) {
runningPos += drwav__write(pWav, "RF64", 4);
runningPos += drwav__write_u32ne_to_le(pWav, 0xFFFFFFFF); /* Always 0xFFFFFFFF for RF64. Set to a proper value in the "ds64" chunk. */
runningPos += drwav__write(pWav, "WAVE", 4);
} else {
return DRWAV_FALSE; /* Container not supported for writing. */
}
/* "ds64" chunk (RF64 only). */
if (pFormat->container == drwav_container_rf64) {
drwav_uint32 initialds64ChunkSize = 28; /* 28 = [Size of RIFF (8 bytes)] + [Size of DATA (8 bytes)] + [Sample Count (8 bytes)] + [Table Length (4 bytes)]. Table length always set to 0. */
drwav_uint64 initialRiffChunkSize = 8 + initialds64ChunkSize + initialDataChunkSize; /* +8 for the ds64 header. */
runningPos += drwav__write(pWav, "ds64", 4);
runningPos += drwav__write_u32ne_to_le(pWav, initialds64ChunkSize); /* Size of ds64. */
runningPos += drwav__write_u64ne_to_le(pWav, initialRiffChunkSize); /* Size of RIFF. Set to true value at the end. */
runningPos += drwav__write_u64ne_to_le(pWav, initialDataChunkSize); /* Size of DATA. Set to true value at the end. */
runningPos += drwav__write_u64ne_to_le(pWav, totalSampleCount); /* Sample count. */
runningPos += drwav__write_u32ne_to_le(pWav, 0); /* Table length. Always set to zero in our case since we're not doing any other chunks than "DATA". */
}
/* "fmt " chunk. */
if (pFormat->container == drwav_container_riff || pFormat->container == drwav_container_rf64) {
chunkSizeFMT = 16;
runningPos += drwav__write(pWav, "fmt ", 4);
runningPos += drwav__write_u32ne_to_le(pWav, (drwav_uint32)chunkSizeFMT);
} else if (pFormat->container == drwav_container_w64) {
chunkSizeFMT = 40;
runningPos += drwav__write(pWav, drwavGUID_W64_FMT, 16);
runningPos += drwav__write_u64ne_to_le(pWav, chunkSizeFMT);
}
runningPos += drwav__write_u16ne_to_le(pWav, pWav->fmt.formatTag);
runningPos += drwav__write_u16ne_to_le(pWav, pWav->fmt.channels);
runningPos += drwav__write_u32ne_to_le(pWav, pWav->fmt.sampleRate);
runningPos += drwav__write_u32ne_to_le(pWav, pWav->fmt.avgBytesPerSec);
runningPos += drwav__write_u16ne_to_le(pWav, pWav->fmt.blockAlign);
runningPos += drwav__write_u16ne_to_le(pWav, pWav->fmt.bitsPerSample);
/* TODO: is a 'fact' chunk required for DR_WAVE_FORMAT_IEEE_FLOAT? */
if (!pWav->isSequentialWrite && pWav->pMetadata != NULL && pWav->metadataCount > 0 && (pFormat->container == drwav_container_riff || pFormat->container == drwav_container_rf64)) {
runningPos += drwav__write_or_count_metadata(pWav, pWav->pMetadata, pWav->metadataCount);
}
pWav->dataChunkDataPos = runningPos;
/* "data" chunk. */
if (pFormat->container == drwav_container_riff) {
drwav_uint32 chunkSizeDATA = (drwav_uint32)initialDataChunkSize;
runningPos += drwav__write(pWav, "data", 4);
runningPos += drwav__write_u32ne_to_le(pWav, chunkSizeDATA);
} else if (pFormat->container == drwav_container_w64) {
drwav_uint64 chunkSizeDATA = 24 + initialDataChunkSize; /* +24 because W64 includes the size of the GUID and size fields. */
runningPos += drwav__write(pWav, drwavGUID_W64_DATA, 16);
runningPos += drwav__write_u64ne_to_le(pWav, chunkSizeDATA);
} else if (pFormat->container == drwav_container_rf64) {
runningPos += drwav__write(pWav, "data", 4);
runningPos += drwav__write_u32ne_to_le(pWav, 0xFFFFFFFF); /* Always set to 0xFFFFFFFF for RF64. The true size of the data chunk is specified in the ds64 chunk. */
}
/* Set some properties for the client's convenience. */
pWav->container = pFormat->container;
pWav->channels = (drwav_uint16)pFormat->channels;
pWav->sampleRate = pFormat->sampleRate;
pWav->bitsPerSample = (drwav_uint16)pFormat->bitsPerSample;
pWav->translatedFormatTag = (drwav_uint16)pFormat->format;
pWav->dataChunkDataPos = runningPos;
return DRWAV_TRUE;
}
DRWAV_API drwav_bool32 drwav_init_write(drwav* pWav, const drwav_data_format* pFormat, drwav_write_proc onWrite, drwav_seek_proc onSeek, void* pUserData, const drwav_allocation_callbacks* pAllocationCallbacks)
{
if (!drwav_preinit_write(pWav, pFormat, DRWAV_FALSE, onWrite, onSeek, pUserData, pAllocationCallbacks)) {
return DRWAV_FALSE;
}
return drwav_init_write__internal(pWav, pFormat, 0); /* DRWAV_FALSE = Not Sequential */
}
DRWAV_API drwav_bool32 drwav_init_write_sequential(drwav* pWav, const drwav_data_format* pFormat, drwav_uint64 totalSampleCount, drwav_write_proc onWrite, void* pUserData, const drwav_allocation_callbacks* pAllocationCallbacks)
{
if (!drwav_preinit_write(pWav, pFormat, DRWAV_TRUE, onWrite, NULL, pUserData, pAllocationCallbacks)) {
return DRWAV_FALSE;
}
return drwav_init_write__internal(pWav, pFormat, totalSampleCount); /* DRWAV_TRUE = Sequential */
}
DRWAV_API drwav_bool32 drwav_init_write_sequential_pcm_frames(drwav* pWav, const drwav_data_format* pFormat, drwav_uint64 totalPCMFrameCount, drwav_write_proc onWrite, void* pUserData, const drwav_allocation_callbacks* pAllocationCallbacks)
{
if (pFormat == NULL) {
return DRWAV_FALSE;
}
return drwav_init_write_sequential(pWav, pFormat, totalPCMFrameCount*pFormat->channels, onWrite, pUserData, pAllocationCallbacks);
}
DRWAV_API drwav_bool32 drwav_init_write_with_metadata(drwav* pWav, const drwav_data_format* pFormat, drwav_write_proc onWrite, drwav_seek_proc onSeek, void* pUserData, const drwav_allocation_callbacks* pAllocationCallbacks, drwav_metadata* pMetadata, drwav_uint32 metadataCount)
{
if (!drwav_preinit_write(pWav, pFormat, DRWAV_FALSE, onWrite, onSeek, pUserData, pAllocationCallbacks)) {
return DRWAV_FALSE;
}
pWav->pMetadata = pMetadata;
pWav->metadataCount = metadataCount;
return drwav_init_write__internal(pWav, pFormat, 0);
}
DRWAV_API drwav_uint64 drwav_target_write_size_bytes(const drwav_data_format* pFormat, drwav_uint64 totalFrameCount, drwav_metadata* pMetadata, drwav_uint32 metadataCount)
{
/* Casting totalFrameCount to drwav_int64 for VC6 compatibility. No issues in practice because nobody is going to exhaust the whole 63 bits. */
drwav_uint64 targetDataSizeBytes = (drwav_uint64)((drwav_int64)totalFrameCount * pFormat->channels * pFormat->bitsPerSample/8.0);
drwav_uint64 riffChunkSizeBytes;
drwav_uint64 fileSizeBytes = 0;
if (pFormat->container == drwav_container_riff) {
riffChunkSizeBytes = drwav__riff_chunk_size_riff(targetDataSizeBytes, pMetadata, metadataCount);
fileSizeBytes = (8 + riffChunkSizeBytes); /* +8 because WAV doesn't include the size of the ChunkID and ChunkSize fields. */
} else if (pFormat->container == drwav_container_w64) {
riffChunkSizeBytes = drwav__riff_chunk_size_w64(targetDataSizeBytes);
fileSizeBytes = riffChunkSizeBytes;
} else if (pFormat->container == drwav_container_rf64) {
riffChunkSizeBytes = drwav__riff_chunk_size_rf64(targetDataSizeBytes, pMetadata, metadataCount);
fileSizeBytes = (8 + riffChunkSizeBytes); /* +8 because WAV doesn't include the size of the ChunkID and ChunkSize fields. */
}
return fileSizeBytes;
}
#ifndef DR_WAV_NO_STDIO
/* Errno */
/* drwav_result_from_errno() is only used for fopen() and wfopen() so putting it inside DR_WAV_NO_STDIO for now. If something else needs this later we can move it out. */
#include <errno.h>
DRWAV_PRIVATE drwav_result drwav_result_from_errno(int e)
{
switch (e)
{
case 0: return DRWAV_SUCCESS;
#ifdef EPERM
case EPERM: return DRWAV_INVALID_OPERATION;
#endif
#ifdef ENOENT
case ENOENT: return DRWAV_DOES_NOT_EXIST;
#endif
#ifdef ESRCH
case ESRCH: return DRWAV_DOES_NOT_EXIST;
#endif
#ifdef EINTR
case EINTR: return DRWAV_INTERRUPT;
#endif
#ifdef EIO
case EIO: return DRWAV_IO_ERROR;
#endif
#ifdef ENXIO
case ENXIO: return DRWAV_DOES_NOT_EXIST;
#endif
#ifdef E2BIG
case E2BIG: return DRWAV_INVALID_ARGS;
#endif
#ifdef ENOEXEC
case ENOEXEC: return DRWAV_INVALID_FILE;
#endif
#ifdef EBADF
case EBADF: return DRWAV_INVALID_FILE;
#endif
#ifdef ECHILD
case ECHILD: return DRWAV_ERROR;
#endif
#ifdef EAGAIN
case EAGAIN: return DRWAV_UNAVAILABLE;
#endif
#ifdef ENOMEM
case ENOMEM: return DRWAV_OUT_OF_MEMORY;
#endif
#ifdef EACCES
case EACCES: return DRWAV_ACCESS_DENIED;
#endif
#ifdef EFAULT
case EFAULT: return DRWAV_BAD_ADDRESS;
#endif
#ifdef ENOTBLK
case ENOTBLK: return DRWAV_ERROR;
#endif
#ifdef EBUSY
case EBUSY: return DRWAV_BUSY;
#endif
#ifdef EEXIST
case EEXIST: return DRWAV_ALREADY_EXISTS;
#endif
#ifdef EXDEV
case EXDEV: return DRWAV_ERROR;
#endif
#ifdef ENODEV
case ENODEV: return DRWAV_DOES_NOT_EXIST;
#endif
#ifdef ENOTDIR
case ENOTDIR: return DRWAV_NOT_DIRECTORY;
#endif
#ifdef EISDIR
case EISDIR: return DRWAV_IS_DIRECTORY;
#endif
#ifdef EINVAL
case EINVAL: return DRWAV_INVALID_ARGS;
#endif
#ifdef ENFILE
case ENFILE: return DRWAV_TOO_MANY_OPEN_FILES;
#endif
#ifdef EMFILE
case EMFILE: return DRWAV_TOO_MANY_OPEN_FILES;
#endif
#ifdef ENOTTY
case ENOTTY: return DRWAV_INVALID_OPERATION;
#endif
#ifdef ETXTBSY
case ETXTBSY: return DRWAV_BUSY;
#endif
#ifdef EFBIG
case EFBIG: return DRWAV_TOO_BIG;
#endif
#ifdef ENOSPC
case ENOSPC: return DRWAV_NO_SPACE;
#endif
#ifdef ESPIPE
case ESPIPE: return DRWAV_BAD_SEEK;
#endif
#ifdef EROFS
case EROFS: return DRWAV_ACCESS_DENIED;
#endif
#ifdef EMLINK
case EMLINK: return DRWAV_TOO_MANY_LINKS;
#endif
#ifdef EPIPE
case EPIPE: return DRWAV_BAD_PIPE;
#endif
#ifdef EDOM
case EDOM: return DRWAV_OUT_OF_RANGE;
#endif
#ifdef ERANGE
case ERANGE: return DRWAV_OUT_OF_RANGE;
#endif
#ifdef EDEADLK
case EDEADLK: return DRWAV_DEADLOCK;
#endif
#ifdef ENAMETOOLONG
case ENAMETOOLONG: return DRWAV_PATH_TOO_LONG;
#endif
#ifdef ENOLCK
case ENOLCK: return DRWAV_ERROR;
#endif
#ifdef ENOSYS
case ENOSYS: return DRWAV_NOT_IMPLEMENTED;
#endif
#ifdef ENOTEMPTY
case ENOTEMPTY: return DRWAV_DIRECTORY_NOT_EMPTY;
#endif
#ifdef ELOOP
case ELOOP: return DRWAV_TOO_MANY_LINKS;
#endif
#ifdef ENOMSG
case ENOMSG: return DRWAV_NO_MESSAGE;
#endif
#ifdef EIDRM
case EIDRM: return DRWAV_ERROR;
#endif
#ifdef ECHRNG
case ECHRNG: return DRWAV_ERROR;
#endif
#ifdef EL2NSYNC
case EL2NSYNC: return DRWAV_ERROR;
#endif
#ifdef EL3HLT
case EL3HLT: return DRWAV_ERROR;
#endif
#ifdef EL3RST
case EL3RST: return DRWAV_ERROR;
#endif
#ifdef ELNRNG
case ELNRNG: return DRWAV_OUT_OF_RANGE;
#endif
#ifdef EUNATCH
case EUNATCH: return DRWAV_ERROR;
#endif
#ifdef ENOCSI
case ENOCSI: return DRWAV_ERROR;
#endif
#ifdef EL2HLT
case EL2HLT: return DRWAV_ERROR;
#endif
#ifdef EBADE
case EBADE: return DRWAV_ERROR;
#endif
#ifdef EBADR
case EBADR: return DRWAV_ERROR;
#endif
#ifdef EXFULL
case EXFULL: return DRWAV_ERROR;
#endif
#ifdef ENOANO
case ENOANO: return DRWAV_ERROR;
#endif
#ifdef EBADRQC
case EBADRQC: return DRWAV_ERROR;
#endif
#ifdef EBADSLT
case EBADSLT: return DRWAV_ERROR;
#endif
#ifdef EBFONT
case EBFONT: return DRWAV_INVALID_FILE;
#endif
#ifdef ENOSTR
case ENOSTR: return DRWAV_ERROR;
#endif
#ifdef ENODATA
case ENODATA: return DRWAV_NO_DATA_AVAILABLE;
#endif
#ifdef ETIME
case ETIME: return DRWAV_TIMEOUT;
#endif
#ifdef ENOSR
case ENOSR: return DRWAV_NO_DATA_AVAILABLE;
#endif
#ifdef ENONET
case ENONET: return DRWAV_NO_NETWORK;
#endif
#ifdef ENOPKG
case ENOPKG: return DRWAV_ERROR;
#endif
#ifdef EREMOTE
case EREMOTE: return DRWAV_ERROR;
#endif
#ifdef ENOLINK
case ENOLINK: return DRWAV_ERROR;
#endif
#ifdef EADV
case EADV: return DRWAV_ERROR;
#endif
#ifdef ESRMNT
case ESRMNT: return DRWAV_ERROR;
#endif
#ifdef ECOMM
case ECOMM: return DRWAV_ERROR;
#endif
#ifdef EPROTO
case EPROTO: return DRWAV_ERROR;
#endif
#ifdef EMULTIHOP
case EMULTIHOP: return DRWAV_ERROR;
#endif
#ifdef EDOTDOT
case EDOTDOT: return DRWAV_ERROR;
#endif
#ifdef EBADMSG
case EBADMSG: return DRWAV_BAD_MESSAGE;
#endif
#ifdef EOVERFLOW
case EOVERFLOW: return DRWAV_TOO_BIG;
#endif
#ifdef ENOTUNIQ
case ENOTUNIQ: return DRWAV_NOT_UNIQUE;
#endif
#ifdef EBADFD
case EBADFD: return DRWAV_ERROR;
#endif
#ifdef EREMCHG
case EREMCHG: return DRWAV_ERROR;
#endif
#ifdef ELIBACC
case ELIBACC: return DRWAV_ACCESS_DENIED;
#endif
#ifdef ELIBBAD
case ELIBBAD: return DRWAV_INVALID_FILE;
#endif
#ifdef ELIBSCN
case ELIBSCN: return DRWAV_INVALID_FILE;
#endif
#ifdef ELIBMAX
case ELIBMAX: return DRWAV_ERROR;
#endif
#ifdef ELIBEXEC
case ELIBEXEC: return DRWAV_ERROR;
#endif
#ifdef EILSEQ
case EILSEQ: return DRWAV_INVALID_DATA;
#endif
#ifdef ERESTART
case ERESTART: return DRWAV_ERROR;
#endif
#ifdef ESTRPIPE
case ESTRPIPE: return DRWAV_ERROR;
#endif
#ifdef EUSERS
case EUSERS: return DRWAV_ERROR;
#endif
#ifdef ENOTSOCK
case ENOTSOCK: return DRWAV_NOT_SOCKET;
#endif
#ifdef EDESTADDRREQ
case EDESTADDRREQ: return DRWAV_NO_ADDRESS;
#endif
#ifdef EMSGSIZE
case EMSGSIZE: return DRWAV_TOO_BIG;
#endif
#ifdef EPROTOTYPE
case EPROTOTYPE: return DRWAV_BAD_PROTOCOL;
#endif
#ifdef ENOPROTOOPT
case ENOPROTOOPT: return DRWAV_PROTOCOL_UNAVAILABLE;
#endif
#ifdef EPROTONOSUPPORT
case EPROTONOSUPPORT: return DRWAV_PROTOCOL_NOT_SUPPORTED;
#endif
#ifdef ESOCKTNOSUPPORT
case ESOCKTNOSUPPORT: return DRWAV_SOCKET_NOT_SUPPORTED;
#endif
#ifdef EOPNOTSUPP
case EOPNOTSUPP: return DRWAV_INVALID_OPERATION;
#endif
#ifdef EPFNOSUPPORT
case EPFNOSUPPORT: return DRWAV_PROTOCOL_FAMILY_NOT_SUPPORTED;
#endif
#ifdef EAFNOSUPPORT
case EAFNOSUPPORT: return DRWAV_ADDRESS_FAMILY_NOT_SUPPORTED;
#endif
#ifdef EADDRINUSE
case EADDRINUSE: return DRWAV_ALREADY_IN_USE;
#endif
#ifdef EADDRNOTAVAIL
case EADDRNOTAVAIL: return DRWAV_ERROR;
#endif
#ifdef ENETDOWN
case ENETDOWN: return DRWAV_NO_NETWORK;
#endif
#ifdef ENETUNREACH
case ENETUNREACH: return DRWAV_NO_NETWORK;
#endif
#ifdef ENETRESET
case ENETRESET: return DRWAV_NO_NETWORK;
#endif
#ifdef ECONNABORTED
case ECONNABORTED: return DRWAV_NO_NETWORK;
#endif
#ifdef ECONNRESET
case ECONNRESET: return DRWAV_CONNECTION_RESET;
#endif
#ifdef ENOBUFS
case ENOBUFS: return DRWAV_NO_SPACE;
#endif
#ifdef EISCONN
case EISCONN: return DRWAV_ALREADY_CONNECTED;
#endif
#ifdef ENOTCONN
case ENOTCONN: return DRWAV_NOT_CONNECTED;
#endif
#ifdef ESHUTDOWN
case ESHUTDOWN: return DRWAV_ERROR;
#endif
#ifdef ETOOMANYREFS
case ETOOMANYREFS: return DRWAV_ERROR;
#endif
#ifdef ETIMEDOUT
case ETIMEDOUT: return DRWAV_TIMEOUT;
#endif
#ifdef ECONNREFUSED
case ECONNREFUSED: return DRWAV_CONNECTION_REFUSED;
#endif
#ifdef EHOSTDOWN
case EHOSTDOWN: return DRWAV_NO_HOST;
#endif
#ifdef EHOSTUNREACH
case EHOSTUNREACH: return DRWAV_NO_HOST;
#endif
#ifdef EALREADY
case EALREADY: return DRWAV_IN_PROGRESS;
#endif
#ifdef EINPROGRESS
case EINPROGRESS: return DRWAV_IN_PROGRESS;
#endif
#ifdef ESTALE
case ESTALE: return DRWAV_INVALID_FILE;
#endif
#ifdef EUCLEAN
case EUCLEAN: return DRWAV_ERROR;
#endif
#ifdef ENOTNAM
case ENOTNAM: return DRWAV_ERROR;
#endif
#ifdef ENAVAIL
case ENAVAIL: return DRWAV_ERROR;
#endif
#ifdef EISNAM
case EISNAM: return DRWAV_ERROR;
#endif
#ifdef EREMOTEIO
case EREMOTEIO: return DRWAV_IO_ERROR;
#endif
#ifdef EDQUOT
case EDQUOT: return DRWAV_NO_SPACE;
#endif
#ifdef ENOMEDIUM
case ENOMEDIUM: return DRWAV_DOES_NOT_EXIST;
#endif
#ifdef EMEDIUMTYPE
case EMEDIUMTYPE: return DRWAV_ERROR;
#endif
#ifdef ECANCELED
case ECANCELED: return DRWAV_CANCELLED;
#endif
#ifdef ENOKEY
case ENOKEY: return DRWAV_ERROR;
#endif
#ifdef EKEYEXPIRED
case EKEYEXPIRED: return DRWAV_ERROR;
#endif
#ifdef EKEYREVOKED
case EKEYREVOKED: return DRWAV_ERROR;
#endif
#ifdef EKEYREJECTED
case EKEYREJECTED: return DRWAV_ERROR;
#endif
#ifdef EOWNERDEAD
case EOWNERDEAD: return DRWAV_ERROR;
#endif
#ifdef ENOTRECOVERABLE
case ENOTRECOVERABLE: return DRWAV_ERROR;
#endif
#ifdef ERFKILL
case ERFKILL: return DRWAV_ERROR;
#endif
#ifdef EHWPOISON
case EHWPOISON: return DRWAV_ERROR;
#endif
default: return DRWAV_ERROR;
}
}
/* End Errno */
/* fopen */
DRWAV_PRIVATE drwav_result drwav_fopen(FILE** ppFile, const char* pFilePath, const char* pOpenMode)
{
#if defined(_MSC_VER) && _MSC_VER >= 1400
errno_t err;
#endif
if (ppFile != NULL) {
*ppFile = NULL; /* Safety. */
}
if (pFilePath == NULL || pOpenMode == NULL || ppFile == NULL) {
return DRWAV_INVALID_ARGS;
}
#if defined(_MSC_VER) && _MSC_VER >= 1400
err = fopen_s(ppFile, pFilePath, pOpenMode);
if (err != 0) {
return drwav_result_from_errno(err);
}
#else
#if defined(_WIN32) || defined(__APPLE__)
*ppFile = fopen(pFilePath, pOpenMode);
#else
#if defined(_FILE_OFFSET_BITS) && _FILE_OFFSET_BITS == 64 && defined(_LARGEFILE64_SOURCE)
*ppFile = fopen64(pFilePath, pOpenMode);
#else
*ppFile = fopen(pFilePath, pOpenMode);
#endif
#endif
if (*ppFile == NULL) {
drwav_result result = drwav_result_from_errno(errno);
if (result == DRWAV_SUCCESS) {
result = DRWAV_ERROR; /* Just a safety check to make sure we never ever return success when pFile == NULL. */
}
return result;
}
#endif
return DRWAV_SUCCESS;
}
/*
_wfopen() isn't always available in all compilation environments.
* Windows only.
* MSVC seems to support it universally as far back as VC6 from what I can tell (haven't checked further back).
* MinGW-64 (both 32- and 64-bit) seems to support it.
* MinGW wraps it in !defined(__STRICT_ANSI__).
* OpenWatcom wraps it in !defined(_NO_EXT_KEYS).
This can be reviewed as compatibility issues arise. The preference is to use _wfopen_s() and _wfopen() as opposed to the wcsrtombs()
fallback, so if you notice your compiler not detecting this properly I'm happy to look at adding support.
*/
#if defined(_WIN32)
#if defined(_MSC_VER) || defined(__MINGW64__) || (!defined(__STRICT_ANSI__) && !defined(_NO_EXT_KEYS))
#define DRWAV_HAS_WFOPEN
#endif
#endif
#ifndef DR_WAV_NO_WCHAR
DRWAV_PRIVATE drwav_result drwav_wfopen(FILE** ppFile, const wchar_t* pFilePath, const wchar_t* pOpenMode, const drwav_allocation_callbacks* pAllocationCallbacks)
{
if (ppFile != NULL) {
*ppFile = NULL; /* Safety. */
}
if (pFilePath == NULL || pOpenMode == NULL || ppFile == NULL) {
return DRWAV_INVALID_ARGS;
}
#if defined(DRWAV_HAS_WFOPEN)
{
/* Use _wfopen() on Windows. */
#if defined(_MSC_VER) && _MSC_VER >= 1400
errno_t err = _wfopen_s(ppFile, pFilePath, pOpenMode);
if (err != 0) {
return drwav_result_from_errno(err);
}
#else
*ppFile = _wfopen(pFilePath, pOpenMode);
if (*ppFile == NULL) {
return drwav_result_from_errno(errno);
}
#endif
(void)pAllocationCallbacks;
}
#else
/*
Use fopen() on anything other than Windows. Requires a conversion. This is annoying because
fopen() is locale specific. The only real way I can think of to do this is with wcsrtombs(). Note
that wcstombs() is apparently not thread-safe because it uses a static global mbstate_t object for
maintaining state. I've checked this with -std=c89 and it works, but if somebody get's a compiler
error I'll look into improving compatibility.
*/
/*
Some compilers don't support wchar_t or wcsrtombs() which we're using below. In this case we just
need to abort with an error. If you encounter a compiler lacking such support, add it to this list
and submit a bug report and it'll be added to the library upstream.
*/
#if defined(__DJGPP__)
{
/* Nothing to do here. This will fall through to the error check below. */
}
#else
{
mbstate_t mbs;
size_t lenMB;
const wchar_t* pFilePathTemp = pFilePath;
char* pFilePathMB = NULL;
char pOpenModeMB[32] = {0};
/* Get the length first. */
DRWAV_ZERO_OBJECT(&mbs);
lenMB = wcsrtombs(NULL, &pFilePathTemp, 0, &mbs);
if (lenMB == (size_t)-1) {
return drwav_result_from_errno(errno);
}
pFilePathMB = (char*)drwav__malloc_from_callbacks(lenMB + 1, pAllocationCallbacks);
if (pFilePathMB == NULL) {
return DRWAV_OUT_OF_MEMORY;
}
pFilePathTemp = pFilePath;
DRWAV_ZERO_OBJECT(&mbs);
wcsrtombs(pFilePathMB, &pFilePathTemp, lenMB + 1, &mbs);
/* The open mode should always consist of ASCII characters so we should be able to do a trivial conversion. */
{
size_t i = 0;
for (;;) {
if (pOpenMode[i] == 0) {
pOpenModeMB[i] = '\0';
break;
}
pOpenModeMB[i] = (char)pOpenMode[i];
i += 1;
}
}
*ppFile = fopen(pFilePathMB, pOpenModeMB);
drwav__free_from_callbacks(pFilePathMB, pAllocationCallbacks);
}
#endif
if (*ppFile == NULL) {
return DRWAV_ERROR;
}
#endif
return DRWAV_SUCCESS;
}
#endif
/* End fopen */
DRWAV_PRIVATE size_t drwav__on_read_stdio(void* pUserData, void* pBufferOut, size_t bytesToRead)
{
return fread(pBufferOut, 1, bytesToRead, (FILE*)pUserData);
}
DRWAV_PRIVATE size_t drwav__on_write_stdio(void* pUserData, const void* pData, size_t bytesToWrite)
{
return fwrite(pData, 1, bytesToWrite, (FILE*)pUserData);
}
DRWAV_PRIVATE drwav_bool32 drwav__on_seek_stdio(void* pUserData, int offset, drwav_seek_origin origin)
{
return fseek((FILE*)pUserData, offset, (origin == drwav_seek_origin_current) ? SEEK_CUR : SEEK_SET) == 0;
}
DRWAV_API drwav_bool32 drwav_init_file(drwav* pWav, const char* filename, const drwav_allocation_callbacks* pAllocationCallbacks)
{
return drwav_init_file_ex(pWav, filename, NULL, NULL, 0, pAllocationCallbacks);
}
DRWAV_PRIVATE drwav_bool32 drwav_init_file__internal_FILE(drwav* pWav, FILE* pFile, drwav_chunk_proc onChunk, void* pChunkUserData, drwav_uint32 flags, const drwav_allocation_callbacks* pAllocationCallbacks)
{
drwav_bool32 result;
result = drwav_preinit(pWav, drwav__on_read_stdio, drwav__on_seek_stdio, (void*)pFile, pAllocationCallbacks);
if (result != DRWAV_TRUE) {
fclose(pFile);
return result;
}
result = drwav_init__internal(pWav, onChunk, pChunkUserData, flags);
if (result != DRWAV_TRUE) {
fclose(pFile);
return result;
}
return DRWAV_TRUE;
}
DRWAV_API drwav_bool32 drwav_init_file_ex(drwav* pWav, const char* filename, drwav_chunk_proc onChunk, void* pChunkUserData, drwav_uint32 flags, const drwav_allocation_callbacks* pAllocationCallbacks)
{
FILE* pFile;
if (drwav_fopen(&pFile, filename, "rb") != DRWAV_SUCCESS) {
return DRWAV_FALSE;
}
/* This takes ownership of the FILE* object. */
return drwav_init_file__internal_FILE(pWav, pFile, onChunk, pChunkUserData, flags, pAllocationCallbacks);
}
#ifndef DR_WAV_NO_WCHAR
DRWAV_API drwav_bool32 drwav_init_file_w(drwav* pWav, const wchar_t* filename, const drwav_allocation_callbacks* pAllocationCallbacks)
{
return drwav_init_file_ex_w(pWav, filename, NULL, NULL, 0, pAllocationCallbacks);
}
DRWAV_API drwav_bool32 drwav_init_file_ex_w(drwav* pWav, const wchar_t* filename, drwav_chunk_proc onChunk, void* pChunkUserData, drwav_uint32 flags, const drwav_allocation_callbacks* pAllocationCallbacks)
{
FILE* pFile;
if (drwav_wfopen(&pFile, filename, L"rb", pAllocationCallbacks) != DRWAV_SUCCESS) {
return DRWAV_FALSE;
}
/* This takes ownership of the FILE* object. */
return drwav_init_file__internal_FILE(pWav, pFile, onChunk, pChunkUserData, flags, pAllocationCallbacks);
}
#endif
DRWAV_API drwav_bool32 drwav_init_file_with_metadata(drwav* pWav, const char* filename, drwav_uint32 flags, const drwav_allocation_callbacks* pAllocationCallbacks)
{
FILE* pFile;
if (drwav_fopen(&pFile, filename, "rb") != DRWAV_SUCCESS) {
return DRWAV_FALSE;
}
/* This takes ownership of the FILE* object. */
return drwav_init_file__internal_FILE(pWav, pFile, NULL, NULL, flags | DRWAV_WITH_METADATA, pAllocationCallbacks);
}
#ifndef DR_WAV_NO_WCHAR
DRWAV_API drwav_bool32 drwav_init_file_with_metadata_w(drwav* pWav, const wchar_t* filename, drwav_uint32 flags, const drwav_allocation_callbacks* pAllocationCallbacks)
{
FILE* pFile;
if (drwav_wfopen(&pFile, filename, L"rb", pAllocationCallbacks) != DRWAV_SUCCESS) {
return DRWAV_FALSE;
}
/* This takes ownership of the FILE* object. */
return drwav_init_file__internal_FILE(pWav, pFile, NULL, NULL, flags | DRWAV_WITH_METADATA, pAllocationCallbacks);
}
#endif
DRWAV_PRIVATE drwav_bool32 drwav_init_file_write__internal_FILE(drwav* pWav, FILE* pFile, const drwav_data_format* pFormat, drwav_uint64 totalSampleCount, drwav_bool32 isSequential, const drwav_allocation_callbacks* pAllocationCallbacks)
{
drwav_bool32 result;
result = drwav_preinit_write(pWav, pFormat, isSequential, drwav__on_write_stdio, drwav__on_seek_stdio, (void*)pFile, pAllocationCallbacks);
if (result != DRWAV_TRUE) {
fclose(pFile);
return result;
}
result = drwav_init_write__internal(pWav, pFormat, totalSampleCount);
if (result != DRWAV_TRUE) {
fclose(pFile);
return result;
}
return DRWAV_TRUE;
}
DRWAV_PRIVATE drwav_bool32 drwav_init_file_write__internal(drwav* pWav, const char* filename, const drwav_data_format* pFormat, drwav_uint64 totalSampleCount, drwav_bool32 isSequential, const drwav_allocation_callbacks* pAllocationCallbacks)
{
FILE* pFile;
if (drwav_fopen(&pFile, filename, "wb") != DRWAV_SUCCESS) {
return DRWAV_FALSE;
}
/* This takes ownership of the FILE* object. */
return drwav_init_file_write__internal_FILE(pWav, pFile, pFormat, totalSampleCount, isSequential, pAllocationCallbacks);
}
#ifndef DR_WAV_NO_WCHAR
DRWAV_PRIVATE drwav_bool32 drwav_init_file_write_w__internal(drwav* pWav, const wchar_t* filename, const drwav_data_format* pFormat, drwav_uint64 totalSampleCount, drwav_bool32 isSequential, const drwav_allocation_callbacks* pAllocationCallbacks)
{
FILE* pFile;
if (drwav_wfopen(&pFile, filename, L"wb", pAllocationCallbacks) != DRWAV_SUCCESS) {
return DRWAV_FALSE;
}
/* This takes ownership of the FILE* object. */
return drwav_init_file_write__internal_FILE(pWav, pFile, pFormat, totalSampleCount, isSequential, pAllocationCallbacks);
}
#endif
DRWAV_API drwav_bool32 drwav_init_file_write(drwav* pWav, const char* filename, const drwav_data_format* pFormat, const drwav_allocation_callbacks* pAllocationCallbacks)
{
return drwav_init_file_write__internal(pWav, filename, pFormat, 0, DRWAV_FALSE, pAllocationCallbacks);
}
DRWAV_API drwav_bool32 drwav_init_file_write_sequential(drwav* pWav, const char* filename, const drwav_data_format* pFormat, drwav_uint64 totalSampleCount, const drwav_allocation_callbacks* pAllocationCallbacks)
{
return drwav_init_file_write__internal(pWav, filename, pFormat, totalSampleCount, DRWAV_TRUE, pAllocationCallbacks);
}
DRWAV_API drwav_bool32 drwav_init_file_write_sequential_pcm_frames(drwav* pWav, const char* filename, const drwav_data_format* pFormat, drwav_uint64 totalPCMFrameCount, const drwav_allocation_callbacks* pAllocationCallbacks)
{
if (pFormat == NULL) {
return DRWAV_FALSE;
}
return drwav_init_file_write_sequential(pWav, filename, pFormat, totalPCMFrameCount*pFormat->channels, pAllocationCallbacks);
}
#ifndef DR_WAV_NO_WCHAR
DRWAV_API drwav_bool32 drwav_init_file_write_w(drwav* pWav, const wchar_t* filename, const drwav_data_format* pFormat, const drwav_allocation_callbacks* pAllocationCallbacks)
{
return drwav_init_file_write_w__internal(pWav, filename, pFormat, 0, DRWAV_FALSE, pAllocationCallbacks);
}
DRWAV_API drwav_bool32 drwav_init_file_write_sequential_w(drwav* pWav, const wchar_t* filename, const drwav_data_format* pFormat, drwav_uint64 totalSampleCount, const drwav_allocation_callbacks* pAllocationCallbacks)
{
return drwav_init_file_write_w__internal(pWav, filename, pFormat, totalSampleCount, DRWAV_TRUE, pAllocationCallbacks);
}
DRWAV_API drwav_bool32 drwav_init_file_write_sequential_pcm_frames_w(drwav* pWav, const wchar_t* filename, const drwav_data_format* pFormat, drwav_uint64 totalPCMFrameCount, const drwav_allocation_callbacks* pAllocationCallbacks)
{
if (pFormat == NULL) {
return DRWAV_FALSE;
}
return drwav_init_file_write_sequential_w(pWav, filename, pFormat, totalPCMFrameCount*pFormat->channels, pAllocationCallbacks);
}
#endif
#endif /* DR_WAV_NO_STDIO */
DRWAV_PRIVATE size_t drwav__on_read_memory(void* pUserData, void* pBufferOut, size_t bytesToRead)
{
drwav* pWav = (drwav*)pUserData;
size_t bytesRemaining;
DRWAV_ASSERT(pWav != NULL);
DRWAV_ASSERT(pWav->memoryStream.dataSize >= pWav->memoryStream.currentReadPos);
bytesRemaining = pWav->memoryStream.dataSize - pWav->memoryStream.currentReadPos;
if (bytesToRead > bytesRemaining) {
bytesToRead = bytesRemaining;
}
if (bytesToRead > 0) {
DRWAV_COPY_MEMORY(pBufferOut, pWav->memoryStream.data + pWav->memoryStream.currentReadPos, bytesToRead);
pWav->memoryStream.currentReadPos += bytesToRead;
}
return bytesToRead;
}
DRWAV_PRIVATE drwav_bool32 drwav__on_seek_memory(void* pUserData, int offset, drwav_seek_origin origin)
{
drwav* pWav = (drwav*)pUserData;
DRWAV_ASSERT(pWav != NULL);
if (origin == drwav_seek_origin_current) {
if (offset > 0) {
if (pWav->memoryStream.currentReadPos + offset > pWav->memoryStream.dataSize) {
return DRWAV_FALSE; /* Trying to seek too far forward. */
}
} else {
if (pWav->memoryStream.currentReadPos < (size_t)-offset) {
return DRWAV_FALSE; /* Trying to seek too far backwards. */
}
}
/* This will never underflow thanks to the clamps above. */
pWav->memoryStream.currentReadPos += offset;
} else {
if ((drwav_uint32)offset <= pWav->memoryStream.dataSize) {
pWav->memoryStream.currentReadPos = offset;
} else {
return DRWAV_FALSE; /* Trying to seek too far forward. */
}
}
return DRWAV_TRUE;
}
DRWAV_PRIVATE size_t drwav__on_write_memory(void* pUserData, const void* pDataIn, size_t bytesToWrite)
{
drwav* pWav = (drwav*)pUserData;
size_t bytesRemaining;
DRWAV_ASSERT(pWav != NULL);
DRWAV_ASSERT(pWav->memoryStreamWrite.dataCapacity >= pWav->memoryStreamWrite.currentWritePos);
bytesRemaining = pWav->memoryStreamWrite.dataCapacity - pWav->memoryStreamWrite.currentWritePos;
if (bytesRemaining < bytesToWrite) {
/* Need to reallocate. */
void* pNewData;
size_t newDataCapacity = (pWav->memoryStreamWrite.dataCapacity == 0) ? 256 : pWav->memoryStreamWrite.dataCapacity * 2;
/* If doubling wasn't enough, just make it the minimum required size to write the data. */
if ((newDataCapacity - pWav->memoryStreamWrite.currentWritePos) < bytesToWrite) {
newDataCapacity = pWav->memoryStreamWrite.currentWritePos + bytesToWrite;
}
pNewData = drwav__realloc_from_callbacks(*pWav->memoryStreamWrite.ppData, newDataCapacity, pWav->memoryStreamWrite.dataCapacity, &pWav->allocationCallbacks);
if (pNewData == NULL) {
return 0;
}
*pWav->memoryStreamWrite.ppData = pNewData;
pWav->memoryStreamWrite.dataCapacity = newDataCapacity;
}
DRWAV_COPY_MEMORY(((drwav_uint8*)(*pWav->memoryStreamWrite.ppData)) + pWav->memoryStreamWrite.currentWritePos, pDataIn, bytesToWrite);
pWav->memoryStreamWrite.currentWritePos += bytesToWrite;
if (pWav->memoryStreamWrite.dataSize < pWav->memoryStreamWrite.currentWritePos) {
pWav->memoryStreamWrite.dataSize = pWav->memoryStreamWrite.currentWritePos;
}
*pWav->memoryStreamWrite.pDataSize = pWav->memoryStreamWrite.dataSize;
return bytesToWrite;
}
DRWAV_PRIVATE drwav_bool32 drwav__on_seek_memory_write(void* pUserData, int offset, drwav_seek_origin origin)
{
drwav* pWav = (drwav*)pUserData;
DRWAV_ASSERT(pWav != NULL);
if (origin == drwav_seek_origin_current) {
if (offset > 0) {
if (pWav->memoryStreamWrite.currentWritePos + offset > pWav->memoryStreamWrite.dataSize) {
offset = (int)(pWav->memoryStreamWrite.dataSize - pWav->memoryStreamWrite.currentWritePos); /* Trying to seek too far forward. */
}
} else {
if (pWav->memoryStreamWrite.currentWritePos < (size_t)-offset) {
offset = -(int)pWav->memoryStreamWrite.currentWritePos; /* Trying to seek too far backwards. */
}
}
/* This will never underflow thanks to the clamps above. */
pWav->memoryStreamWrite.currentWritePos += offset;
} else {
if ((drwav_uint32)offset <= pWav->memoryStreamWrite.dataSize) {
pWav->memoryStreamWrite.currentWritePos = offset;
} else {
pWav->memoryStreamWrite.currentWritePos = pWav->memoryStreamWrite.dataSize; /* Trying to seek too far forward. */
}
}
return DRWAV_TRUE;
}
DRWAV_API drwav_bool32 drwav_init_memory(drwav* pWav, const void* data, size_t dataSize, const drwav_allocation_callbacks* pAllocationCallbacks)
{
return drwav_init_memory_ex(pWav, data, dataSize, NULL, NULL, 0, pAllocationCallbacks);
}
DRWAV_API drwav_bool32 drwav_init_memory_ex(drwav* pWav, const void* data, size_t dataSize, drwav_chunk_proc onChunk, void* pChunkUserData, drwav_uint32 flags, const drwav_allocation_callbacks* pAllocationCallbacks)
{
if (data == NULL || dataSize == 0) {
return DRWAV_FALSE;
}
if (!drwav_preinit(pWav, drwav__on_read_memory, drwav__on_seek_memory, pWav, pAllocationCallbacks)) {
return DRWAV_FALSE;
}
pWav->memoryStream.data = (const drwav_uint8*)data;
pWav->memoryStream.dataSize = dataSize;
pWav->memoryStream.currentReadPos = 0;
return drwav_init__internal(pWav, onChunk, pChunkUserData, flags);
}
DRWAV_API drwav_bool32 drwav_init_memory_with_metadata(drwav* pWav, const void* data, size_t dataSize, drwav_uint32 flags, const drwav_allocation_callbacks* pAllocationCallbacks)
{
if (data == NULL || dataSize == 0) {
return DRWAV_FALSE;
}
if (!drwav_preinit(pWav, drwav__on_read_memory, drwav__on_seek_memory, pWav, pAllocationCallbacks)) {
return DRWAV_FALSE;
}
pWav->memoryStream.data = (const drwav_uint8*)data;
pWav->memoryStream.dataSize = dataSize;
pWav->memoryStream.currentReadPos = 0;
return drwav_init__internal(pWav, NULL, NULL, flags | DRWAV_WITH_METADATA);
}
DRWAV_PRIVATE drwav_bool32 drwav_init_memory_write__internal(drwav* pWav, void** ppData, size_t* pDataSize, const drwav_data_format* pFormat, drwav_uint64 totalSampleCount, drwav_bool32 isSequential, const drwav_allocation_callbacks* pAllocationCallbacks)
{
if (ppData == NULL || pDataSize == NULL) {
return DRWAV_FALSE;
}
*ppData = NULL; /* Important because we're using realloc()! */
*pDataSize = 0;
if (!drwav_preinit_write(pWav, pFormat, isSequential, drwav__on_write_memory, drwav__on_seek_memory_write, pWav, pAllocationCallbacks)) {
return DRWAV_FALSE;
}
pWav->memoryStreamWrite.ppData = ppData;
pWav->memoryStreamWrite.pDataSize = pDataSize;
pWav->memoryStreamWrite.dataSize = 0;
pWav->memoryStreamWrite.dataCapacity = 0;
pWav->memoryStreamWrite.currentWritePos = 0;
return drwav_init_write__internal(pWav, pFormat, totalSampleCount);
}
DRWAV_API drwav_bool32 drwav_init_memory_write(drwav* pWav, void** ppData, size_t* pDataSize, const drwav_data_format* pFormat, const drwav_allocation_callbacks* pAllocationCallbacks)
{
return drwav_init_memory_write__internal(pWav, ppData, pDataSize, pFormat, 0, DRWAV_FALSE, pAllocationCallbacks);
}
DRWAV_API drwav_bool32 drwav_init_memory_write_sequential(drwav* pWav, void** ppData, size_t* pDataSize, const drwav_data_format* pFormat, drwav_uint64 totalSampleCount, const drwav_allocation_callbacks* pAllocationCallbacks)
{
return drwav_init_memory_write__internal(pWav, ppData, pDataSize, pFormat, totalSampleCount, DRWAV_TRUE, pAllocationCallbacks);
}
DRWAV_API drwav_bool32 drwav_init_memory_write_sequential_pcm_frames(drwav* pWav, void** ppData, size_t* pDataSize, const drwav_data_format* pFormat, drwav_uint64 totalPCMFrameCount, const drwav_allocation_callbacks* pAllocationCallbacks)
{
if (pFormat == NULL) {
return DRWAV_FALSE;
}
return drwav_init_memory_write_sequential(pWav, ppData, pDataSize, pFormat, totalPCMFrameCount*pFormat->channels, pAllocationCallbacks);
}
DRWAV_API drwav_result drwav_uninit(drwav* pWav)
{
drwav_result result = DRWAV_SUCCESS;
if (pWav == NULL) {
return DRWAV_INVALID_ARGS;
}
/*
If the drwav object was opened in write mode we'll need to finalize a few things:
- Make sure the "data" chunk is aligned to 16-bits for RIFF containers, or 64 bits for W64 containers.
- Set the size of the "data" chunk.
*/
if (pWav->onWrite != NULL) {
drwav_uint32 paddingSize = 0;
/* Padding. Do not adjust pWav->dataChunkDataSize - this should not include the padding. */
if (pWav->container == drwav_container_riff || pWav->container == drwav_container_rf64) {
paddingSize = drwav__chunk_padding_size_riff(pWav->dataChunkDataSize);
} else {
paddingSize = drwav__chunk_padding_size_w64(pWav->dataChunkDataSize);
}
if (paddingSize > 0) {
drwav_uint64 paddingData = 0;
drwav__write(pWav, &paddingData, paddingSize); /* Byte order does not matter for this. */
}
/*
Chunk sizes. When using sequential mode, these will have been filled in at initialization time. We only need
to do this when using non-sequential mode.
*/
if (pWav->onSeek && !pWav->isSequentialWrite) {
if (pWav->container == drwav_container_riff) {
/* The "RIFF" chunk size. */
if (pWav->onSeek(pWav->pUserData, 4, drwav_seek_origin_start)) {
drwav_uint32 riffChunkSize = drwav__riff_chunk_size_riff(pWav->dataChunkDataSize, pWav->pMetadata, pWav->metadataCount);
drwav__write_u32ne_to_le(pWav, riffChunkSize);
}
/* The "data" chunk size. */
if (pWav->onSeek(pWav->pUserData, (int)pWav->dataChunkDataPos - 4, drwav_seek_origin_start)) {
drwav_uint32 dataChunkSize = drwav__data_chunk_size_riff(pWav->dataChunkDataSize);
drwav__write_u32ne_to_le(pWav, dataChunkSize);
}
} else if (pWav->container == drwav_container_w64) {
/* The "RIFF" chunk size. */
if (pWav->onSeek(pWav->pUserData, 16, drwav_seek_origin_start)) {
drwav_uint64 riffChunkSize = drwav__riff_chunk_size_w64(pWav->dataChunkDataSize);
drwav__write_u64ne_to_le(pWav, riffChunkSize);
}
/* The "data" chunk size. */
if (pWav->onSeek(pWav->pUserData, (int)pWav->dataChunkDataPos - 8, drwav_seek_origin_start)) {
drwav_uint64 dataChunkSize = drwav__data_chunk_size_w64(pWav->dataChunkDataSize);
drwav__write_u64ne_to_le(pWav, dataChunkSize);
}
} else if (pWav->container == drwav_container_rf64) {
/* We only need to update the ds64 chunk. The "RIFF" and "data" chunks always have their sizes set to 0xFFFFFFFF for RF64. */
int ds64BodyPos = 12 + 8;
/* The "RIFF" chunk size. */
if (pWav->onSeek(pWav->pUserData, ds64BodyPos + 0, drwav_seek_origin_start)) {
drwav_uint64 riffChunkSize = drwav__riff_chunk_size_rf64(pWav->dataChunkDataSize, pWav->pMetadata, pWav->metadataCount);
drwav__write_u64ne_to_le(pWav, riffChunkSize);
}
/* The "data" chunk size. */
if (pWav->onSeek(pWav->pUserData, ds64BodyPos + 8, drwav_seek_origin_start)) {
drwav_uint64 dataChunkSize = drwav__data_chunk_size_rf64(pWav->dataChunkDataSize);
drwav__write_u64ne_to_le(pWav, dataChunkSize);
}
}
}
/* Validation for sequential mode. */
if (pWav->isSequentialWrite) {
if (pWav->dataChunkDataSize != pWav->dataChunkDataSizeTargetWrite) {
result = DRWAV_INVALID_FILE;
}
}
} else {
drwav_free(pWav->pMetadata, &pWav->allocationCallbacks);
}
#ifndef DR_WAV_NO_STDIO
/*
If we opened the file with drwav_open_file() we will want to close the file handle. We can know whether or not drwav_open_file()
was used by looking at the onRead and onSeek callbacks.
*/
if (pWav->onRead == drwav__on_read_stdio || pWav->onWrite == drwav__on_write_stdio) {
fclose((FILE*)pWav->pUserData);
}
#endif
return result;
}
DRWAV_API size_t drwav_read_raw(drwav* pWav, size_t bytesToRead, void* pBufferOut)
{
size_t bytesRead;
drwav_uint32 bytesPerFrame;
if (pWav == NULL || bytesToRead == 0) {
return 0; /* Invalid args. */
}
if (bytesToRead > pWav->bytesRemaining) {
bytesToRead = (size_t)pWav->bytesRemaining;
}
if (bytesToRead == 0) {
return 0; /* At end. */
}
bytesPerFrame = drwav_get_bytes_per_pcm_frame(pWav);
if (bytesPerFrame == 0) {
return 0; /* Could not determine the bytes per frame. */
}
if (pBufferOut != NULL) {
bytesRead = pWav->onRead(pWav->pUserData, pBufferOut, bytesToRead);
} else {
/* We need to seek. If we fail, we need to read-and-discard to make sure we get a good byte count. */
bytesRead = 0;
while (bytesRead < bytesToRead) {
size_t bytesToSeek = (bytesToRead - bytesRead);
if (bytesToSeek > 0x7FFFFFFF) {
bytesToSeek = 0x7FFFFFFF;
}
if (pWav->onSeek(pWav->pUserData, (int)bytesToSeek, drwav_seek_origin_current) == DRWAV_FALSE) {
break;
}
bytesRead += bytesToSeek;
}
/* When we get here we may need to read-and-discard some data. */
while (bytesRead < bytesToRead) {
drwav_uint8 buffer[4096];
size_t bytesSeeked;
size_t bytesToSeek = (bytesToRead - bytesRead);
if (bytesToSeek > sizeof(buffer)) {
bytesToSeek = sizeof(buffer);
}
bytesSeeked = pWav->onRead(pWav->pUserData, buffer, bytesToSeek);
bytesRead += bytesSeeked;
if (bytesSeeked < bytesToSeek) {
break; /* Reached the end. */
}
}
}
pWav->readCursorInPCMFrames += bytesRead / bytesPerFrame;
pWav->bytesRemaining -= bytesRead;
return bytesRead;
}
DRWAV_API drwav_uint64 drwav_read_pcm_frames_le(drwav* pWav, drwav_uint64 framesToRead, void* pBufferOut)
{
drwav_uint32 bytesPerFrame;
drwav_uint64 bytesToRead; /* Intentionally uint64 instead of size_t so we can do a check that we're not reading too much on 32-bit builds. */
drwav_uint64 framesRemainingInFile;
if (pWav == NULL || framesToRead == 0) {
return 0;
}
/* Cannot use this function for compressed formats. */
if (drwav__is_compressed_format_tag(pWav->translatedFormatTag)) {
return 0;
}
framesRemainingInFile = pWav->totalPCMFrameCount - pWav->readCursorInPCMFrames;
if (framesToRead > framesRemainingInFile) {
framesToRead = framesRemainingInFile;
}
bytesPerFrame = drwav_get_bytes_per_pcm_frame(pWav);
if (bytesPerFrame == 0) {
return 0;
}
/* Don't try to read more samples than can potentially fit in the output buffer. */
bytesToRead = framesToRead * bytesPerFrame;
if (bytesToRead > DRWAV_SIZE_MAX) {
bytesToRead = (DRWAV_SIZE_MAX / bytesPerFrame) * bytesPerFrame; /* Round the number of bytes to read to a clean frame boundary. */
}
/*
Doing an explicit check here just to make it clear that we don't want to be attempt to read anything if there's no bytes to read. There
*could* be a time where it evaluates to 0 due to overflowing.
*/
if (bytesToRead == 0) {
return 0;
}
return drwav_read_raw(pWav, (size_t)bytesToRead, pBufferOut) / bytesPerFrame;
}
DRWAV_API drwav_uint64 drwav_read_pcm_frames_be(drwav* pWav, drwav_uint64 framesToRead, void* pBufferOut)
{
drwav_uint64 framesRead = drwav_read_pcm_frames_le(pWav, framesToRead, pBufferOut);
if (pBufferOut != NULL) {
drwav_uint32 bytesPerFrame = drwav_get_bytes_per_pcm_frame(pWav);
if (bytesPerFrame == 0) {
return 0; /* Could not get the bytes per frame which means bytes per sample cannot be determined and we don't know how to byte swap. */
}
drwav__bswap_samples(pBufferOut, framesRead*pWav->channels, bytesPerFrame/pWav->channels);
}
return framesRead;
}
DRWAV_API drwav_uint64 drwav_read_pcm_frames(drwav* pWav, drwav_uint64 framesToRead, void* pBufferOut)
{
drwav_uint64 framesRead = 0;
if (drwav_is_container_be(pWav->container)) {
/*
Special case for AIFF. AIFF is a big-endian encoded format, but it supports a format that is
PCM in little-endian encoding. In this case, we fall through this branch and treate it as
little-endian.
*/
if (pWav->container != drwav_container_aiff || pWav->aiff.isLE == DRWAV_FALSE) {
if (drwav__is_little_endian()) {
framesRead = drwav_read_pcm_frames_be(pWav, framesToRead, pBufferOut);
} else {
framesRead = drwav_read_pcm_frames_le(pWav, framesToRead, pBufferOut);
}
goto post_process;
}
}
/* Getting here means the data should be considered little-endian. */
if (drwav__is_little_endian()) {
framesRead = drwav_read_pcm_frames_le(pWav, framesToRead, pBufferOut);
} else {
framesRead = drwav_read_pcm_frames_be(pWav, framesToRead, pBufferOut);
}
/*
Here is where we check if we need to do a signed/unsigned conversion for AIFF. The reason we need to do this
is because dr_wav always assumes an 8-bit sample is unsigned, whereas AIFF can have signed 8-bit formats.
*/
post_process:
{
if (pWav->container == drwav_container_aiff && pWav->bitsPerSample == 8 && pWav->aiff.isUnsigned == DRWAV_FALSE) {
if (pBufferOut != NULL) {
drwav_uint64 iSample;
for (iSample = 0; iSample < framesRead * pWav->channels; iSample += 1) {
((drwav_uint8*)pBufferOut)[iSample] += 128;
}
}
}
}
return framesRead;
}
DRWAV_PRIVATE drwav_bool32 drwav_seek_to_first_pcm_frame(drwav* pWav)
{
if (pWav->onWrite != NULL) {
return DRWAV_FALSE; /* No seeking in write mode. */
}
if (!pWav->onSeek(pWav->pUserData, (int)pWav->dataChunkDataPos, drwav_seek_origin_start)) {
return DRWAV_FALSE;
}
if (drwav__is_compressed_format_tag(pWav->translatedFormatTag)) {
/* Cached data needs to be cleared for compressed formats. */
if (pWav->translatedFormatTag == DR_WAVE_FORMAT_ADPCM) {
DRWAV_ZERO_OBJECT(&pWav->msadpcm);
} else if (pWav->translatedFormatTag == DR_WAVE_FORMAT_DVI_ADPCM) {
DRWAV_ZERO_OBJECT(&pWav->ima);
} else {
DRWAV_ASSERT(DRWAV_FALSE); /* If this assertion is triggered it means I've implemented a new compressed format but forgot to add a branch for it here. */
}
}
pWav->readCursorInPCMFrames = 0;
pWav->bytesRemaining = pWav->dataChunkDataSize;
return DRWAV_TRUE;
}
DRWAV_API drwav_bool32 drwav_seek_to_pcm_frame(drwav* pWav, drwav_uint64 targetFrameIndex)
{
/* Seeking should be compatible with wave files > 2GB. */
if (pWav == NULL || pWav->onSeek == NULL) {
return DRWAV_FALSE;
}
/* No seeking in write mode. */
if (pWav->onWrite != NULL) {
return DRWAV_FALSE;
}
/* If there are no samples, just return DRWAV_TRUE without doing anything. */
if (pWav->totalPCMFrameCount == 0) {
return DRWAV_TRUE;
}
/* Make sure the sample is clamped. */
if (targetFrameIndex > pWav->totalPCMFrameCount) {
targetFrameIndex = pWav->totalPCMFrameCount;
}
/*
For compressed formats we just use a slow generic seek. If we are seeking forward we just seek forward. If we are going backwards we need
to seek back to the start.
*/
if (drwav__is_compressed_format_tag(pWav->translatedFormatTag)) {
/* TODO: This can be optimized. */
/*
If we're seeking forward it's simple - just keep reading samples until we hit the sample we're requesting. If we're seeking backwards,
we first need to seek back to the start and then just do the same thing as a forward seek.
*/
if (targetFrameIndex < pWav->readCursorInPCMFrames) {
if (!drwav_seek_to_first_pcm_frame(pWav)) {
return DRWAV_FALSE;
}
}
if (targetFrameIndex > pWav->readCursorInPCMFrames) {
drwav_uint64 offsetInFrames = targetFrameIndex - pWav->readCursorInPCMFrames;
drwav_int16 devnull[2048];
while (offsetInFrames > 0) {
drwav_uint64 framesRead = 0;
drwav_uint64 framesToRead = offsetInFrames;
if (framesToRead > drwav_countof(devnull)/pWav->channels) {
framesToRead = drwav_countof(devnull)/pWav->channels;
}
if (pWav->translatedFormatTag == DR_WAVE_FORMAT_ADPCM) {
framesRead = drwav_read_pcm_frames_s16__msadpcm(pWav, framesToRead, devnull);
} else if (pWav->translatedFormatTag == DR_WAVE_FORMAT_DVI_ADPCM) {
framesRead = drwav_read_pcm_frames_s16__ima(pWav, framesToRead, devnull);
} else {
DRWAV_ASSERT(DRWAV_FALSE); /* If this assertion is triggered it means I've implemented a new compressed format but forgot to add a branch for it here. */
}
if (framesRead != framesToRead) {
return DRWAV_FALSE;
}
offsetInFrames -= framesRead;
}
}
} else {
drwav_uint64 totalSizeInBytes;
drwav_uint64 currentBytePos;
drwav_uint64 targetBytePos;
drwav_uint64 offset;
drwav_uint32 bytesPerFrame;
bytesPerFrame = drwav_get_bytes_per_pcm_frame(pWav);
if (bytesPerFrame == 0) {
return DRWAV_FALSE; /* Not able to calculate offset. */
}
totalSizeInBytes = pWav->totalPCMFrameCount * bytesPerFrame;
/*DRWAV_ASSERT(totalSizeInBytes >= pWav->bytesRemaining);*/
currentBytePos = totalSizeInBytes - pWav->bytesRemaining;
targetBytePos = targetFrameIndex * bytesPerFrame;
if (currentBytePos < targetBytePos) {
/* Offset forwards. */
offset = (targetBytePos - currentBytePos);
} else {
/* Offset backwards. */
if (!drwav_seek_to_first_pcm_frame(pWav)) {
return DRWAV_FALSE;
}
offset = targetBytePos;
}
while (offset > 0) {
int offset32 = ((offset > INT_MAX) ? INT_MAX : (int)offset);
if (!pWav->onSeek(pWav->pUserData, offset32, drwav_seek_origin_current)) {
return DRWAV_FALSE;
}
pWav->readCursorInPCMFrames += offset32 / bytesPerFrame;
pWav->bytesRemaining -= offset32;
offset -= offset32;
}
}
return DRWAV_TRUE;
}
DRWAV_API drwav_result drwav_get_cursor_in_pcm_frames(drwav* pWav, drwav_uint64* pCursor)
{
if (pCursor == NULL) {
return DRWAV_INVALID_ARGS;
}
*pCursor = 0; /* Safety. */
if (pWav == NULL) {
return DRWAV_INVALID_ARGS;
}
*pCursor = pWav->readCursorInPCMFrames;
return DRWAV_SUCCESS;
}
DRWAV_API drwav_result drwav_get_length_in_pcm_frames(drwav* pWav, drwav_uint64* pLength)
{
if (pLength == NULL) {
return DRWAV_INVALID_ARGS;
}
*pLength = 0; /* Safety. */
if (pWav == NULL) {
return DRWAV_INVALID_ARGS;
}
*pLength = pWav->totalPCMFrameCount;
return DRWAV_SUCCESS;
}
DRWAV_API size_t drwav_write_raw(drwav* pWav, size_t bytesToWrite, const void* pData)
{
size_t bytesWritten;
if (pWav == NULL || bytesToWrite == 0 || pData == NULL) {
return 0;
}
bytesWritten = pWav->onWrite(pWav->pUserData, pData, bytesToWrite);
pWav->dataChunkDataSize += bytesWritten;
return bytesWritten;
}
DRWAV_API drwav_uint64 drwav_write_pcm_frames_le(drwav* pWav, drwav_uint64 framesToWrite, const void* pData)
{
drwav_uint64 bytesToWrite;
drwav_uint64 bytesWritten;
const drwav_uint8* pRunningData;
if (pWav == NULL || framesToWrite == 0 || pData == NULL) {
return 0;
}
bytesToWrite = ((framesToWrite * pWav->channels * pWav->bitsPerSample) / 8);
if (bytesToWrite > DRWAV_SIZE_MAX) {
return 0;
}
bytesWritten = 0;
pRunningData = (const drwav_uint8*)pData;
while (bytesToWrite > 0) {
size_t bytesJustWritten;
drwav_uint64 bytesToWriteThisIteration;
bytesToWriteThisIteration = bytesToWrite;
DRWAV_ASSERT(bytesToWriteThisIteration <= DRWAV_SIZE_MAX); /* <-- This is checked above. */
bytesJustWritten = drwav_write_raw(pWav, (size_t)bytesToWriteThisIteration, pRunningData);
if (bytesJustWritten == 0) {
break;
}
bytesToWrite -= bytesJustWritten;
bytesWritten += bytesJustWritten;
pRunningData += bytesJustWritten;
}
return (bytesWritten * 8) / pWav->bitsPerSample / pWav->channels;
}
DRWAV_API drwav_uint64 drwav_write_pcm_frames_be(drwav* pWav, drwav_uint64 framesToWrite, const void* pData)
{
drwav_uint64 bytesToWrite;
drwav_uint64 bytesWritten;
drwav_uint32 bytesPerSample;
const drwav_uint8* pRunningData;
if (pWav == NULL || framesToWrite == 0 || pData == NULL) {
return 0;
}
bytesToWrite = ((framesToWrite * pWav->channels * pWav->bitsPerSample) / 8);
if (bytesToWrite > DRWAV_SIZE_MAX) {
return 0;
}
bytesWritten = 0;
pRunningData = (const drwav_uint8*)pData;
bytesPerSample = drwav_get_bytes_per_pcm_frame(pWav) / pWav->channels;
if (bytesPerSample == 0) {
return 0; /* Cannot determine bytes per sample, or bytes per sample is less than one byte. */
}
while (bytesToWrite > 0) {
drwav_uint8 temp[4096];
drwav_uint32 sampleCount;
size_t bytesJustWritten;
drwav_uint64 bytesToWriteThisIteration;
bytesToWriteThisIteration = bytesToWrite;
DRWAV_ASSERT(bytesToWriteThisIteration <= DRWAV_SIZE_MAX); /* <-- This is checked above. */
/*
WAV files are always little-endian. We need to byte swap on big-endian architectures. Since our input buffer is read-only we need
to use an intermediary buffer for the conversion.
*/
sampleCount = sizeof(temp)/bytesPerSample;
if (bytesToWriteThisIteration > ((drwav_uint64)sampleCount)*bytesPerSample) {
bytesToWriteThisIteration = ((drwav_uint64)sampleCount)*bytesPerSample;
}
DRWAV_COPY_MEMORY(temp, pRunningData, (size_t)bytesToWriteThisIteration);
drwav__bswap_samples(temp, sampleCount, bytesPerSample);
bytesJustWritten = drwav_write_raw(pWav, (size_t)bytesToWriteThisIteration, temp);
if (bytesJustWritten == 0) {
break;
}
bytesToWrite -= bytesJustWritten;
bytesWritten += bytesJustWritten;
pRunningData += bytesJustWritten;
}
return (bytesWritten * 8) / pWav->bitsPerSample / pWav->channels;
}
DRWAV_API drwav_uint64 drwav_write_pcm_frames(drwav* pWav, drwav_uint64 framesToWrite, const void* pData)
{
if (drwav__is_little_endian()) {
return drwav_write_pcm_frames_le(pWav, framesToWrite, pData);
} else {
return drwav_write_pcm_frames_be(pWav, framesToWrite, pData);
}
}
DRWAV_PRIVATE drwav_uint64 drwav_read_pcm_frames_s16__msadpcm(drwav* pWav, drwav_uint64 framesToRead, drwav_int16* pBufferOut)
{
drwav_uint64 totalFramesRead = 0;
DRWAV_ASSERT(pWav != NULL);
DRWAV_ASSERT(framesToRead > 0);
/* TODO: Lots of room for optimization here. */
while (pWav->readCursorInPCMFrames < pWav->totalPCMFrameCount) {
DRWAV_ASSERT(framesToRead > 0); /* This loop iteration will never get hit with framesToRead == 0 because it's asserted at the top, and we check for 0 inside the loop just below. */
/* If there are no cached frames we need to load a new block. */
if (pWav->msadpcm.cachedFrameCount == 0 && pWav->msadpcm.bytesRemainingInBlock == 0) {
if (pWav->channels == 1) {
/* Mono. */
drwav_uint8 header[7];
if (pWav->onRead(pWav->pUserData, header, sizeof(header)) != sizeof(header)) {
return totalFramesRead;
}
pWav->msadpcm.bytesRemainingInBlock = pWav->fmt.blockAlign - sizeof(header);
pWav->msadpcm.predictor[0] = header[0];
pWav->msadpcm.delta[0] = drwav_bytes_to_s16(header + 1);
pWav->msadpcm.prevFrames[0][1] = (drwav_int32)drwav_bytes_to_s16(header + 3);
pWav->msadpcm.prevFrames[0][0] = (drwav_int32)drwav_bytes_to_s16(header + 5);
pWav->msadpcm.cachedFrames[2] = pWav->msadpcm.prevFrames[0][0];
pWav->msadpcm.cachedFrames[3] = pWav->msadpcm.prevFrames[0][1];
pWav->msadpcm.cachedFrameCount = 2;
} else {
/* Stereo. */
drwav_uint8 header[14];
if (pWav->onRead(pWav->pUserData, header, sizeof(header)) != sizeof(header)) {
return totalFramesRead;
}
pWav->msadpcm.bytesRemainingInBlock = pWav->fmt.blockAlign - sizeof(header);
pWav->msadpcm.predictor[0] = header[0];
pWav->msadpcm.predictor[1] = header[1];
pWav->msadpcm.delta[0] = drwav_bytes_to_s16(header + 2);
pWav->msadpcm.delta[1] = drwav_bytes_to_s16(header + 4);
pWav->msadpcm.prevFrames[0][1] = (drwav_int32)drwav_bytes_to_s16(header + 6);
pWav->msadpcm.prevFrames[1][1] = (drwav_int32)drwav_bytes_to_s16(header + 8);
pWav->msadpcm.prevFrames[0][0] = (drwav_int32)drwav_bytes_to_s16(header + 10);
pWav->msadpcm.prevFrames[1][0] = (drwav_int32)drwav_bytes_to_s16(header + 12);
pWav->msadpcm.cachedFrames[0] = pWav->msadpcm.prevFrames[0][0];
pWav->msadpcm.cachedFrames[1] = pWav->msadpcm.prevFrames[1][0];
pWav->msadpcm.cachedFrames[2] = pWav->msadpcm.prevFrames[0][1];
pWav->msadpcm.cachedFrames[3] = pWav->msadpcm.prevFrames[1][1];
pWav->msadpcm.cachedFrameCount = 2;
}
}
/* Output anything that's cached. */
while (framesToRead > 0 && pWav->msadpcm.cachedFrameCount > 0 && pWav->readCursorInPCMFrames < pWav->totalPCMFrameCount) {
if (pBufferOut != NULL) {
drwav_uint32 iSample = 0;
for (iSample = 0; iSample < pWav->channels; iSample += 1) {
pBufferOut[iSample] = (drwav_int16)pWav->msadpcm.cachedFrames[(drwav_countof(pWav->msadpcm.cachedFrames) - (pWav->msadpcm.cachedFrameCount*pWav->channels)) + iSample];
}
pBufferOut += pWav->channels;
}
framesToRead -= 1;
totalFramesRead += 1;
pWav->readCursorInPCMFrames += 1;
pWav->msadpcm.cachedFrameCount -= 1;
}
if (framesToRead == 0) {
break;
}
/*
If there's nothing left in the cache, just go ahead and load more. If there's nothing left to load in the current block we just continue to the next
loop iteration which will trigger the loading of a new block.
*/
if (pWav->msadpcm.cachedFrameCount == 0) {
if (pWav->msadpcm.bytesRemainingInBlock == 0) {
continue;
} else {
static drwav_int32 adaptationTable[] = {
230, 230, 230, 230, 307, 409, 512, 614,
768, 614, 512, 409, 307, 230, 230, 230
};
static drwav_int32 coeff1Table[] = { 256, 512, 0, 192, 240, 460, 392 };
static drwav_int32 coeff2Table[] = { 0, -256, 0, 64, 0, -208, -232 };
drwav_uint8 nibbles;
drwav_int32 nibble0;
drwav_int32 nibble1;
if (pWav->onRead(pWav->pUserData, &nibbles, 1) != 1) {
return totalFramesRead;
}
pWav->msadpcm.bytesRemainingInBlock -= 1;
/* TODO: Optimize away these if statements. */
nibble0 = ((nibbles & 0xF0) >> 4); if ((nibbles & 0x80)) { nibble0 |= 0xFFFFFFF0UL; }
nibble1 = ((nibbles & 0x0F) >> 0); if ((nibbles & 0x08)) { nibble1 |= 0xFFFFFFF0UL; }
if (pWav->channels == 1) {
/* Mono. */
drwav_int32 newSample0;
drwav_int32 newSample1;
newSample0 = ((pWav->msadpcm.prevFrames[0][1] * coeff1Table[pWav->msadpcm.predictor[0]]) + (pWav->msadpcm.prevFrames[0][0] * coeff2Table[pWav->msadpcm.predictor[0]])) >> 8;
newSample0 += nibble0 * pWav->msadpcm.delta[0];
newSample0 = drwav_clamp(newSample0, -32768, 32767);
pWav->msadpcm.delta[0] = (adaptationTable[((nibbles & 0xF0) >> 4)] * pWav->msadpcm.delta[0]) >> 8;
if (pWav->msadpcm.delta[0] < 16) {
pWav->msadpcm.delta[0] = 16;
}
pWav->msadpcm.prevFrames[0][0] = pWav->msadpcm.prevFrames[0][1];
pWav->msadpcm.prevFrames[0][1] = newSample0;
newSample1 = ((pWav->msadpcm.prevFrames[0][1] * coeff1Table[pWav->msadpcm.predictor[0]]) + (pWav->msadpcm.prevFrames[0][0] * coeff2Table[pWav->msadpcm.predictor[0]])) >> 8;
newSample1 += nibble1 * pWav->msadpcm.delta[0];
newSample1 = drwav_clamp(newSample1, -32768, 32767);
pWav->msadpcm.delta[0] = (adaptationTable[((nibbles & 0x0F) >> 0)] * pWav->msadpcm.delta[0]) >> 8;
if (pWav->msadpcm.delta[0] < 16) {
pWav->msadpcm.delta[0] = 16;
}
pWav->msadpcm.prevFrames[0][0] = pWav->msadpcm.prevFrames[0][1];
pWav->msadpcm.prevFrames[0][1] = newSample1;
pWav->msadpcm.cachedFrames[2] = newSample0;
pWav->msadpcm.cachedFrames[3] = newSample1;
pWav->msadpcm.cachedFrameCount = 2;
} else {
/* Stereo. */
drwav_int32 newSample0;
drwav_int32 newSample1;
/* Left. */
newSample0 = ((pWav->msadpcm.prevFrames[0][1] * coeff1Table[pWav->msadpcm.predictor[0]]) + (pWav->msadpcm.prevFrames[0][0] * coeff2Table[pWav->msadpcm.predictor[0]])) >> 8;
newSample0 += nibble0 * pWav->msadpcm.delta[0];
newSample0 = drwav_clamp(newSample0, -32768, 32767);
pWav->msadpcm.delta[0] = (adaptationTable[((nibbles & 0xF0) >> 4)] * pWav->msadpcm.delta[0]) >> 8;
if (pWav->msadpcm.delta[0] < 16) {
pWav->msadpcm.delta[0] = 16;
}
pWav->msadpcm.prevFrames[0][0] = pWav->msadpcm.prevFrames[0][1];
pWav->msadpcm.prevFrames[0][1] = newSample0;
/* Right. */
newSample1 = ((pWav->msadpcm.prevFrames[1][1] * coeff1Table[pWav->msadpcm.predictor[1]]) + (pWav->msadpcm.prevFrames[1][0] * coeff2Table[pWav->msadpcm.predictor[1]])) >> 8;
newSample1 += nibble1 * pWav->msadpcm.delta[1];
newSample1 = drwav_clamp(newSample1, -32768, 32767);
pWav->msadpcm.delta[1] = (adaptationTable[((nibbles & 0x0F) >> 0)] * pWav->msadpcm.delta[1]) >> 8;
if (pWav->msadpcm.delta[1] < 16) {
pWav->msadpcm.delta[1] = 16;
}
pWav->msadpcm.prevFrames[1][0] = pWav->msadpcm.prevFrames[1][1];
pWav->msadpcm.prevFrames[1][1] = newSample1;
pWav->msadpcm.cachedFrames[2] = newSample0;
pWav->msadpcm.cachedFrames[3] = newSample1;
pWav->msadpcm.cachedFrameCount = 1;
}
}
}
}
return totalFramesRead;
}
DRWAV_PRIVATE drwav_uint64 drwav_read_pcm_frames_s16__ima(drwav* pWav, drwav_uint64 framesToRead, drwav_int16* pBufferOut)
{
drwav_uint64 totalFramesRead = 0;
drwav_uint32 iChannel;
static drwav_int32 indexTable[16] = {
-1, -1, -1, -1, 2, 4, 6, 8,
-1, -1, -1, -1, 2, 4, 6, 8
};
static drwav_int32 stepTable[89] = {
7, 8, 9, 10, 11, 12, 13, 14, 16, 17,
19, 21, 23, 25, 28, 31, 34, 37, 41, 45,
50, 55, 60, 66, 73, 80, 88, 97, 107, 118,
130, 143, 157, 173, 190, 209, 230, 253, 279, 307,
337, 371, 408, 449, 494, 544, 598, 658, 724, 796,
876, 963, 1060, 1166, 1282, 1411, 1552, 1707, 1878, 2066,
2272, 2499, 2749, 3024, 3327, 3660, 4026, 4428, 4871, 5358,
5894, 6484, 7132, 7845, 8630, 9493, 10442, 11487, 12635, 13899,
15289, 16818, 18500, 20350, 22385, 24623, 27086, 29794, 32767
};
DRWAV_ASSERT(pWav != NULL);
DRWAV_ASSERT(framesToRead > 0);
/* TODO: Lots of room for optimization here. */
while (pWav->readCursorInPCMFrames < pWav->totalPCMFrameCount) {
DRWAV_ASSERT(framesToRead > 0); /* This loop iteration will never get hit with framesToRead == 0 because it's asserted at the top, and we check for 0 inside the loop just below. */
/* If there are no cached samples we need to load a new block. */
if (pWav->ima.cachedFrameCount == 0 && pWav->ima.bytesRemainingInBlock == 0) {
if (pWav->channels == 1) {
/* Mono. */
drwav_uint8 header[4];
if (pWav->onRead(pWav->pUserData, header, sizeof(header)) != sizeof(header)) {
return totalFramesRead;
}
pWav->ima.bytesRemainingInBlock = pWav->fmt.blockAlign - sizeof(header);
if (header[2] >= drwav_countof(stepTable)) {
pWav->onSeek(pWav->pUserData, pWav->ima.bytesRemainingInBlock, drwav_seek_origin_current);
pWav->ima.bytesRemainingInBlock = 0;
return totalFramesRead; /* Invalid data. */
}
pWav->ima.predictor[0] = (drwav_int16)drwav_bytes_to_u16(header + 0);
pWav->ima.stepIndex[0] = drwav_clamp(header[2], 0, (drwav_int32)drwav_countof(stepTable)-1); /* Clamp not necessary because we checked above, but adding here to silence a static analysis warning. */
pWav->ima.cachedFrames[drwav_countof(pWav->ima.cachedFrames) - 1] = pWav->ima.predictor[0];
pWav->ima.cachedFrameCount = 1;
} else {
/* Stereo. */
drwav_uint8 header[8];
if (pWav->onRead(pWav->pUserData, header, sizeof(header)) != sizeof(header)) {
return totalFramesRead;
}
pWav->ima.bytesRemainingInBlock = pWav->fmt.blockAlign - sizeof(header);
if (header[2] >= drwav_countof(stepTable) || header[6] >= drwav_countof(stepTable)) {
pWav->onSeek(pWav->pUserData, pWav->ima.bytesRemainingInBlock, drwav_seek_origin_current);
pWav->ima.bytesRemainingInBlock = 0;
return totalFramesRead; /* Invalid data. */
}
pWav->ima.predictor[0] = drwav_bytes_to_s16(header + 0);
pWav->ima.stepIndex[0] = drwav_clamp(header[2], 0, (drwav_int32)drwav_countof(stepTable)-1); /* Clamp not necessary because we checked above, but adding here to silence a static analysis warning. */
pWav->ima.predictor[1] = drwav_bytes_to_s16(header + 4);
pWav->ima.stepIndex[1] = drwav_clamp(header[6], 0, (drwav_int32)drwav_countof(stepTable)-1); /* Clamp not necessary because we checked above, but adding here to silence a static analysis warning. */
pWav->ima.cachedFrames[drwav_countof(pWav->ima.cachedFrames) - 2] = pWav->ima.predictor[0];
pWav->ima.cachedFrames[drwav_countof(pWav->ima.cachedFrames) - 1] = pWav->ima.predictor[1];
pWav->ima.cachedFrameCount = 1;
}
}
/* Output anything that's cached. */
while (framesToRead > 0 && pWav->ima.cachedFrameCount > 0 && pWav->readCursorInPCMFrames < pWav->totalPCMFrameCount) {
if (pBufferOut != NULL) {
drwav_uint32 iSample;
for (iSample = 0; iSample < pWav->channels; iSample += 1) {
pBufferOut[iSample] = (drwav_int16)pWav->ima.cachedFrames[(drwav_countof(pWav->ima.cachedFrames) - (pWav->ima.cachedFrameCount*pWav->channels)) + iSample];
}
pBufferOut += pWav->channels;
}
framesToRead -= 1;
totalFramesRead += 1;
pWav->readCursorInPCMFrames += 1;
pWav->ima.cachedFrameCount -= 1;
}
if (framesToRead == 0) {
break;
}
/*
If there's nothing left in the cache, just go ahead and load more. If there's nothing left to load in the current block we just continue to the next
loop iteration which will trigger the loading of a new block.
*/
if (pWav->ima.cachedFrameCount == 0) {
if (pWav->ima.bytesRemainingInBlock == 0) {
continue;
} else {
/*
From what I can tell with stereo streams, it looks like every 4 bytes (8 samples) is for one channel. So it goes 4 bytes for the
left channel, 4 bytes for the right channel.
*/
pWav->ima.cachedFrameCount = 8;
for (iChannel = 0; iChannel < pWav->channels; ++iChannel) {
drwav_uint32 iByte;
drwav_uint8 nibbles[4];
if (pWav->onRead(pWav->pUserData, &nibbles, 4) != 4) {
pWav->ima.cachedFrameCount = 0;
return totalFramesRead;
}
pWav->ima.bytesRemainingInBlock -= 4;
for (iByte = 0; iByte < 4; ++iByte) {
drwav_uint8 nibble0 = ((nibbles[iByte] & 0x0F) >> 0);
drwav_uint8 nibble1 = ((nibbles[iByte] & 0xF0) >> 4);
drwav_int32 step = stepTable[pWav->ima.stepIndex[iChannel]];
drwav_int32 predictor = pWav->ima.predictor[iChannel];
drwav_int32 diff = step >> 3;
if (nibble0 & 1) diff += step >> 2;
if (nibble0 & 2) diff += step >> 1;
if (nibble0 & 4) diff += step;
if (nibble0 & 8) diff = -diff;
predictor = drwav_clamp(predictor + diff, -32768, 32767);
pWav->ima.predictor[iChannel] = predictor;
pWav->ima.stepIndex[iChannel] = drwav_clamp(pWav->ima.stepIndex[iChannel] + indexTable[nibble0], 0, (drwav_int32)drwav_countof(stepTable)-1);
pWav->ima.cachedFrames[(drwav_countof(pWav->ima.cachedFrames) - (pWav->ima.cachedFrameCount*pWav->channels)) + (iByte*2+0)*pWav->channels + iChannel] = predictor;
step = stepTable[pWav->ima.stepIndex[iChannel]];
predictor = pWav->ima.predictor[iChannel];
diff = step >> 3;
if (nibble1 & 1) diff += step >> 2;
if (nibble1 & 2) diff += step >> 1;
if (nibble1 & 4) diff += step;
if (nibble1 & 8) diff = -diff;
predictor = drwav_clamp(predictor + diff, -32768, 32767);
pWav->ima.predictor[iChannel] = predictor;
pWav->ima.stepIndex[iChannel] = drwav_clamp(pWav->ima.stepIndex[iChannel] + indexTable[nibble1], 0, (drwav_int32)drwav_countof(stepTable)-1);
pWav->ima.cachedFrames[(drwav_countof(pWav->ima.cachedFrames) - (pWav->ima.cachedFrameCount*pWav->channels)) + (iByte*2+1)*pWav->channels + iChannel] = predictor;
}
}
}
}
}
return totalFramesRead;
}
#ifndef DR_WAV_NO_CONVERSION_API
static unsigned short g_drwavAlawTable[256] = {
0xEA80, 0xEB80, 0xE880, 0xE980, 0xEE80, 0xEF80, 0xEC80, 0xED80, 0xE280, 0xE380, 0xE080, 0xE180, 0xE680, 0xE780, 0xE480, 0xE580,
0xF540, 0xF5C0, 0xF440, 0xF4C0, 0xF740, 0xF7C0, 0xF640, 0xF6C0, 0xF140, 0xF1C0, 0xF040, 0xF0C0, 0xF340, 0xF3C0, 0xF240, 0xF2C0,
0xAA00, 0xAE00, 0xA200, 0xA600, 0xBA00, 0xBE00, 0xB200, 0xB600, 0x8A00, 0x8E00, 0x8200, 0x8600, 0x9A00, 0x9E00, 0x9200, 0x9600,
0xD500, 0xD700, 0xD100, 0xD300, 0xDD00, 0xDF00, 0xD900, 0xDB00, 0xC500, 0xC700, 0xC100, 0xC300, 0xCD00, 0xCF00, 0xC900, 0xCB00,
0xFEA8, 0xFEB8, 0xFE88, 0xFE98, 0xFEE8, 0xFEF8, 0xFEC8, 0xFED8, 0xFE28, 0xFE38, 0xFE08, 0xFE18, 0xFE68, 0xFE78, 0xFE48, 0xFE58,
0xFFA8, 0xFFB8, 0xFF88, 0xFF98, 0xFFE8, 0xFFF8, 0xFFC8, 0xFFD8, 0xFF28, 0xFF38, 0xFF08, 0xFF18, 0xFF68, 0xFF78, 0xFF48, 0xFF58,
0xFAA0, 0xFAE0, 0xFA20, 0xFA60, 0xFBA0, 0xFBE0, 0xFB20, 0xFB60, 0xF8A0, 0xF8E0, 0xF820, 0xF860, 0xF9A0, 0xF9E0, 0xF920, 0xF960,
0xFD50, 0xFD70, 0xFD10, 0xFD30, 0xFDD0, 0xFDF0, 0xFD90, 0xFDB0, 0xFC50, 0xFC70, 0xFC10, 0xFC30, 0xFCD0, 0xFCF0, 0xFC90, 0xFCB0,
0x1580, 0x1480, 0x1780, 0x1680, 0x1180, 0x1080, 0x1380, 0x1280, 0x1D80, 0x1C80, 0x1F80, 0x1E80, 0x1980, 0x1880, 0x1B80, 0x1A80,
0x0AC0, 0x0A40, 0x0BC0, 0x0B40, 0x08C0, 0x0840, 0x09C0, 0x0940, 0x0EC0, 0x0E40, 0x0FC0, 0x0F40, 0x0CC0, 0x0C40, 0x0DC0, 0x0D40,
0x5600, 0x5200, 0x5E00, 0x5A00, 0x4600, 0x4200, 0x4E00, 0x4A00, 0x7600, 0x7200, 0x7E00, 0x7A00, 0x6600, 0x6200, 0x6E00, 0x6A00,
0x2B00, 0x2900, 0x2F00, 0x2D00, 0x2300, 0x2100, 0x2700, 0x2500, 0x3B00, 0x3900, 0x3F00, 0x3D00, 0x3300, 0x3100, 0x3700, 0x3500,
0x0158, 0x0148, 0x0178, 0x0168, 0x0118, 0x0108, 0x0138, 0x0128, 0x01D8, 0x01C8, 0x01F8, 0x01E8, 0x0198, 0x0188, 0x01B8, 0x01A8,
0x0058, 0x0048, 0x0078, 0x0068, 0x0018, 0x0008, 0x0038, 0x0028, 0x00D8, 0x00C8, 0x00F8, 0x00E8, 0x0098, 0x0088, 0x00B8, 0x00A8,
0x0560, 0x0520, 0x05E0, 0x05A0, 0x0460, 0x0420, 0x04E0, 0x04A0, 0x0760, 0x0720, 0x07E0, 0x07A0, 0x0660, 0x0620, 0x06E0, 0x06A0,
0x02B0, 0x0290, 0x02F0, 0x02D0, 0x0230, 0x0210, 0x0270, 0x0250, 0x03B0, 0x0390, 0x03F0, 0x03D0, 0x0330, 0x0310, 0x0370, 0x0350
};
static unsigned short g_drwavMulawTable[256] = {
0x8284, 0x8684, 0x8A84, 0x8E84, 0x9284, 0x9684, 0x9A84, 0x9E84, 0xA284, 0xA684, 0xAA84, 0xAE84, 0xB284, 0xB684, 0xBA84, 0xBE84,
0xC184, 0xC384, 0xC584, 0xC784, 0xC984, 0xCB84, 0xCD84, 0xCF84, 0xD184, 0xD384, 0xD584, 0xD784, 0xD984, 0xDB84, 0xDD84, 0xDF84,
0xE104, 0xE204, 0xE304, 0xE404, 0xE504, 0xE604, 0xE704, 0xE804, 0xE904, 0xEA04, 0xEB04, 0xEC04, 0xED04, 0xEE04, 0xEF04, 0xF004,
0xF0C4, 0xF144, 0xF1C4, 0xF244, 0xF2C4, 0xF344, 0xF3C4, 0xF444, 0xF4C4, 0xF544, 0xF5C4, 0xF644, 0xF6C4, 0xF744, 0xF7C4, 0xF844,
0xF8A4, 0xF8E4, 0xF924, 0xF964, 0xF9A4, 0xF9E4, 0xFA24, 0xFA64, 0xFAA4, 0xFAE4, 0xFB24, 0xFB64, 0xFBA4, 0xFBE4, 0xFC24, 0xFC64,
0xFC94, 0xFCB4, 0xFCD4, 0xFCF4, 0xFD14, 0xFD34, 0xFD54, 0xFD74, 0xFD94, 0xFDB4, 0xFDD4, 0xFDF4, 0xFE14, 0xFE34, 0xFE54, 0xFE74,
0xFE8C, 0xFE9C, 0xFEAC, 0xFEBC, 0xFECC, 0xFEDC, 0xFEEC, 0xFEFC, 0xFF0C, 0xFF1C, 0xFF2C, 0xFF3C, 0xFF4C, 0xFF5C, 0xFF6C, 0xFF7C,
0xFF88, 0xFF90, 0xFF98, 0xFFA0, 0xFFA8, 0xFFB0, 0xFFB8, 0xFFC0, 0xFFC8, 0xFFD0, 0xFFD8, 0xFFE0, 0xFFE8, 0xFFF0, 0xFFF8, 0x0000,
0x7D7C, 0x797C, 0x757C, 0x717C, 0x6D7C, 0x697C, 0x657C, 0x617C, 0x5D7C, 0x597C, 0x557C, 0x517C, 0x4D7C, 0x497C, 0x457C, 0x417C,
0x3E7C, 0x3C7C, 0x3A7C, 0x387C, 0x367C, 0x347C, 0x327C, 0x307C, 0x2E7C, 0x2C7C, 0x2A7C, 0x287C, 0x267C, 0x247C, 0x227C, 0x207C,
0x1EFC, 0x1DFC, 0x1CFC, 0x1BFC, 0x1AFC, 0x19FC, 0x18FC, 0x17FC, 0x16FC, 0x15FC, 0x14FC, 0x13FC, 0x12FC, 0x11FC, 0x10FC, 0x0FFC,
0x0F3C, 0x0EBC, 0x0E3C, 0x0DBC, 0x0D3C, 0x0CBC, 0x0C3C, 0x0BBC, 0x0B3C, 0x0ABC, 0x0A3C, 0x09BC, 0x093C, 0x08BC, 0x083C, 0x07BC,
0x075C, 0x071C, 0x06DC, 0x069C, 0x065C, 0x061C, 0x05DC, 0x059C, 0x055C, 0x051C, 0x04DC, 0x049C, 0x045C, 0x041C, 0x03DC, 0x039C,
0x036C, 0x034C, 0x032C, 0x030C, 0x02EC, 0x02CC, 0x02AC, 0x028C, 0x026C, 0x024C, 0x022C, 0x020C, 0x01EC, 0x01CC, 0x01AC, 0x018C,
0x0174, 0x0164, 0x0154, 0x0144, 0x0134, 0x0124, 0x0114, 0x0104, 0x00F4, 0x00E4, 0x00D4, 0x00C4, 0x00B4, 0x00A4, 0x0094, 0x0084,
0x0078, 0x0070, 0x0068, 0x0060, 0x0058, 0x0050, 0x0048, 0x0040, 0x0038, 0x0030, 0x0028, 0x0020, 0x0018, 0x0010, 0x0008, 0x0000
};
static DRWAV_INLINE drwav_int16 drwav__alaw_to_s16(drwav_uint8 sampleIn)
{
return (short)g_drwavAlawTable[sampleIn];
}
static DRWAV_INLINE drwav_int16 drwav__mulaw_to_s16(drwav_uint8 sampleIn)
{
return (short)g_drwavMulawTable[sampleIn];
}
DRWAV_PRIVATE void drwav__pcm_to_s16(drwav_int16* pOut, const drwav_uint8* pIn, size_t totalSampleCount, unsigned int bytesPerSample)
{
size_t i;
/* Special case for 8-bit sample data because it's treated as unsigned. */
if (bytesPerSample == 1) {
drwav_u8_to_s16(pOut, pIn, totalSampleCount);
return;
}
/* Slightly more optimal implementation for common formats. */
if (bytesPerSample == 2) {
for (i = 0; i < totalSampleCount; ++i) {
*pOut++ = ((const drwav_int16*)pIn)[i];
}
return;
}
if (bytesPerSample == 3) {
drwav_s24_to_s16(pOut, pIn, totalSampleCount);
return;
}
if (bytesPerSample == 4) {
drwav_s32_to_s16(pOut, (const drwav_int32*)pIn, totalSampleCount);
return;
}
/* Anything more than 64 bits per sample is not supported. */
if (bytesPerSample > 8) {
DRWAV_ZERO_MEMORY(pOut, totalSampleCount * sizeof(*pOut));
return;
}
/* Generic, slow converter. */
for (i = 0; i < totalSampleCount; ++i) {
drwav_uint64 sample = 0;
unsigned int shift = (8 - bytesPerSample) * 8;
unsigned int j;
for (j = 0; j < bytesPerSample; j += 1) {
DRWAV_ASSERT(j < 8);
sample |= (drwav_uint64)(pIn[j]) << shift;
shift += 8;
}
pIn += j;
*pOut++ = (drwav_int16)((drwav_int64)sample >> 48);
}
}
DRWAV_PRIVATE void drwav__ieee_to_s16(drwav_int16* pOut, const drwav_uint8* pIn, size_t totalSampleCount, unsigned int bytesPerSample)
{
if (bytesPerSample == 4) {
drwav_f32_to_s16(pOut, (const float*)pIn, totalSampleCount);
return;
} else if (bytesPerSample == 8) {
drwav_f64_to_s16(pOut, (const double*)pIn, totalSampleCount);
return;
} else {
/* Only supporting 32- and 64-bit float. Output silence in all other cases. Contributions welcome for 16-bit float. */
DRWAV_ZERO_MEMORY(pOut, totalSampleCount * sizeof(*pOut));
return;
}
}
DRWAV_PRIVATE drwav_uint64 drwav_read_pcm_frames_s16__pcm(drwav* pWav, drwav_uint64 framesToRead, drwav_int16* pBufferOut)
{
drwav_uint64 totalFramesRead;
drwav_uint8 sampleData[4096] = {0};
drwav_uint32 bytesPerFrame;
drwav_uint32 bytesPerSample;
drwav_uint64 samplesRead;
/* Fast path. */
if ((pWav->translatedFormatTag == DR_WAVE_FORMAT_PCM && pWav->bitsPerSample == 16) || pBufferOut == NULL) {
return drwav_read_pcm_frames(pWav, framesToRead, pBufferOut);
}
bytesPerFrame = drwav_get_bytes_per_pcm_frame(pWav);
if (bytesPerFrame == 0) {
return 0;
}
bytesPerSample = bytesPerFrame / pWav->channels;
if (bytesPerSample == 0 || (bytesPerFrame % pWav->channels) != 0) {
return 0; /* Only byte-aligned formats are supported. */
}
totalFramesRead = 0;
while (framesToRead > 0) {
drwav_uint64 framesToReadThisIteration = drwav_min(framesToRead, sizeof(sampleData)/bytesPerFrame);
drwav_uint64 framesRead = drwav_read_pcm_frames(pWav, framesToReadThisIteration, sampleData);
if (framesRead == 0) {
break;
}
DRWAV_ASSERT(framesRead <= framesToReadThisIteration); /* If this fails it means there's a bug in drwav_read_pcm_frames(). */
/* Validation to ensure we don't read too much from out intermediary buffer. This is to protect from invalid files. */
samplesRead = framesRead * pWav->channels;
if ((samplesRead * bytesPerSample) > sizeof(sampleData)) {
DRWAV_ASSERT(DRWAV_FALSE); /* This should never happen with a valid file. */
break;
}
drwav__pcm_to_s16(pBufferOut, sampleData, (size_t)samplesRead, bytesPerSample);
pBufferOut += samplesRead;
framesToRead -= framesRead;
totalFramesRead += framesRead;
}
return totalFramesRead;
}
DRWAV_PRIVATE drwav_uint64 drwav_read_pcm_frames_s16__ieee(drwav* pWav, drwav_uint64 framesToRead, drwav_int16* pBufferOut)
{
drwav_uint64 totalFramesRead;
drwav_uint8 sampleData[4096] = {0};
drwav_uint32 bytesPerFrame;
drwav_uint32 bytesPerSample;
drwav_uint64 samplesRead;
if (pBufferOut == NULL) {
return drwav_read_pcm_frames(pWav, framesToRead, NULL);
}
bytesPerFrame = drwav_get_bytes_per_pcm_frame(pWav);
if (bytesPerFrame == 0) {
return 0;
}
bytesPerSample = bytesPerFrame / pWav->channels;
if (bytesPerSample == 0 || (bytesPerFrame % pWav->channels) != 0) {
return 0; /* Only byte-aligned formats are supported. */
}
totalFramesRead = 0;
while (framesToRead > 0) {
drwav_uint64 framesToReadThisIteration = drwav_min(framesToRead, sizeof(sampleData)/bytesPerFrame);
drwav_uint64 framesRead = drwav_read_pcm_frames(pWav, framesToReadThisIteration, sampleData);
if (framesRead == 0) {
break;
}
DRWAV_ASSERT(framesRead <= framesToReadThisIteration); /* If this fails it means there's a bug in drwav_read_pcm_frames(). */
/* Validation to ensure we don't read too much from out intermediary buffer. This is to protect from invalid files. */
samplesRead = framesRead * pWav->channels;
if ((samplesRead * bytesPerSample) > sizeof(sampleData)) {
DRWAV_ASSERT(DRWAV_FALSE); /* This should never happen with a valid file. */
break;
}
drwav__ieee_to_s16(pBufferOut, sampleData, (size_t)samplesRead, bytesPerSample); /* Safe cast. */
pBufferOut += samplesRead;
framesToRead -= framesRead;
totalFramesRead += framesRead;
}
return totalFramesRead;
}
DRWAV_PRIVATE drwav_uint64 drwav_read_pcm_frames_s16__alaw(drwav* pWav, drwav_uint64 framesToRead, drwav_int16* pBufferOut)
{
drwav_uint64 totalFramesRead;
drwav_uint8 sampleData[4096] = {0};
drwav_uint32 bytesPerFrame;
drwav_uint32 bytesPerSample;
drwav_uint64 samplesRead;
if (pBufferOut == NULL) {
return drwav_read_pcm_frames(pWav, framesToRead, NULL);
}
bytesPerFrame = drwav_get_bytes_per_pcm_frame(pWav);
if (bytesPerFrame == 0) {
return 0;
}
bytesPerSample = bytesPerFrame / pWav->channels;
if (bytesPerSample == 0 || (bytesPerFrame % pWav->channels) != 0) {
return 0; /* Only byte-aligned formats are supported. */
}
totalFramesRead = 0;
while (framesToRead > 0) {
drwav_uint64 framesToReadThisIteration = drwav_min(framesToRead, sizeof(sampleData)/bytesPerFrame);
drwav_uint64 framesRead = drwav_read_pcm_frames(pWav, framesToReadThisIteration, sampleData);
if (framesRead == 0) {
break;
}
DRWAV_ASSERT(framesRead <= framesToReadThisIteration); /* If this fails it means there's a bug in drwav_read_pcm_frames(). */
/* Validation to ensure we don't read too much from out intermediary buffer. This is to protect from invalid files. */
samplesRead = framesRead * pWav->channels;
if ((samplesRead * bytesPerSample) > sizeof(sampleData)) {
DRWAV_ASSERT(DRWAV_FALSE); /* This should never happen with a valid file. */
break;
}
drwav_alaw_to_s16(pBufferOut, sampleData, (size_t)samplesRead);
/*
For some reason libsndfile seems to be returning samples of the opposite sign for a-law, but only
with AIFF files. For WAV files it seems to be the same as dr_wav. This is resulting in dr_wav's
automated tests failing. I'm not sure which is correct, but will assume dr_wav. If we're enforcing
libsndfile compatibility we'll swap the signs here.
*/
#ifdef DR_WAV_LIBSNDFILE_COMPAT
{
if (pWav->container == drwav_container_aiff) {
drwav_uint64 iSample;
for (iSample = 0; iSample < samplesRead; iSample += 1) {
pBufferOut[iSample] = -pBufferOut[iSample];
}
}
}
#endif
pBufferOut += samplesRead;
framesToRead -= framesRead;
totalFramesRead += framesRead;
}
return totalFramesRead;
}
DRWAV_PRIVATE drwav_uint64 drwav_read_pcm_frames_s16__mulaw(drwav* pWav, drwav_uint64 framesToRead, drwav_int16* pBufferOut)
{
drwav_uint64 totalFramesRead;
drwav_uint8 sampleData[4096] = {0};
drwav_uint32 bytesPerFrame;
drwav_uint32 bytesPerSample;
drwav_uint64 samplesRead;
if (pBufferOut == NULL) {
return drwav_read_pcm_frames(pWav, framesToRead, NULL);
}
bytesPerFrame = drwav_get_bytes_per_pcm_frame(pWav);
if (bytesPerFrame == 0) {
return 0;
}
bytesPerSample = bytesPerFrame / pWav->channels;
if (bytesPerSample == 0 || (bytesPerFrame % pWav->channels) != 0) {
return 0; /* Only byte-aligned formats are supported. */
}
totalFramesRead = 0;
while (framesToRead > 0) {
drwav_uint64 framesToReadThisIteration = drwav_min(framesToRead, sizeof(sampleData)/bytesPerFrame);
drwav_uint64 framesRead = drwav_read_pcm_frames(pWav, framesToReadThisIteration, sampleData);
if (framesRead == 0) {
break;
}
DRWAV_ASSERT(framesRead <= framesToReadThisIteration); /* If this fails it means there's a bug in drwav_read_pcm_frames(). */
/* Validation to ensure we don't read too much from out intermediary buffer. This is to protect from invalid files. */
samplesRead = framesRead * pWav->channels;
if ((samplesRead * bytesPerSample) > sizeof(sampleData)) {
DRWAV_ASSERT(DRWAV_FALSE); /* This should never happen with a valid file. */
break;
}
drwav_mulaw_to_s16(pBufferOut, sampleData, (size_t)samplesRead);
/*
Just like with alaw, for some reason the signs between libsndfile and dr_wav are opposite. We just need to
swap the sign if we're compiling with libsndfile compatiblity so our automated tests don't fail.
*/
#ifdef DR_WAV_LIBSNDFILE_COMPAT
{
if (pWav->container == drwav_container_aiff) {
drwav_uint64 iSample;
for (iSample = 0; iSample < samplesRead; iSample += 1) {
pBufferOut[iSample] = -pBufferOut[iSample];
}
}
}
#endif
pBufferOut += samplesRead;
framesToRead -= framesRead;
totalFramesRead += framesRead;
}
return totalFramesRead;
}
DRWAV_API drwav_uint64 drwav_read_pcm_frames_s16(drwav* pWav, drwav_uint64 framesToRead, drwav_int16* pBufferOut)
{
if (pWav == NULL || framesToRead == 0) {
return 0;
}
if (pBufferOut == NULL) {
return drwav_read_pcm_frames(pWav, framesToRead, NULL);
}
/* Don't try to read more samples than can potentially fit in the output buffer. */
if (framesToRead * pWav->channels * sizeof(drwav_int16) > DRWAV_SIZE_MAX) {
framesToRead = DRWAV_SIZE_MAX / sizeof(drwav_int16) / pWav->channels;
}
if (pWav->translatedFormatTag == DR_WAVE_FORMAT_PCM) {
return drwav_read_pcm_frames_s16__pcm(pWav, framesToRead, pBufferOut);
}
if (pWav->translatedFormatTag == DR_WAVE_FORMAT_IEEE_FLOAT) {
return drwav_read_pcm_frames_s16__ieee(pWav, framesToRead, pBufferOut);
}
if (pWav->translatedFormatTag == DR_WAVE_FORMAT_ALAW) {
return drwav_read_pcm_frames_s16__alaw(pWav, framesToRead, pBufferOut);
}
if (pWav->translatedFormatTag == DR_WAVE_FORMAT_MULAW) {
return drwav_read_pcm_frames_s16__mulaw(pWav, framesToRead, pBufferOut);
}
if (pWav->translatedFormatTag == DR_WAVE_FORMAT_ADPCM) {
return drwav_read_pcm_frames_s16__msadpcm(pWav, framesToRead, pBufferOut);
}
if (pWav->translatedFormatTag == DR_WAVE_FORMAT_DVI_ADPCM) {
return drwav_read_pcm_frames_s16__ima(pWav, framesToRead, pBufferOut);
}
return 0;
}
DRWAV_API drwav_uint64 drwav_read_pcm_frames_s16le(drwav* pWav, drwav_uint64 framesToRead, drwav_int16* pBufferOut)
{
drwav_uint64 framesRead = drwav_read_pcm_frames_s16(pWav, framesToRead, pBufferOut);
if (pBufferOut != NULL && drwav__is_little_endian() == DRWAV_FALSE) {
drwav__bswap_samples_s16(pBufferOut, framesRead*pWav->channels);
}
return framesRead;
}
DRWAV_API drwav_uint64 drwav_read_pcm_frames_s16be(drwav* pWav, drwav_uint64 framesToRead, drwav_int16* pBufferOut)
{
drwav_uint64 framesRead = drwav_read_pcm_frames_s16(pWav, framesToRead, pBufferOut);
if (pBufferOut != NULL && drwav__is_little_endian() == DRWAV_TRUE) {
drwav__bswap_samples_s16(pBufferOut, framesRead*pWav->channels);
}
return framesRead;
}
DRWAV_API void drwav_u8_to_s16(drwav_int16* pOut, const drwav_uint8* pIn, size_t sampleCount)
{
int r;
size_t i;
for (i = 0; i < sampleCount; ++i) {
int x = pIn[i];
r = x << 8;
r = r - 32768;
pOut[i] = (short)r;
}
}
DRWAV_API void drwav_s24_to_s16(drwav_int16* pOut, const drwav_uint8* pIn, size_t sampleCount)
{
int r;
size_t i;
for (i = 0; i < sampleCount; ++i) {
int x = ((int)(((unsigned int)(((const drwav_uint8*)pIn)[i*3+0]) << 8) | ((unsigned int)(((const drwav_uint8*)pIn)[i*3+1]) << 16) | ((unsigned int)(((const drwav_uint8*)pIn)[i*3+2])) << 24)) >> 8;
r = x >> 8;
pOut[i] = (short)r;
}
}
DRWAV_API void drwav_s32_to_s16(drwav_int16* pOut, const drwav_int32* pIn, size_t sampleCount)
{
int r;
size_t i;
for (i = 0; i < sampleCount; ++i) {
int x = pIn[i];
r = x >> 16;
pOut[i] = (short)r;
}
}
DRWAV_API void drwav_f32_to_s16(drwav_int16* pOut, const float* pIn, size_t sampleCount)
{
int r;
size_t i;
for (i = 0; i < sampleCount; ++i) {
float x = pIn[i];
float c;
c = ((x < -1) ? -1 : ((x > 1) ? 1 : x));
c = c + 1;
r = (int)(c * 32767.5f);
r = r - 32768;
pOut[i] = (short)r;
}
}
DRWAV_API void drwav_f64_to_s16(drwav_int16* pOut, const double* pIn, size_t sampleCount)
{
int r;
size_t i;
for (i = 0; i < sampleCount; ++i) {
double x = pIn[i];
double c;
c = ((x < -1) ? -1 : ((x > 1) ? 1 : x));
c = c + 1;
r = (int)(c * 32767.5);
r = r - 32768;
pOut[i] = (short)r;
}
}
DRWAV_API void drwav_alaw_to_s16(drwav_int16* pOut, const drwav_uint8* pIn, size_t sampleCount)
{
size_t i;
for (i = 0; i < sampleCount; ++i) {
pOut[i] = drwav__alaw_to_s16(pIn[i]);
}
}
DRWAV_API void drwav_mulaw_to_s16(drwav_int16* pOut, const drwav_uint8* pIn, size_t sampleCount)
{
size_t i;
for (i = 0; i < sampleCount; ++i) {
pOut[i] = drwav__mulaw_to_s16(pIn[i]);
}
}
DRWAV_PRIVATE void drwav__pcm_to_f32(float* pOut, const drwav_uint8* pIn, size_t sampleCount, unsigned int bytesPerSample)
{
unsigned int i;
/* Special case for 8-bit sample data because it's treated as unsigned. */
if (bytesPerSample == 1) {
drwav_u8_to_f32(pOut, pIn, sampleCount);
return;
}
/* Slightly more optimal implementation for common formats. */
if (bytesPerSample == 2) {
drwav_s16_to_f32(pOut, (const drwav_int16*)pIn, sampleCount);
return;
}
if (bytesPerSample == 3) {
drwav_s24_to_f32(pOut, pIn, sampleCount);
return;
}
if (bytesPerSample == 4) {
drwav_s32_to_f32(pOut, (const drwav_int32*)pIn, sampleCount);
return;
}
/* Anything more than 64 bits per sample is not supported. */
if (bytesPerSample > 8) {
DRWAV_ZERO_MEMORY(pOut, sampleCount * sizeof(*pOut));
return;
}
/* Generic, slow converter. */
for (i = 0; i < sampleCount; ++i) {
drwav_uint64 sample = 0;
unsigned int shift = (8 - bytesPerSample) * 8;
unsigned int j;
for (j = 0; j < bytesPerSample; j += 1) {
DRWAV_ASSERT(j < 8);
sample |= (drwav_uint64)(pIn[j]) << shift;
shift += 8;
}
pIn += j;
*pOut++ = (float)((drwav_int64)sample / 9223372036854775807.0);
}
}
DRWAV_PRIVATE void drwav__ieee_to_f32(float* pOut, const drwav_uint8* pIn, size_t sampleCount, unsigned int bytesPerSample)
{
if (bytesPerSample == 4) {
unsigned int i;
for (i = 0; i < sampleCount; ++i) {
*pOut++ = ((const float*)pIn)[i];
}
return;
} else if (bytesPerSample == 8) {
drwav_f64_to_f32(pOut, (const double*)pIn, sampleCount);
return;
} else {
/* Only supporting 32- and 64-bit float. Output silence in all other cases. Contributions welcome for 16-bit float. */
DRWAV_ZERO_MEMORY(pOut, sampleCount * sizeof(*pOut));
return;
}
}
DRWAV_PRIVATE drwav_uint64 drwav_read_pcm_frames_f32__pcm(drwav* pWav, drwav_uint64 framesToRead, float* pBufferOut)
{
drwav_uint64 totalFramesRead;
drwav_uint8 sampleData[4096] = {0};
drwav_uint32 bytesPerFrame;
drwav_uint32 bytesPerSample;
drwav_uint64 samplesRead;
bytesPerFrame = drwav_get_bytes_per_pcm_frame(pWav);
if (bytesPerFrame == 0) {
return 0;
}
bytesPerSample = bytesPerFrame / pWav->channels;
if (bytesPerSample == 0 || (bytesPerFrame % pWav->channels) != 0) {
return 0; /* Only byte-aligned formats are supported. */
}
totalFramesRead = 0;
while (framesToRead > 0) {
drwav_uint64 framesToReadThisIteration = drwav_min(framesToRead, sizeof(sampleData)/bytesPerFrame);
drwav_uint64 framesRead = drwav_read_pcm_frames(pWav, framesToReadThisIteration, sampleData);
if (framesRead == 0) {
break;
}
DRWAV_ASSERT(framesRead <= framesToReadThisIteration); /* If this fails it means there's a bug in drwav_read_pcm_frames(). */
/* Validation to ensure we don't read too much from out intermediary buffer. This is to protect from invalid files. */
samplesRead = framesRead * pWav->channels;
if ((samplesRead * bytesPerSample) > sizeof(sampleData)) {
DRWAV_ASSERT(DRWAV_FALSE); /* This should never happen with a valid file. */
break;
}
drwav__pcm_to_f32(pBufferOut, sampleData, (size_t)samplesRead, bytesPerSample);
pBufferOut += samplesRead;
framesToRead -= framesRead;
totalFramesRead += framesRead;
}
return totalFramesRead;
}
DRWAV_PRIVATE drwav_uint64 drwav_read_pcm_frames_f32__msadpcm_ima(drwav* pWav, drwav_uint64 framesToRead, float* pBufferOut)
{
/*
We're just going to borrow the implementation from the drwav_read_s16() since ADPCM is a little bit more complicated than other formats and I don't
want to duplicate that code.
*/
drwav_uint64 totalFramesRead;
drwav_int16 samples16[2048];
totalFramesRead = 0;
while (framesToRead > 0) {
drwav_uint64 framesToReadThisIteration = drwav_min(framesToRead, drwav_countof(samples16)/pWav->channels);
drwav_uint64 framesRead = drwav_read_pcm_frames_s16(pWav, framesToReadThisIteration, samples16);
if (framesRead == 0) {
break;
}
DRWAV_ASSERT(framesRead <= framesToReadThisIteration); /* If this fails it means there's a bug in drwav_read_pcm_frames(). */
drwav_s16_to_f32(pBufferOut, samples16, (size_t)(framesRead*pWav->channels)); /* <-- Safe cast because we're clamping to 2048. */
pBufferOut += framesRead*pWav->channels;
framesToRead -= framesRead;
totalFramesRead += framesRead;
}
return totalFramesRead;
}
DRWAV_PRIVATE drwav_uint64 drwav_read_pcm_frames_f32__ieee(drwav* pWav, drwav_uint64 framesToRead, float* pBufferOut)
{
drwav_uint64 totalFramesRead;
drwav_uint8 sampleData[4096] = {0};
drwav_uint32 bytesPerFrame;
drwav_uint32 bytesPerSample;
drwav_uint64 samplesRead;
/* Fast path. */
if (pWav->translatedFormatTag == DR_WAVE_FORMAT_IEEE_FLOAT && pWav->bitsPerSample == 32) {
return drwav_read_pcm_frames(pWav, framesToRead, pBufferOut);
}
bytesPerFrame = drwav_get_bytes_per_pcm_frame(pWav);
if (bytesPerFrame == 0) {
return 0;
}
bytesPerSample = bytesPerFrame / pWav->channels;
if (bytesPerSample == 0 || (bytesPerFrame % pWav->channels) != 0) {
return 0; /* Only byte-aligned formats are supported. */
}
totalFramesRead = 0;
while (framesToRead > 0) {
drwav_uint64 framesToReadThisIteration = drwav_min(framesToRead, sizeof(sampleData)/bytesPerFrame);
drwav_uint64 framesRead = drwav_read_pcm_frames(pWav, framesToReadThisIteration, sampleData);
if (framesRead == 0) {
break;
}
DRWAV_ASSERT(framesRead <= framesToReadThisIteration); /* If this fails it means there's a bug in drwav_read_pcm_frames(). */
/* Validation to ensure we don't read too much from out intermediary buffer. This is to protect from invalid files. */
samplesRead = framesRead * pWav->channels;
if ((samplesRead * bytesPerSample) > sizeof(sampleData)) {
DRWAV_ASSERT(DRWAV_FALSE); /* This should never happen with a valid file. */
break;
}
drwav__ieee_to_f32(pBufferOut, sampleData, (size_t)samplesRead, bytesPerSample);
pBufferOut += samplesRead;
framesToRead -= framesRead;
totalFramesRead += framesRead;
}
return totalFramesRead;
}
DRWAV_PRIVATE drwav_uint64 drwav_read_pcm_frames_f32__alaw(drwav* pWav, drwav_uint64 framesToRead, float* pBufferOut)
{
drwav_uint64 totalFramesRead;
drwav_uint8 sampleData[4096] = {0};
drwav_uint32 bytesPerFrame;
drwav_uint32 bytesPerSample;
drwav_uint64 samplesRead;
bytesPerFrame = drwav_get_bytes_per_pcm_frame(pWav);
if (bytesPerFrame == 0) {
return 0;
}
bytesPerSample = bytesPerFrame / pWav->channels;
if (bytesPerSample == 0 || (bytesPerFrame % pWav->channels) != 0) {
return 0; /* Only byte-aligned formats are supported. */
}
totalFramesRead = 0;
while (framesToRead > 0) {
drwav_uint64 framesToReadThisIteration = drwav_min(framesToRead, sizeof(sampleData)/bytesPerFrame);
drwav_uint64 framesRead = drwav_read_pcm_frames(pWav, framesToReadThisIteration, sampleData);
if (framesRead == 0) {
break;
}
DRWAV_ASSERT(framesRead <= framesToReadThisIteration); /* If this fails it means there's a bug in drwav_read_pcm_frames(). */
/* Validation to ensure we don't read too much from out intermediary buffer. This is to protect from invalid files. */
samplesRead = framesRead * pWav->channels;
if ((samplesRead * bytesPerSample) > sizeof(sampleData)) {
DRWAV_ASSERT(DRWAV_FALSE); /* This should never happen with a valid file. */
break;
}
drwav_alaw_to_f32(pBufferOut, sampleData, (size_t)samplesRead);
#ifdef DR_WAV_LIBSNDFILE_COMPAT
{
if (pWav->container == drwav_container_aiff) {
drwav_uint64 iSample;
for (iSample = 0; iSample < samplesRead; iSample += 1) {
pBufferOut[iSample] = -pBufferOut[iSample];
}
}
}
#endif
pBufferOut += samplesRead;
framesToRead -= framesRead;
totalFramesRead += framesRead;
}
return totalFramesRead;
}
DRWAV_PRIVATE drwav_uint64 drwav_read_pcm_frames_f32__mulaw(drwav* pWav, drwav_uint64 framesToRead, float* pBufferOut)
{
drwav_uint64 totalFramesRead;
drwav_uint8 sampleData[4096] = {0};
drwav_uint32 bytesPerFrame;
drwav_uint32 bytesPerSample;
drwav_uint64 samplesRead;
bytesPerFrame = drwav_get_bytes_per_pcm_frame(pWav);
if (bytesPerFrame == 0) {
return 0;
}
bytesPerSample = bytesPerFrame / pWav->channels;
if (bytesPerSample == 0 || (bytesPerFrame % pWav->channels) != 0) {
return 0; /* Only byte-aligned formats are supported. */
}
totalFramesRead = 0;
while (framesToRead > 0) {
drwav_uint64 framesToReadThisIteration = drwav_min(framesToRead, sizeof(sampleData)/bytesPerFrame);
drwav_uint64 framesRead = drwav_read_pcm_frames(pWav, framesToReadThisIteration, sampleData);
if (framesRead == 0) {
break;
}
DRWAV_ASSERT(framesRead <= framesToReadThisIteration); /* If this fails it means there's a bug in drwav_read_pcm_frames(). */
/* Validation to ensure we don't read too much from out intermediary buffer. This is to protect from invalid files. */
samplesRead = framesRead * pWav->channels;
if ((samplesRead * bytesPerSample) > sizeof(sampleData)) {
DRWAV_ASSERT(DRWAV_FALSE); /* This should never happen with a valid file. */
break;
}
drwav_mulaw_to_f32(pBufferOut, sampleData, (size_t)samplesRead);
#ifdef DR_WAV_LIBSNDFILE_COMPAT
{
if (pWav->container == drwav_container_aiff) {
drwav_uint64 iSample;
for (iSample = 0; iSample < samplesRead; iSample += 1) {
pBufferOut[iSample] = -pBufferOut[iSample];
}
}
}
#endif
pBufferOut += samplesRead;
framesToRead -= framesRead;
totalFramesRead += framesRead;
}
return totalFramesRead;
}
DRWAV_API drwav_uint64 drwav_read_pcm_frames_f32(drwav* pWav, drwav_uint64 framesToRead, float* pBufferOut)
{
if (pWav == NULL || framesToRead == 0) {
return 0;
}
if (pBufferOut == NULL) {
return drwav_read_pcm_frames(pWav, framesToRead, NULL);
}
/* Don't try to read more samples than can potentially fit in the output buffer. */
if (framesToRead * pWav->channels * sizeof(float) > DRWAV_SIZE_MAX) {
framesToRead = DRWAV_SIZE_MAX / sizeof(float) / pWav->channels;
}
if (pWav->translatedFormatTag == DR_WAVE_FORMAT_PCM) {
return drwav_read_pcm_frames_f32__pcm(pWav, framesToRead, pBufferOut);
}
if (pWav->translatedFormatTag == DR_WAVE_FORMAT_ADPCM || pWav->translatedFormatTag == DR_WAVE_FORMAT_DVI_ADPCM) {
return drwav_read_pcm_frames_f32__msadpcm_ima(pWav, framesToRead, pBufferOut);
}
if (pWav->translatedFormatTag == DR_WAVE_FORMAT_IEEE_FLOAT) {
return drwav_read_pcm_frames_f32__ieee(pWav, framesToRead, pBufferOut);
}
if (pWav->translatedFormatTag == DR_WAVE_FORMAT_ALAW) {
return drwav_read_pcm_frames_f32__alaw(pWav, framesToRead, pBufferOut);
}
if (pWav->translatedFormatTag == DR_WAVE_FORMAT_MULAW) {
return drwav_read_pcm_frames_f32__mulaw(pWav, framesToRead, pBufferOut);
}
return 0;
}
DRWAV_API drwav_uint64 drwav_read_pcm_frames_f32le(drwav* pWav, drwav_uint64 framesToRead, float* pBufferOut)
{
drwav_uint64 framesRead = drwav_read_pcm_frames_f32(pWav, framesToRead, pBufferOut);
if (pBufferOut != NULL && drwav__is_little_endian() == DRWAV_FALSE) {
drwav__bswap_samples_f32(pBufferOut, framesRead*pWav->channels);
}
return framesRead;
}
DRWAV_API drwav_uint64 drwav_read_pcm_frames_f32be(drwav* pWav, drwav_uint64 framesToRead, float* pBufferOut)
{
drwav_uint64 framesRead = drwav_read_pcm_frames_f32(pWav, framesToRead, pBufferOut);
if (pBufferOut != NULL && drwav__is_little_endian() == DRWAV_TRUE) {
drwav__bswap_samples_f32(pBufferOut, framesRead*pWav->channels);
}
return framesRead;
}
DRWAV_API void drwav_u8_to_f32(float* pOut, const drwav_uint8* pIn, size_t sampleCount)
{
size_t i;
if (pOut == NULL || pIn == NULL) {
return;
}
#ifdef DR_WAV_LIBSNDFILE_COMPAT
/*
It appears libsndfile uses slightly different logic for the u8 -> f32 conversion to dr_wav, which in my opinion is incorrect. It appears
libsndfile performs the conversion something like "f32 = (u8 / 256) * 2 - 1", however I think it should be "f32 = (u8 / 255) * 2 - 1" (note
the divisor of 256 vs 255). I use libsndfile as a benchmark for testing, so I'm therefore leaving this block here just for my automated
correctness testing. This is disabled by default.
*/
for (i = 0; i < sampleCount; ++i) {
*pOut++ = (pIn[i] / 256.0f) * 2 - 1;
}
#else
for (i = 0; i < sampleCount; ++i) {
float x = pIn[i];
x = x * 0.00784313725490196078f; /* 0..255 to 0..2 */
x = x - 1; /* 0..2 to -1..1 */
*pOut++ = x;
}
#endif
}
DRWAV_API void drwav_s16_to_f32(float* pOut, const drwav_int16* pIn, size_t sampleCount)
{
size_t i;
if (pOut == NULL || pIn == NULL) {
return;
}
for (i = 0; i < sampleCount; ++i) {
*pOut++ = pIn[i] * 0.000030517578125f;
}
}
DRWAV_API void drwav_s24_to_f32(float* pOut, const drwav_uint8* pIn, size_t sampleCount)
{
size_t i;
if (pOut == NULL || pIn == NULL) {
return;
}
for (i = 0; i < sampleCount; ++i) {
double x;
drwav_uint32 a = ((drwav_uint32)(pIn[i*3+0]) << 8);
drwav_uint32 b = ((drwav_uint32)(pIn[i*3+1]) << 16);
drwav_uint32 c = ((drwav_uint32)(pIn[i*3+2]) << 24);
x = (double)((drwav_int32)(a | b | c) >> 8);
*pOut++ = (float)(x * 0.00000011920928955078125);
}
}
DRWAV_API void drwav_s32_to_f32(float* pOut, const drwav_int32* pIn, size_t sampleCount)
{
size_t i;
if (pOut == NULL || pIn == NULL) {
return;
}
for (i = 0; i < sampleCount; ++i) {
*pOut++ = (float)(pIn[i] / 2147483648.0);
}
}
DRWAV_API void drwav_f64_to_f32(float* pOut, const double* pIn, size_t sampleCount)
{
size_t i;
if (pOut == NULL || pIn == NULL) {
return;
}
for (i = 0; i < sampleCount; ++i) {
*pOut++ = (float)pIn[i];
}
}
DRWAV_API void drwav_alaw_to_f32(float* pOut, const drwav_uint8* pIn, size_t sampleCount)
{
size_t i;
if (pOut == NULL || pIn == NULL) {
return;
}
for (i = 0; i < sampleCount; ++i) {
*pOut++ = drwav__alaw_to_s16(pIn[i]) / 32768.0f;
}
}
DRWAV_API void drwav_mulaw_to_f32(float* pOut, const drwav_uint8* pIn, size_t sampleCount)
{
size_t i;
if (pOut == NULL || pIn == NULL) {
return;
}
for (i = 0; i < sampleCount; ++i) {
*pOut++ = drwav__mulaw_to_s16(pIn[i]) / 32768.0f;
}
}
DRWAV_PRIVATE void drwav__pcm_to_s32(drwav_int32* pOut, const drwav_uint8* pIn, size_t totalSampleCount, unsigned int bytesPerSample)
{
unsigned int i;
/* Special case for 8-bit sample data because it's treated as unsigned. */
if (bytesPerSample == 1) {
drwav_u8_to_s32(pOut, pIn, totalSampleCount);
return;
}
/* Slightly more optimal implementation for common formats. */
if (bytesPerSample == 2) {
drwav_s16_to_s32(pOut, (const drwav_int16*)pIn, totalSampleCount);
return;
}
if (bytesPerSample == 3) {
drwav_s24_to_s32(pOut, pIn, totalSampleCount);
return;
}
if (bytesPerSample == 4) {
for (i = 0; i < totalSampleCount; ++i) {
*pOut++ = ((const drwav_int32*)pIn)[i];
}
return;
}
/* Anything more than 64 bits per sample is not supported. */
if (bytesPerSample > 8) {
DRWAV_ZERO_MEMORY(pOut, totalSampleCount * sizeof(*pOut));
return;
}
/* Generic, slow converter. */
for (i = 0; i < totalSampleCount; ++i) {
drwav_uint64 sample = 0;
unsigned int shift = (8 - bytesPerSample) * 8;
unsigned int j;
for (j = 0; j < bytesPerSample; j += 1) {
DRWAV_ASSERT(j < 8);
sample |= (drwav_uint64)(pIn[j]) << shift;
shift += 8;
}
pIn += j;
*pOut++ = (drwav_int32)((drwav_int64)sample >> 32);
}
}
DRWAV_PRIVATE void drwav__ieee_to_s32(drwav_int32* pOut, const drwav_uint8* pIn, size_t totalSampleCount, unsigned int bytesPerSample)
{
if (bytesPerSample == 4) {
drwav_f32_to_s32(pOut, (const float*)pIn, totalSampleCount);
return;
} else if (bytesPerSample == 8) {
drwav_f64_to_s32(pOut, (const double*)pIn, totalSampleCount);
return;
} else {
/* Only supporting 32- and 64-bit float. Output silence in all other cases. Contributions welcome for 16-bit float. */
DRWAV_ZERO_MEMORY(pOut, totalSampleCount * sizeof(*pOut));
return;
}
}
DRWAV_PRIVATE drwav_uint64 drwav_read_pcm_frames_s32__pcm(drwav* pWav, drwav_uint64 framesToRead, drwav_int32* pBufferOut)
{
drwav_uint64 totalFramesRead;
drwav_uint8 sampleData[4096] = {0};
drwav_uint32 bytesPerFrame;
drwav_uint32 bytesPerSample;
drwav_uint64 samplesRead;
/* Fast path. */
if (pWav->translatedFormatTag == DR_WAVE_FORMAT_PCM && pWav->bitsPerSample == 32) {
return drwav_read_pcm_frames(pWav, framesToRead, pBufferOut);
}
bytesPerFrame = drwav_get_bytes_per_pcm_frame(pWav);
if (bytesPerFrame == 0) {
return 0;
}
bytesPerSample = bytesPerFrame / pWav->channels;
if (bytesPerSample == 0 || (bytesPerFrame % pWav->channels) != 0) {
return 0; /* Only byte-aligned formats are supported. */
}
totalFramesRead = 0;
while (framesToRead > 0) {
drwav_uint64 framesToReadThisIteration = drwav_min(framesToRead, sizeof(sampleData)/bytesPerFrame);
drwav_uint64 framesRead = drwav_read_pcm_frames(pWav, framesToReadThisIteration, sampleData);
if (framesRead == 0) {
break;
}
DRWAV_ASSERT(framesRead <= framesToReadThisIteration); /* If this fails it means there's a bug in drwav_read_pcm_frames(). */
/* Validation to ensure we don't read too much from out intermediary buffer. This is to protect from invalid files. */
samplesRead = framesRead * pWav->channels;
if ((samplesRead * bytesPerSample) > sizeof(sampleData)) {
DRWAV_ASSERT(DRWAV_FALSE); /* This should never happen with a valid file. */
break;
}
drwav__pcm_to_s32(pBufferOut, sampleData, (size_t)samplesRead, bytesPerSample);
pBufferOut += samplesRead;
framesToRead -= framesRead;
totalFramesRead += framesRead;
}
return totalFramesRead;
}
DRWAV_PRIVATE drwav_uint64 drwav_read_pcm_frames_s32__msadpcm_ima(drwav* pWav, drwav_uint64 framesToRead, drwav_int32* pBufferOut)
{
/*
We're just going to borrow the implementation from the drwav_read_s16() since ADPCM is a little bit more complicated than other formats and I don't
want to duplicate that code.
*/
drwav_uint64 totalFramesRead = 0;
drwav_int16 samples16[2048];
while (framesToRead > 0) {
drwav_uint64 framesToReadThisIteration = drwav_min(framesToRead, drwav_countof(samples16)/pWav->channels);
drwav_uint64 framesRead = drwav_read_pcm_frames_s16(pWav, framesToReadThisIteration, samples16);
if (framesRead == 0) {
break;
}
DRWAV_ASSERT(framesRead <= framesToReadThisIteration); /* If this fails it means there's a bug in drwav_read_pcm_frames(). */
drwav_s16_to_s32(pBufferOut, samples16, (size_t)(framesRead*pWav->channels)); /* <-- Safe cast because we're clamping to 2048. */
pBufferOut += framesRead*pWav->channels;
framesToRead -= framesRead;
totalFramesRead += framesRead;
}
return totalFramesRead;
}
DRWAV_PRIVATE drwav_uint64 drwav_read_pcm_frames_s32__ieee(drwav* pWav, drwav_uint64 framesToRead, drwav_int32* pBufferOut)
{
drwav_uint64 totalFramesRead;
drwav_uint8 sampleData[4096] = {0};
drwav_uint32 bytesPerFrame;
drwav_uint32 bytesPerSample;
drwav_uint64 samplesRead;
bytesPerFrame = drwav_get_bytes_per_pcm_frame(pWav);
if (bytesPerFrame == 0) {
return 0;
}
bytesPerSample = bytesPerFrame / pWav->channels;
if (bytesPerSample == 0 || (bytesPerFrame % pWav->channels) != 0) {
return 0; /* Only byte-aligned formats are supported. */
}
totalFramesRead = 0;
while (framesToRead > 0) {
drwav_uint64 framesToReadThisIteration = drwav_min(framesToRead, sizeof(sampleData)/bytesPerFrame);
drwav_uint64 framesRead = drwav_read_pcm_frames(pWav, framesToReadThisIteration, sampleData);
if (framesRead == 0) {
break;
}
DRWAV_ASSERT(framesRead <= framesToReadThisIteration); /* If this fails it means there's a bug in drwav_read_pcm_frames(). */
/* Validation to ensure we don't read too much from out intermediary buffer. This is to protect from invalid files. */
samplesRead = framesRead * pWav->channels;
if ((samplesRead * bytesPerSample) > sizeof(sampleData)) {
DRWAV_ASSERT(DRWAV_FALSE); /* This should never happen with a valid file. */
break;
}
drwav__ieee_to_s32(pBufferOut, sampleData, (size_t)samplesRead, bytesPerSample);
pBufferOut += samplesRead;
framesToRead -= framesRead;
totalFramesRead += framesRead;
}
return totalFramesRead;
}
DRWAV_PRIVATE drwav_uint64 drwav_read_pcm_frames_s32__alaw(drwav* pWav, drwav_uint64 framesToRead, drwav_int32* pBufferOut)
{
drwav_uint64 totalFramesRead;
drwav_uint8 sampleData[4096] = {0};
drwav_uint32 bytesPerFrame;
drwav_uint32 bytesPerSample;
drwav_uint64 samplesRead;
bytesPerFrame = drwav_get_bytes_per_pcm_frame(pWav);
if (bytesPerFrame == 0) {
return 0;
}
bytesPerSample = bytesPerFrame / pWav->channels;
if (bytesPerSample == 0 || (bytesPerFrame % pWav->channels) != 0) {
return 0; /* Only byte-aligned formats are supported. */
}
totalFramesRead = 0;
while (framesToRead > 0) {
drwav_uint64 framesToReadThisIteration = drwav_min(framesToRead, sizeof(sampleData)/bytesPerFrame);
drwav_uint64 framesRead = drwav_read_pcm_frames(pWav, framesToReadThisIteration, sampleData);
if (framesRead == 0) {
break;
}
DRWAV_ASSERT(framesRead <= framesToReadThisIteration); /* If this fails it means there's a bug in drwav_read_pcm_frames(). */
/* Validation to ensure we don't read too much from out intermediary buffer. This is to protect from invalid files. */
samplesRead = framesRead * pWav->channels;
if ((samplesRead * bytesPerSample) > sizeof(sampleData)) {
DRWAV_ASSERT(DRWAV_FALSE); /* This should never happen with a valid file. */
break;
}
drwav_alaw_to_s32(pBufferOut, sampleData, (size_t)samplesRead);
#ifdef DR_WAV_LIBSNDFILE_COMPAT
{
if (pWav->container == drwav_container_aiff) {
drwav_uint64 iSample;
for (iSample = 0; iSample < samplesRead; iSample += 1) {
pBufferOut[iSample] = -pBufferOut[iSample];
}
}
}
#endif
pBufferOut += samplesRead;
framesToRead -= framesRead;
totalFramesRead += framesRead;
}
return totalFramesRead;
}
DRWAV_PRIVATE drwav_uint64 drwav_read_pcm_frames_s32__mulaw(drwav* pWav, drwav_uint64 framesToRead, drwav_int32* pBufferOut)
{
drwav_uint64 totalFramesRead;
drwav_uint8 sampleData[4096] = {0};
drwav_uint32 bytesPerFrame;
drwav_uint32 bytesPerSample;
drwav_uint64 samplesRead;
bytesPerFrame = drwav_get_bytes_per_pcm_frame(pWav);
if (bytesPerFrame == 0) {
return 0;
}
bytesPerSample = bytesPerFrame / pWav->channels;
if (bytesPerSample == 0 || (bytesPerFrame % pWav->channels) != 0) {
return 0; /* Only byte-aligned formats are supported. */
}
totalFramesRead = 0;
while (framesToRead > 0) {
drwav_uint64 framesToReadThisIteration = drwav_min(framesToRead, sizeof(sampleData)/bytesPerFrame);
drwav_uint64 framesRead = drwav_read_pcm_frames(pWav, framesToReadThisIteration, sampleData);
if (framesRead == 0) {
break;
}
DRWAV_ASSERT(framesRead <= framesToReadThisIteration); /* If this fails it means there's a bug in drwav_read_pcm_frames(). */
/* Validation to ensure we don't read too much from out intermediary buffer. This is to protect from invalid files. */
samplesRead = framesRead * pWav->channels;
if ((samplesRead * bytesPerSample) > sizeof(sampleData)) {
DRWAV_ASSERT(DRWAV_FALSE); /* This should never happen with a valid file. */
break;
}
drwav_mulaw_to_s32(pBufferOut, sampleData, (size_t)samplesRead);
#ifdef DR_WAV_LIBSNDFILE_COMPAT
{
if (pWav->container == drwav_container_aiff) {
drwav_uint64 iSample;
for (iSample = 0; iSample < samplesRead; iSample += 1) {
pBufferOut[iSample] = -pBufferOut[iSample];
}
}
}
#endif
pBufferOut += samplesRead;
framesToRead -= framesRead;
totalFramesRead += framesRead;
}
return totalFramesRead;
}
DRWAV_API drwav_uint64 drwav_read_pcm_frames_s32(drwav* pWav, drwav_uint64 framesToRead, drwav_int32* pBufferOut)
{
if (pWav == NULL || framesToRead == 0) {
return 0;
}
if (pBufferOut == NULL) {
return drwav_read_pcm_frames(pWav, framesToRead, NULL);
}
/* Don't try to read more samples than can potentially fit in the output buffer. */
if (framesToRead * pWav->channels * sizeof(drwav_int32) > DRWAV_SIZE_MAX) {
framesToRead = DRWAV_SIZE_MAX / sizeof(drwav_int32) / pWav->channels;
}
if (pWav->translatedFormatTag == DR_WAVE_FORMAT_PCM) {
return drwav_read_pcm_frames_s32__pcm(pWav, framesToRead, pBufferOut);
}
if (pWav->translatedFormatTag == DR_WAVE_FORMAT_ADPCM || pWav->translatedFormatTag == DR_WAVE_FORMAT_DVI_ADPCM) {
return drwav_read_pcm_frames_s32__msadpcm_ima(pWav, framesToRead, pBufferOut);
}
if (pWav->translatedFormatTag == DR_WAVE_FORMAT_IEEE_FLOAT) {
return drwav_read_pcm_frames_s32__ieee(pWav, framesToRead, pBufferOut);
}
if (pWav->translatedFormatTag == DR_WAVE_FORMAT_ALAW) {
return drwav_read_pcm_frames_s32__alaw(pWav, framesToRead, pBufferOut);
}
if (pWav->translatedFormatTag == DR_WAVE_FORMAT_MULAW) {
return drwav_read_pcm_frames_s32__mulaw(pWav, framesToRead, pBufferOut);
}
return 0;
}
DRWAV_API drwav_uint64 drwav_read_pcm_frames_s32le(drwav* pWav, drwav_uint64 framesToRead, drwav_int32* pBufferOut)
{
drwav_uint64 framesRead = drwav_read_pcm_frames_s32(pWav, framesToRead, pBufferOut);
if (pBufferOut != NULL && drwav__is_little_endian() == DRWAV_FALSE) {
drwav__bswap_samples_s32(pBufferOut, framesRead*pWav->channels);
}
return framesRead;
}
DRWAV_API drwav_uint64 drwav_read_pcm_frames_s32be(drwav* pWav, drwav_uint64 framesToRead, drwav_int32* pBufferOut)
{
drwav_uint64 framesRead = drwav_read_pcm_frames_s32(pWav, framesToRead, pBufferOut);
if (pBufferOut != NULL && drwav__is_little_endian() == DRWAV_TRUE) {
drwav__bswap_samples_s32(pBufferOut, framesRead*pWav->channels);
}
return framesRead;
}
DRWAV_API void drwav_u8_to_s32(drwav_int32* pOut, const drwav_uint8* pIn, size_t sampleCount)
{
size_t i;
if (pOut == NULL || pIn == NULL) {
return;
}
for (i = 0; i < sampleCount; ++i) {
*pOut++ = ((int)pIn[i] - 128) << 24;
}
}
DRWAV_API void drwav_s16_to_s32(drwav_int32* pOut, const drwav_int16* pIn, size_t sampleCount)
{
size_t i;
if (pOut == NULL || pIn == NULL) {
return;
}
for (i = 0; i < sampleCount; ++i) {
*pOut++ = pIn[i] << 16;
}
}
DRWAV_API void drwav_s24_to_s32(drwav_int32* pOut, const drwav_uint8* pIn, size_t sampleCount)
{
size_t i;
if (pOut == NULL || pIn == NULL) {
return;
}
for (i = 0; i < sampleCount; ++i) {
unsigned int s0 = pIn[i*3 + 0];
unsigned int s1 = pIn[i*3 + 1];
unsigned int s2 = pIn[i*3 + 2];
drwav_int32 sample32 = (drwav_int32)((s0 << 8) | (s1 << 16) | (s2 << 24));
*pOut++ = sample32;
}
}
DRWAV_API void drwav_f32_to_s32(drwav_int32* pOut, const float* pIn, size_t sampleCount)
{
size_t i;
if (pOut == NULL || pIn == NULL) {
return;
}
for (i = 0; i < sampleCount; ++i) {
*pOut++ = (drwav_int32)(2147483648.0f * pIn[i]);
}
}
DRWAV_API void drwav_f64_to_s32(drwav_int32* pOut, const double* pIn, size_t sampleCount)
{
size_t i;
if (pOut == NULL || pIn == NULL) {
return;
}
for (i = 0; i < sampleCount; ++i) {
*pOut++ = (drwav_int32)(2147483648.0 * pIn[i]);
}
}
DRWAV_API void drwav_alaw_to_s32(drwav_int32* pOut, const drwav_uint8* pIn, size_t sampleCount)
{
size_t i;
if (pOut == NULL || pIn == NULL) {
return;
}
for (i = 0; i < sampleCount; ++i) {
*pOut++ = ((drwav_int32)drwav__alaw_to_s16(pIn[i])) << 16;
}
}
DRWAV_API void drwav_mulaw_to_s32(drwav_int32* pOut, const drwav_uint8* pIn, size_t sampleCount)
{
size_t i;
if (pOut == NULL || pIn == NULL) {
return;
}
for (i= 0; i < sampleCount; ++i) {
*pOut++ = ((drwav_int32)drwav__mulaw_to_s16(pIn[i])) << 16;
}
}
DRWAV_PRIVATE drwav_int16* drwav__read_pcm_frames_and_close_s16(drwav* pWav, unsigned int* channels, unsigned int* sampleRate, drwav_uint64* totalFrameCount)
{
drwav_uint64 sampleDataSize;
drwav_int16* pSampleData;
drwav_uint64 framesRead;
DRWAV_ASSERT(pWav != NULL);
sampleDataSize = pWav->totalPCMFrameCount * pWav->channels * sizeof(drwav_int16);
if (sampleDataSize > DRWAV_SIZE_MAX) {
drwav_uninit(pWav);
return NULL; /* File's too big. */
}
pSampleData = (drwav_int16*)drwav__malloc_from_callbacks((size_t)sampleDataSize, &pWav->allocationCallbacks); /* <-- Safe cast due to the check above. */
if (pSampleData == NULL) {
drwav_uninit(pWav);
return NULL; /* Failed to allocate memory. */
}
framesRead = drwav_read_pcm_frames_s16(pWav, (size_t)pWav->totalPCMFrameCount, pSampleData);
if (framesRead != pWav->totalPCMFrameCount) {
drwav__free_from_callbacks(pSampleData, &pWav->allocationCallbacks);
drwav_uninit(pWav);
return NULL; /* There was an error reading the samples. */
}
drwav_uninit(pWav);
if (sampleRate) {
*sampleRate = pWav->sampleRate;
}
if (channels) {
*channels = pWav->channels;
}
if (totalFrameCount) {
*totalFrameCount = pWav->totalPCMFrameCount;
}
return pSampleData;
}
DRWAV_PRIVATE float* drwav__read_pcm_frames_and_close_f32(drwav* pWav, unsigned int* channels, unsigned int* sampleRate, drwav_uint64* totalFrameCount)
{
drwav_uint64 sampleDataSize;
float* pSampleData;
drwav_uint64 framesRead;
DRWAV_ASSERT(pWav != NULL);
sampleDataSize = pWav->totalPCMFrameCount * pWav->channels * sizeof(float);
if (sampleDataSize > DRWAV_SIZE_MAX) {
drwav_uninit(pWav);
return NULL; /* File's too big. */
}
pSampleData = (float*)drwav__malloc_from_callbacks((size_t)sampleDataSize, &pWav->allocationCallbacks); /* <-- Safe cast due to the check above. */
if (pSampleData == NULL) {
drwav_uninit(pWav);
return NULL; /* Failed to allocate memory. */
}
framesRead = drwav_read_pcm_frames_f32(pWav, (size_t)pWav->totalPCMFrameCount, pSampleData);
if (framesRead != pWav->totalPCMFrameCount) {
drwav__free_from_callbacks(pSampleData, &pWav->allocationCallbacks);
drwav_uninit(pWav);
return NULL; /* There was an error reading the samples. */
}
drwav_uninit(pWav);
if (sampleRate) {
*sampleRate = pWav->sampleRate;
}
if (channels) {
*channels = pWav->channels;
}
if (totalFrameCount) {
*totalFrameCount = pWav->totalPCMFrameCount;
}
return pSampleData;
}
DRWAV_PRIVATE drwav_int32* drwav__read_pcm_frames_and_close_s32(drwav* pWav, unsigned int* channels, unsigned int* sampleRate, drwav_uint64* totalFrameCount)
{
drwav_uint64 sampleDataSize;
drwav_int32* pSampleData;
drwav_uint64 framesRead;
DRWAV_ASSERT(pWav != NULL);
sampleDataSize = pWav->totalPCMFrameCount * pWav->channels * sizeof(drwav_int32);
if (sampleDataSize > DRWAV_SIZE_MAX) {
drwav_uninit(pWav);
return NULL; /* File's too big. */
}
pSampleData = (drwav_int32*)drwav__malloc_from_callbacks((size_t)sampleDataSize, &pWav->allocationCallbacks); /* <-- Safe cast due to the check above. */
if (pSampleData == NULL) {
drwav_uninit(pWav);
return NULL; /* Failed to allocate memory. */
}
framesRead = drwav_read_pcm_frames_s32(pWav, (size_t)pWav->totalPCMFrameCount, pSampleData);
if (framesRead != pWav->totalPCMFrameCount) {
drwav__free_from_callbacks(pSampleData, &pWav->allocationCallbacks);
drwav_uninit(pWav);
return NULL; /* There was an error reading the samples. */
}
drwav_uninit(pWav);
if (sampleRate) {
*sampleRate = pWav->sampleRate;
}
if (channels) {
*channels = pWav->channels;
}
if (totalFrameCount) {
*totalFrameCount = pWav->totalPCMFrameCount;
}
return pSampleData;
}
DRWAV_API drwav_int16* drwav_open_and_read_pcm_frames_s16(drwav_read_proc onRead, drwav_seek_proc onSeek, void* pUserData, unsigned int* channelsOut, unsigned int* sampleRateOut, drwav_uint64* totalFrameCountOut, const drwav_allocation_callbacks* pAllocationCallbacks)
{
drwav wav;
if (channelsOut) {
*channelsOut = 0;
}
if (sampleRateOut) {
*sampleRateOut = 0;
}
if (totalFrameCountOut) {
*totalFrameCountOut = 0;
}
if (!drwav_init(&wav, onRead, onSeek, pUserData, pAllocationCallbacks)) {
return NULL;
}
return drwav__read_pcm_frames_and_close_s16(&wav, channelsOut, sampleRateOut, totalFrameCountOut);
}
DRWAV_API float* drwav_open_and_read_pcm_frames_f32(drwav_read_proc onRead, drwav_seek_proc onSeek, void* pUserData, unsigned int* channelsOut, unsigned int* sampleRateOut, drwav_uint64* totalFrameCountOut, const drwav_allocation_callbacks* pAllocationCallbacks)
{
drwav wav;
if (channelsOut) {
*channelsOut = 0;
}
if (sampleRateOut) {
*sampleRateOut = 0;
}
if (totalFrameCountOut) {
*totalFrameCountOut = 0;
}
if (!drwav_init(&wav, onRead, onSeek, pUserData, pAllocationCallbacks)) {
return NULL;
}
return drwav__read_pcm_frames_and_close_f32(&wav, channelsOut, sampleRateOut, totalFrameCountOut);
}
DRWAV_API drwav_int32* drwav_open_and_read_pcm_frames_s32(drwav_read_proc onRead, drwav_seek_proc onSeek, void* pUserData, unsigned int* channelsOut, unsigned int* sampleRateOut, drwav_uint64* totalFrameCountOut, const drwav_allocation_callbacks* pAllocationCallbacks)
{
drwav wav;
if (channelsOut) {
*channelsOut = 0;
}
if (sampleRateOut) {
*sampleRateOut = 0;
}
if (totalFrameCountOut) {
*totalFrameCountOut = 0;
}
if (!drwav_init(&wav, onRead, onSeek, pUserData, pAllocationCallbacks)) {
return NULL;
}
return drwav__read_pcm_frames_and_close_s32(&wav, channelsOut, sampleRateOut, totalFrameCountOut);
}
#ifndef DR_WAV_NO_STDIO
DRWAV_API drwav_int16* drwav_open_file_and_read_pcm_frames_s16(const char* filename, unsigned int* channelsOut, unsigned int* sampleRateOut, drwav_uint64* totalFrameCountOut, const drwav_allocation_callbacks* pAllocationCallbacks)
{
drwav wav;
if (channelsOut) {
*channelsOut = 0;
}
if (sampleRateOut) {
*sampleRateOut = 0;
}
if (totalFrameCountOut) {
*totalFrameCountOut = 0;
}
if (!drwav_init_file(&wav, filename, pAllocationCallbacks)) {
return NULL;
}
return drwav__read_pcm_frames_and_close_s16(&wav, channelsOut, sampleRateOut, totalFrameCountOut);
}
DRWAV_API float* drwav_open_file_and_read_pcm_frames_f32(const char* filename, unsigned int* channelsOut, unsigned int* sampleRateOut, drwav_uint64* totalFrameCountOut, const drwav_allocation_callbacks* pAllocationCallbacks)
{
drwav wav;
if (channelsOut) {
*channelsOut = 0;
}
if (sampleRateOut) {
*sampleRateOut = 0;
}
if (totalFrameCountOut) {
*totalFrameCountOut = 0;
}
if (!drwav_init_file(&wav, filename, pAllocationCallbacks)) {
return NULL;
}
return drwav__read_pcm_frames_and_close_f32(&wav, channelsOut, sampleRateOut, totalFrameCountOut);
}
DRWAV_API drwav_int32* drwav_open_file_and_read_pcm_frames_s32(const char* filename, unsigned int* channelsOut, unsigned int* sampleRateOut, drwav_uint64* totalFrameCountOut, const drwav_allocation_callbacks* pAllocationCallbacks)
{
drwav wav;
if (channelsOut) {
*channelsOut = 0;
}
if (sampleRateOut) {
*sampleRateOut = 0;
}
if (totalFrameCountOut) {
*totalFrameCountOut = 0;
}
if (!drwav_init_file(&wav, filename, pAllocationCallbacks)) {
return NULL;
}
return drwav__read_pcm_frames_and_close_s32(&wav, channelsOut, sampleRateOut, totalFrameCountOut);
}
#ifndef DR_WAV_NO_WCHAR
DRWAV_API drwav_int16* drwav_open_file_and_read_pcm_frames_s16_w(const wchar_t* filename, unsigned int* channelsOut, unsigned int* sampleRateOut, drwav_uint64* totalFrameCountOut, const drwav_allocation_callbacks* pAllocationCallbacks)
{
drwav wav;
if (sampleRateOut) {
*sampleRateOut = 0;
}
if (channelsOut) {
*channelsOut = 0;
}
if (totalFrameCountOut) {
*totalFrameCountOut = 0;
}
if (!drwav_init_file_w(&wav, filename, pAllocationCallbacks)) {
return NULL;
}
return drwav__read_pcm_frames_and_close_s16(&wav, channelsOut, sampleRateOut, totalFrameCountOut);
}
DRWAV_API float* drwav_open_file_and_read_pcm_frames_f32_w(const wchar_t* filename, unsigned int* channelsOut, unsigned int* sampleRateOut, drwav_uint64* totalFrameCountOut, const drwav_allocation_callbacks* pAllocationCallbacks)
{
drwav wav;
if (sampleRateOut) {
*sampleRateOut = 0;
}
if (channelsOut) {
*channelsOut = 0;
}
if (totalFrameCountOut) {
*totalFrameCountOut = 0;
}
if (!drwav_init_file_w(&wav, filename, pAllocationCallbacks)) {
return NULL;
}
return drwav__read_pcm_frames_and_close_f32(&wav, channelsOut, sampleRateOut, totalFrameCountOut);
}
DRWAV_API drwav_int32* drwav_open_file_and_read_pcm_frames_s32_w(const wchar_t* filename, unsigned int* channelsOut, unsigned int* sampleRateOut, drwav_uint64* totalFrameCountOut, const drwav_allocation_callbacks* pAllocationCallbacks)
{
drwav wav;
if (sampleRateOut) {
*sampleRateOut = 0;
}
if (channelsOut) {
*channelsOut = 0;
}
if (totalFrameCountOut) {
*totalFrameCountOut = 0;
}
if (!drwav_init_file_w(&wav, filename, pAllocationCallbacks)) {
return NULL;
}
return drwav__read_pcm_frames_and_close_s32(&wav, channelsOut, sampleRateOut, totalFrameCountOut);
}
#endif /* DR_WAV_NO_WCHAR */
#endif /* DR_WAV_NO_STDIO */
DRWAV_API drwav_int16* drwav_open_memory_and_read_pcm_frames_s16(const void* data, size_t dataSize, unsigned int* channelsOut, unsigned int* sampleRateOut, drwav_uint64* totalFrameCountOut, const drwav_allocation_callbacks* pAllocationCallbacks)
{
drwav wav;
if (channelsOut) {
*channelsOut = 0;
}
if (sampleRateOut) {
*sampleRateOut = 0;
}
if (totalFrameCountOut) {
*totalFrameCountOut = 0;
}
if (!drwav_init_memory(&wav, data, dataSize, pAllocationCallbacks)) {
return NULL;
}
return drwav__read_pcm_frames_and_close_s16(&wav, channelsOut, sampleRateOut, totalFrameCountOut);
}
DRWAV_API float* drwav_open_memory_and_read_pcm_frames_f32(const void* data, size_t dataSize, unsigned int* channelsOut, unsigned int* sampleRateOut, drwav_uint64* totalFrameCountOut, const drwav_allocation_callbacks* pAllocationCallbacks)
{
drwav wav;
if (channelsOut) {
*channelsOut = 0;
}
if (sampleRateOut) {
*sampleRateOut = 0;
}
if (totalFrameCountOut) {
*totalFrameCountOut = 0;
}
if (!drwav_init_memory(&wav, data, dataSize, pAllocationCallbacks)) {
return NULL;
}
return drwav__read_pcm_frames_and_close_f32(&wav, channelsOut, sampleRateOut, totalFrameCountOut);
}
DRWAV_API drwav_int32* drwav_open_memory_and_read_pcm_frames_s32(const void* data, size_t dataSize, unsigned int* channelsOut, unsigned int* sampleRateOut, drwav_uint64* totalFrameCountOut, const drwav_allocation_callbacks* pAllocationCallbacks)
{
drwav wav;
if (channelsOut) {
*channelsOut = 0;
}
if (sampleRateOut) {
*sampleRateOut = 0;
}
if (totalFrameCountOut) {
*totalFrameCountOut = 0;
}
if (!drwav_init_memory(&wav, data, dataSize, pAllocationCallbacks)) {
return NULL;
}
return drwav__read_pcm_frames_and_close_s32(&wav, channelsOut, sampleRateOut, totalFrameCountOut);
}
#endif /* DR_WAV_NO_CONVERSION_API */
DRWAV_API void drwav_free(void* p, const drwav_allocation_callbacks* pAllocationCallbacks)
{
if (pAllocationCallbacks != NULL) {
drwav__free_from_callbacks(p, pAllocationCallbacks);
} else {
drwav__free_default(p, NULL);
}
}
DRWAV_API drwav_uint16 drwav_bytes_to_u16(const drwav_uint8* data)
{
return ((drwav_uint16)data[0] << 0) | ((drwav_uint16)data[1] << 8);
}
DRWAV_API drwav_int16 drwav_bytes_to_s16(const drwav_uint8* data)
{
return (drwav_int16)drwav_bytes_to_u16(data);
}
DRWAV_API drwav_uint32 drwav_bytes_to_u32(const drwav_uint8* data)
{
return drwav_bytes_to_u32_le(data);
}
DRWAV_API float drwav_bytes_to_f32(const drwav_uint8* data)
{
union {
drwav_uint32 u32;
float f32;
} value;
value.u32 = drwav_bytes_to_u32(data);
return value.f32;
}
DRWAV_API drwav_int32 drwav_bytes_to_s32(const drwav_uint8* data)
{
return (drwav_int32)drwav_bytes_to_u32(data);
}
DRWAV_API drwav_uint64 drwav_bytes_to_u64(const drwav_uint8* data)
{
return
((drwav_uint64)data[0] << 0) | ((drwav_uint64)data[1] << 8) | ((drwav_uint64)data[2] << 16) | ((drwav_uint64)data[3] << 24) |
((drwav_uint64)data[4] << 32) | ((drwav_uint64)data[5] << 40) | ((drwav_uint64)data[6] << 48) | ((drwav_uint64)data[7] << 56);
}
DRWAV_API drwav_int64 drwav_bytes_to_s64(const drwav_uint8* data)
{
return (drwav_int64)drwav_bytes_to_u64(data);
}
DRWAV_API drwav_bool32 drwav_guid_equal(const drwav_uint8 a[16], const drwav_uint8 b[16])
{
int i;
for (i = 0; i < 16; i += 1) {
if (a[i] != b[i]) {
return DRWAV_FALSE;
}
}
return DRWAV_TRUE;
}
DRWAV_API drwav_bool32 drwav_fourcc_equal(const drwav_uint8* a, const char* b)
{
return
a[0] == b[0] &&
a[1] == b[1] &&
a[2] == b[2] &&
a[3] == b[3];
}
#ifdef __MRC__
/* Undo the pragma at the beginning of this file. */
#pragma options opt reset
#endif
#endif /* dr_wav_c */
#endif /* DR_WAV_IMPLEMENTATION */
/*
REVISION HISTORY
================
v0.13.16 - 2024-02-27
- Fix a Wdouble-promotion warning.
v0.13.15 - 2024-01-23
- Relax some unnecessary validation that prevented some files from loading.
v0.13.14 - 2023-12-02
- Fix a warning about an unused variable.
v0.13.13 - 2023-11-02
- Fix a warning when compiling with Clang.
v0.13.12 - 2023-08-07
- Fix a possible crash in drwav_read_pcm_frames().
v0.13.11 - 2023-07-07
- AIFF compatibility improvements.
v0.13.10 - 2023-05-29
- Fix a bug where drwav_init_with_metadata() does not decode any frames after initializtion.
v0.13.9 - 2023-05-22
- Add support for AIFF decoding (writing and metadata not supported).
- Add support for RIFX decoding (writing and metadata not supported).
- Fix a bug where metadata is not processed if it's located before the "fmt " chunk.
- Add a workaround for a type of malformed WAV file where the size of the "RIFF" and "data" chunks
are incorrectly set to 0xFFFFFFFF.
v0.13.8 - 2023-03-25
- Fix a possible null pointer dereference.
- Fix a crash when loading files with badly formed metadata.
v0.13.7 - 2022-09-17
- Fix compilation with DJGPP.
- Add support for disabling wchar_t with DR_WAV_NO_WCHAR.
v0.13.6 - 2022-04-10
- Fix compilation error on older versions of GCC.
- Remove some dependencies on the standard library.
v0.13.5 - 2022-01-26
- Fix an error when seeking to the end of the file.
v0.13.4 - 2021-12-08
- Fix some static analysis warnings.
v0.13.3 - 2021-11-24
- Fix an incorrect assertion when trying to endian swap 1-byte sample formats. This is now a no-op
rather than a failed assertion.
- Fix a bug with parsing of the bext chunk.
- Fix some static analysis warnings.
v0.13.2 - 2021-10-02
- Fix a possible buffer overflow when reading from compressed formats.
v0.13.1 - 2021-07-31
- Fix platform detection for ARM64.
v0.13.0 - 2021-07-01
- Improve support for reading and writing metadata. Use the `_with_metadata()` APIs to initialize
a WAV decoder and store the metadata within the `drwav` object. Use the `pMetadata` and
`metadataCount` members of the `drwav` object to read the data. The old way of handling metadata
via a callback is still usable and valid.
- API CHANGE: drwav_target_write_size_bytes() now takes extra parameters for calculating the
required write size when writing metadata.
- Add drwav_get_cursor_in_pcm_frames()
- Add drwav_get_length_in_pcm_frames()
- Fix a bug where drwav_read_raw() can call the read callback with a byte count of zero.
v0.12.20 - 2021-06-11
- Fix some undefined behavior.
v0.12.19 - 2021-02-21
- Fix a warning due to referencing _MSC_VER when it is undefined.
- Minor improvements to the management of some internal state concerning the data chunk cursor.
v0.12.18 - 2021-01-31
- Clean up some static analysis warnings.
v0.12.17 - 2021-01-17
- Minor fix to sample code in documentation.
- Correctly qualify a private API as private rather than public.
- Code cleanup.
v0.12.16 - 2020-12-02
- Fix a bug when trying to read more bytes than can fit in a size_t.
v0.12.15 - 2020-11-21
- Fix compilation with OpenWatcom.
v0.12.14 - 2020-11-13
- Minor code clean up.
v0.12.13 - 2020-11-01
- Improve compiler support for older versions of GCC.
v0.12.12 - 2020-09-28
- Add support for RF64.
- Fix a bug in writing mode where the size of the RIFF chunk incorrectly includes the header section.
v0.12.11 - 2020-09-08
- Fix a compilation error on older compilers.
v0.12.10 - 2020-08-24
- Fix a bug when seeking with ADPCM formats.
v0.12.9 - 2020-08-02
- Simplify sized types.
v0.12.8 - 2020-07-25
- Fix a compilation warning.
v0.12.7 - 2020-07-15
- Fix some bugs on big-endian architectures.
- Fix an error in s24 to f32 conversion.
v0.12.6 - 2020-06-23
- Change drwav_read_*() to allow NULL to be passed in as the output buffer which is equivalent to a forward seek.
- Fix a buffer overflow when trying to decode invalid IMA-ADPCM files.
- Add include guard for the implementation section.
v0.12.5 - 2020-05-27
- Minor documentation fix.
v0.12.4 - 2020-05-16
- Replace assert() with DRWAV_ASSERT().
- Add compile-time and run-time version querying.
- DRWAV_VERSION_MINOR
- DRWAV_VERSION_MAJOR
- DRWAV_VERSION_REVISION
- DRWAV_VERSION_STRING
- drwav_version()
- drwav_version_string()
v0.12.3 - 2020-04-30
- Fix compilation errors with VC6.
v0.12.2 - 2020-04-21
- Fix a bug where drwav_init_file() does not close the file handle after attempting to load an erroneous file.
v0.12.1 - 2020-04-13
- Fix some pedantic warnings.
v0.12.0 - 2020-04-04
- API CHANGE: Add container and format parameters to the chunk callback.
- Minor documentation updates.
v0.11.5 - 2020-03-07
- Fix compilation error with Visual Studio .NET 2003.
v0.11.4 - 2020-01-29
- Fix some static analysis warnings.
- Fix a bug when reading f32 samples from an A-law encoded stream.
v0.11.3 - 2020-01-12
- Minor changes to some f32 format conversion routines.
- Minor bug fix for ADPCM conversion when end of file is reached.
v0.11.2 - 2019-12-02
- Fix a possible crash when using custom memory allocators without a custom realloc() implementation.
- Fix an integer overflow bug.
- Fix a null pointer dereference bug.
- Add limits to sample rate, channels and bits per sample to tighten up some validation.
v0.11.1 - 2019-10-07
- Internal code clean up.
v0.11.0 - 2019-10-06
- API CHANGE: Add support for user defined memory allocation routines. This system allows the program to specify their own memory allocation
routines with a user data pointer for client-specific contextual data. This adds an extra parameter to the end of the following APIs:
- drwav_init()
- drwav_init_ex()
- drwav_init_file()
- drwav_init_file_ex()
- drwav_init_file_w()
- drwav_init_file_w_ex()
- drwav_init_memory()
- drwav_init_memory_ex()
- drwav_init_write()
- drwav_init_write_sequential()
- drwav_init_write_sequential_pcm_frames()
- drwav_init_file_write()
- drwav_init_file_write_sequential()
- drwav_init_file_write_sequential_pcm_frames()
- drwav_init_file_write_w()
- drwav_init_file_write_sequential_w()
- drwav_init_file_write_sequential_pcm_frames_w()
- drwav_init_memory_write()
- drwav_init_memory_write_sequential()
- drwav_init_memory_write_sequential_pcm_frames()
- drwav_open_and_read_pcm_frames_s16()
- drwav_open_and_read_pcm_frames_f32()
- drwav_open_and_read_pcm_frames_s32()
- drwav_open_file_and_read_pcm_frames_s16()
- drwav_open_file_and_read_pcm_frames_f32()
- drwav_open_file_and_read_pcm_frames_s32()
- drwav_open_file_and_read_pcm_frames_s16_w()
- drwav_open_file_and_read_pcm_frames_f32_w()
- drwav_open_file_and_read_pcm_frames_s32_w()
- drwav_open_memory_and_read_pcm_frames_s16()
- drwav_open_memory_and_read_pcm_frames_f32()
- drwav_open_memory_and_read_pcm_frames_s32()
Set this extra parameter to NULL to use defaults which is the same as the previous behaviour. Setting this NULL will use
DRWAV_MALLOC, DRWAV_REALLOC and DRWAV_FREE.
- Add support for reading and writing PCM frames in an explicit endianness. New APIs:
- drwav_read_pcm_frames_le()
- drwav_read_pcm_frames_be()
- drwav_read_pcm_frames_s16le()
- drwav_read_pcm_frames_s16be()
- drwav_read_pcm_frames_f32le()
- drwav_read_pcm_frames_f32be()
- drwav_read_pcm_frames_s32le()
- drwav_read_pcm_frames_s32be()
- drwav_write_pcm_frames_le()
- drwav_write_pcm_frames_be()
- Remove deprecated APIs.
- API CHANGE: The following APIs now return native-endian data. Previously they returned little-endian data.
- drwav_read_pcm_frames()
- drwav_read_pcm_frames_s16()
- drwav_read_pcm_frames_s32()
- drwav_read_pcm_frames_f32()
- drwav_open_and_read_pcm_frames_s16()
- drwav_open_and_read_pcm_frames_s32()
- drwav_open_and_read_pcm_frames_f32()
- drwav_open_file_and_read_pcm_frames_s16()
- drwav_open_file_and_read_pcm_frames_s32()
- drwav_open_file_and_read_pcm_frames_f32()
- drwav_open_file_and_read_pcm_frames_s16_w()
- drwav_open_file_and_read_pcm_frames_s32_w()
- drwav_open_file_and_read_pcm_frames_f32_w()
- drwav_open_memory_and_read_pcm_frames_s16()
- drwav_open_memory_and_read_pcm_frames_s32()
- drwav_open_memory_and_read_pcm_frames_f32()
v0.10.1 - 2019-08-31
- Correctly handle partial trailing ADPCM blocks.
v0.10.0 - 2019-08-04
- Remove deprecated APIs.
- Add wchar_t variants for file loading APIs:
drwav_init_file_w()
drwav_init_file_ex_w()
drwav_init_file_write_w()
drwav_init_file_write_sequential_w()
- Add drwav_target_write_size_bytes() which calculates the total size in bytes of a WAV file given a format and sample count.
- Add APIs for specifying the PCM frame count instead of the sample count when opening in sequential write mode:
drwav_init_write_sequential_pcm_frames()
drwav_init_file_write_sequential_pcm_frames()
drwav_init_file_write_sequential_pcm_frames_w()
drwav_init_memory_write_sequential_pcm_frames()
- Deprecate drwav_open*() and drwav_close():
drwav_open()
drwav_open_ex()
drwav_open_write()
drwav_open_write_sequential()
drwav_open_file()
drwav_open_file_ex()
drwav_open_file_write()
drwav_open_file_write_sequential()
drwav_open_memory()
drwav_open_memory_ex()
drwav_open_memory_write()
drwav_open_memory_write_sequential()
drwav_close()
- Minor documentation updates.
v0.9.2 - 2019-05-21
- Fix warnings.
v0.9.1 - 2019-05-05
- Add support for C89.
- Change license to choice of public domain or MIT-0.
v0.9.0 - 2018-12-16
- API CHANGE: Add new reading APIs for reading by PCM frames instead of samples. Old APIs have been deprecated and
will be removed in v0.10.0. Deprecated APIs and their replacements:
drwav_read() -> drwav_read_pcm_frames()
drwav_read_s16() -> drwav_read_pcm_frames_s16()
drwav_read_f32() -> drwav_read_pcm_frames_f32()
drwav_read_s32() -> drwav_read_pcm_frames_s32()
drwav_seek_to_sample() -> drwav_seek_to_pcm_frame()
drwav_write() -> drwav_write_pcm_frames()
drwav_open_and_read_s16() -> drwav_open_and_read_pcm_frames_s16()
drwav_open_and_read_f32() -> drwav_open_and_read_pcm_frames_f32()
drwav_open_and_read_s32() -> drwav_open_and_read_pcm_frames_s32()
drwav_open_file_and_read_s16() -> drwav_open_file_and_read_pcm_frames_s16()
drwav_open_file_and_read_f32() -> drwav_open_file_and_read_pcm_frames_f32()
drwav_open_file_and_read_s32() -> drwav_open_file_and_read_pcm_frames_s32()
drwav_open_memory_and_read_s16() -> drwav_open_memory_and_read_pcm_frames_s16()
drwav_open_memory_and_read_f32() -> drwav_open_memory_and_read_pcm_frames_f32()
drwav_open_memory_and_read_s32() -> drwav_open_memory_and_read_pcm_frames_s32()
drwav::totalSampleCount -> drwav::totalPCMFrameCount
- API CHANGE: Rename drwav_open_and_read_file_*() to drwav_open_file_and_read_*().
- API CHANGE: Rename drwav_open_and_read_memory_*() to drwav_open_memory_and_read_*().
- Add built-in support for smpl chunks.
- Add support for firing a callback for each chunk in the file at initialization time.
- This is enabled through the drwav_init_ex(), etc. family of APIs.
- Handle invalid FMT chunks more robustly.
v0.8.5 - 2018-09-11
- Const correctness.
- Fix a potential stack overflow.
v0.8.4 - 2018-08-07
- Improve 64-bit detection.
v0.8.3 - 2018-08-05
- Fix C++ build on older versions of GCC.
v0.8.2 - 2018-08-02
- Fix some big-endian bugs.
v0.8.1 - 2018-06-29
- Add support for sequential writing APIs.
- Disable seeking in write mode.
- Fix bugs with Wave64.
- Fix typos.
v0.8 - 2018-04-27
- Bug fix.
- Start using major.minor.revision versioning.
v0.7f - 2018-02-05
- Restrict ADPCM formats to a maximum of 2 channels.
v0.7e - 2018-02-02
- Fix a crash.
v0.7d - 2018-02-01
- Fix a crash.
v0.7c - 2018-02-01
- Set drwav.bytesPerSample to 0 for all compressed formats.
- Fix a crash when reading 16-bit floating point WAV files. In this case dr_wav will output silence for
all format conversion reading APIs (*_s16, *_s32, *_f32 APIs).
- Fix some divide-by-zero errors.
v0.7b - 2018-01-22
- Fix errors with seeking of compressed formats.
- Fix compilation error when DR_WAV_NO_CONVERSION_API
v0.7a - 2017-11-17
- Fix some GCC warnings.
v0.7 - 2017-11-04
- Add writing APIs.
v0.6 - 2017-08-16
- API CHANGE: Rename dr_* types to drwav_*.
- Add support for custom implementations of malloc(), realloc(), etc.
- Add support for Microsoft ADPCM.
- Add support for IMA ADPCM (DVI, format code 0x11).
- Optimizations to drwav_read_s16().
- Bug fixes.
v0.5g - 2017-07-16
- Change underlying type for booleans to unsigned.
v0.5f - 2017-04-04
- Fix a minor bug with drwav_open_and_read_s16() and family.
v0.5e - 2016-12-29
- Added support for reading samples as signed 16-bit integers. Use the _s16() family of APIs for this.
- Minor fixes to documentation.
v0.5d - 2016-12-28
- Use drwav_int* and drwav_uint* sized types to improve compiler support.
v0.5c - 2016-11-11
- Properly handle JUNK chunks that come before the FMT chunk.
v0.5b - 2016-10-23
- A minor change to drwav_bool8 and drwav_bool32 types.
v0.5a - 2016-10-11
- Fixed a bug with drwav_open_and_read() and family due to incorrect argument ordering.
- Improve A-law and mu-law efficiency.
v0.5 - 2016-09-29
- API CHANGE. Swap the order of "channels" and "sampleRate" parameters in drwav_open_and_read*(). Rationale for this is to
keep it consistent with dr_audio and dr_flac.
v0.4b - 2016-09-18
- Fixed a typo in documentation.
v0.4a - 2016-09-18
- Fixed a typo.
- Change date format to ISO 8601 (YYYY-MM-DD)
v0.4 - 2016-07-13
- API CHANGE. Make onSeek consistent with dr_flac.
- API CHANGE. Rename drwav_seek() to drwav_seek_to_sample() for clarity and consistency with dr_flac.
- Added support for Sony Wave64.
v0.3a - 2016-05-28
- API CHANGE. Return drwav_bool32 instead of int in onSeek callback.
- Fixed a memory leak.
v0.3 - 2016-05-22
- Lots of API changes for consistency.
v0.2a - 2016-05-16
- Fixed Linux/GCC build.
v0.2 - 2016-05-11
- Added support for reading data as signed 32-bit PCM for consistency with dr_flac.
v0.1a - 2016-05-07
- Fixed a bug in drwav_open_file() where the file handle would not be closed if the loader failed to initialize.
v0.1 - 2016-05-04
- Initial versioned release.
*/
/*
This software is available as a choice of the following licenses. Choose
whichever you prefer.
===============================================================================
ALTERNATIVE 1 - Public Domain (www.unlicense.org)
===============================================================================
This is free and unencumbered software released into the public domain.
Anyone is free to copy, modify, publish, use, compile, sell, or distribute this
software, either in source code form or as a compiled binary, for any purpose,
commercial or non-commercial, and by any means.
In jurisdictions that recognize copyright laws, the author or authors of this
software dedicate any and all copyright interest in the software to the public
domain. We make this dedication for the benefit of the public at large and to
the detriment of our heirs and successors. We intend this dedication to be an
overt act of relinquishment in perpetuity of all present and future rights to
this software under copyright law.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
For more information, please refer to <http://unlicense.org/>
===============================================================================
ALTERNATIVE 2 - MIT No Attribution
===============================================================================
Copyright 2023 David Reid
Permission is hereby granted, free of charge, to any person obtaining a copy of
this software and associated documentation files (the "Software"), to deal in
the Software without restriction, including without limitation the rights to
use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
of the Software, and to permit persons to whom the Software is furnished to do
so.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
*/