// STREAMLINES :: https://prideout.net/blog/par_streamlines/ // Simple C library for triangulating wide lines, curves, and streamlines. // // Usage example: // // #define PAR_STREAMLINES_IMPLEMENTATION // #include "par_streamlines.h" // // parsl_context* ctx = parsl_create_context({ .thickness = 3 }); // parsl_position vertices[] = { {0, 0}, {2, 1}, {4, 0} }; // uint16_t spine_lengths[] = { 3 }; // parsl_mesh* mesh = parsl_mesh_from_lines(ctx, { // .num_vertices = sizeof(vertices) / sizeof(parsl_position), // .num_spines = sizeof(spine_lengths) / sizeof(uint16_t), // .vertices = vertices, // .spine_lengths = spine_lengths // }); // ... // parsl_destroy_context(ctx); // // Distributed under the MIT License, see bottom of file. #ifndef PAR_STREAMLINES_H #define PAR_STREAMLINES_H #ifdef __cplusplus extern "C" { #endif #include #include // Configures how the library assigns UV coordinates. typedef enum { PAR_U_MODE_NORMALIZED_DISTANCE, // this is the default PAR_U_MODE_DISTANCE, // non-normalized distance along the curve PAR_U_MODE_SEGMENT_INDEX, // starts at zero for each curve, counts up PAR_U_MODE_SEGMENT_FRACTION, // 0.0, 1.0 / COUNT, 2.0 / COUNT, etc... } parsl_u_mode; // Layout for generated vertex attributes. typedef struct { float u_along_curve; // longitudinal coordinate (see parsl_u_mode) float v_across_curve; // either + or - depending on the side float spine_to_edge_x; // normalized vector from spine to edge float spine_to_edge_y; // normalized vector from spine to edge } parsl_annotation; // Simple two-tuple math type used for mesh and spine vertices. typedef struct { float x; float y; } parsl_position; // Triangle mesh generated by the library. The vertex data is owned by // streamlines context and becomes invalid on any subsequent call to the API. // The annotations, spine_lengths, and random_offsets fields are null unless // their corresponding flags have been set in parsl_config. typedef struct { uint32_t num_vertices; uint32_t num_triangles; uint32_t* triangle_indices; parsl_position* positions; parsl_annotation* annotations; float* spine_lengths; float* random_offsets; } parsl_mesh; // Viewport for streamline seed placement. typedef struct { float left; float top; float right; float bottom; } parsl_viewport; #define PARSL_FLAG_WIREFRAME (1 << 0) // enables 4 indices per triangle #define PARSL_FLAG_ANNOTATIONS (1 << 1) // populates mesh.annotations #define PARSL_FLAG_SPINE_LENGTHS (1 << 2) // populates mesh.lengths #define PARSL_FLAG_RANDOM_OFFSETS (1 << 3) // populates mesh.random_offsets #define PARSL_FLAG_CURVE_GUIDES (1 << 4) // draws control points // Immutable configuration for a streamlines context. typedef struct { float thickness; uint32_t flags; parsl_u_mode u_mode; float curves_max_flatness; float streamlines_seed_spacing; parsl_viewport streamlines_seed_viewport; float miter_limit; } parsl_config; // Client-owned list of line strips that will be tessellated. typedef struct { uint32_t num_vertices; uint16_t num_spines; parsl_position* vertices; uint16_t* spine_lengths; bool closed; } parsl_spine_list; // Opaque handle to a streamlines context and its memory arena. typedef struct parsl_context_s parsl_context; // Client function that moves a streamline particle by a single time step. typedef void (*parsl_advection_callback)(parsl_position* point, void* userdata); parsl_context* parsl_create_context(parsl_config config); void parsl_destroy_context(parsl_context* ctx); // Low-level function that simply generates two triangles for each line segment. parsl_mesh* parsl_mesh_from_lines(parsl_context* ctx, parsl_spine_list spines); // High-level function that can be used to visualize a vector field. parsl_mesh* parsl_mesh_from_streamlines(parsl_context* context, parsl_advection_callback advect, uint32_t first_tick, uint32_t num_ticks, void* userdata); // High-level function that tessellates a series of curves into triangles, // where each spine is a series of chained cubic Bézier curves. // // The first curve of each spine is defined by an endpoint, followed by two // control points, followed by an endpoint. Every subsequent curve in the spine // is defined by a single control point followed by an endpoint. Only one // control point is required because the first control point is computed via // reflection over the endpoint. // // The number of vertices in each spine should be 4+(n-1)*2 where n is the // number of piecewise curves. // // Each spine is equivalent to an SVG path that looks like M C S S S. parsl_mesh* parsl_mesh_from_curves_cubic(parsl_context* context, parsl_spine_list spines); // High-level function that tessellates a series of curves into triangles, // where each spine is a series of chained quadratic Bézier curves. // // The first curve of each spine is defined by an endpoint, followed by one // control point, followed by an endpoint. Every subsequent curve in the spine // is defined by a single control point followed by an endpoint. // // The number of vertices in each spine should be 3+(n-1)*2 where n is the // number of piecewise curves. // // Each spine is equivalent to an SVG path that looks like M Q M Q M Q. parsl_mesh* parsl_mesh_from_curves_quadratic(parsl_context* context, parsl_spine_list spines); #ifdef __cplusplus } #endif // ----------------------------------------------------------------------------- // END PUBLIC API // ----------------------------------------------------------------------------- #ifdef PAR_STREAMLINES_IMPLEMENTATION #include #include #include #include #include static float parsl__dot(parsl_position a, parsl_position b) { return a.x * b.x + a.y * b.y; } static parsl_position parsl__sub(parsl_position a, parsl_position b) { return (parsl_position) { a.x - b.x, a.y - b.y }; } static parsl_position parsl__add(parsl_position a, parsl_position b) { return (parsl_position) { a.x + b.x, a.y + b.y }; } static parsl_position parsl_mul(parsl_position v, float s) { return (parsl_position) { v.x * s, v.y * s }; } #define PARSL_MAX_RECURSION 16 #ifndef PAR_PI #define PAR_PI (3.14159265359) #define PAR_MIN(a, b) (a > b ? b : a) #define PAR_MAX(a, b) (a > b ? a : b) #define PAR_CLAMP(v, lo, hi) PAR_MAX(lo, PAR_MIN(hi, v)) #define PAR_SWAP(T, A, B) { T tmp = B; B = A; A = tmp; } #define PAR_SQR(a) ((a) * (a)) #endif #ifndef PAR_MALLOC #define PAR_MALLOC(T, N) ((T*) malloc(N * sizeof(T))) #define PAR_CALLOC(T, N) ((T*) calloc(N * sizeof(T), 1)) #define PAR_REALLOC(T, BUF, N) ((T*) realloc(BUF, sizeof(T) * (N))) #define PAR_FREE(BUF) free(BUF) #endif #ifndef PAR_ARRAY #define PAR_ARRAY #define pa_free(a) ((a) ? PAR_FREE(pa___raw(a)), 0 : 0) #define pa_push(a, v) (pa___maybegrow(a, (int) 1), (a)[pa___n(a)++] = (v)) #define pa_count(a) ((a) ? pa___n(a) : 0) #define pa_add(a, n) (pa___maybegrow(a, (int) n), pa___n(a) += (n)) #define pa_last(a) ((a)[pa___n(a) - 1]) #define pa_end(a) (a + pa_count(a)) #define pa_clear(arr) if (arr) pa___n(arr) = 0 #define pa___raw(a) ((int*) (a) -2) #define pa___m(a) pa___raw(a)[0] #define pa___n(a) pa___raw(a)[1] #define pa___needgrow(a, n) ((a) == 0 || pa___n(a) + ((int) n) >= pa___m(a)) #define pa___maybegrow(a, n) (pa___needgrow(a, (n)) ? pa___grow(a, n) : 0) #define pa___grow(a, n) (*((void**)& (a)) = pa___growf((void*) (a), (n), \ sizeof(*(a)))) // ptr[-2] is capacity, ptr[-1] is size. static void* pa___growf(void* arr, int increment, int itemsize) { int dbl_cur = arr ? 2 * pa___m(arr) : 0; int min_needed = pa_count(arr) + increment; int m = dbl_cur > min_needed ? dbl_cur : min_needed; int* p = (int *) PAR_REALLOC(uint8_t, arr ? pa___raw(arr) : 0, itemsize * m + sizeof(int) * 2); if (p) { if (!arr) { p[1] = 0; } p[0] = m; return p + 2; } return (void*) (2 * sizeof(int)); } #endif struct parsl_context_s { parsl_config config; parsl_mesh result; parsl_position* streamline_seeds; parsl_position* streamline_points; parsl_spine_list streamline_spines; parsl_spine_list curve_spines; uint16_t guideline_start; }; parsl_context* parsl_create_context(parsl_config config) { parsl_context* context = PAR_CALLOC(parsl_context, 1); context->config = config; return context; } void parsl_destroy_context(parsl_context* context) { pa_free(context->result.triangle_indices); pa_free(context->result.spine_lengths); pa_free(context->result.annotations); pa_free(context->result.positions); pa_free(context->result.random_offsets); pa_free(context->streamline_seeds); pa_free(context->streamline_points); pa_free(context->streamline_spines.spine_lengths); pa_free(context->streamline_spines.vertices); pa_free(context->curve_spines.spine_lengths); pa_free(context->curve_spines.vertices); PAR_FREE(context); } parsl_mesh* parsl_mesh_from_lines(parsl_context* context, parsl_spine_list spines) { typedef parsl_position Position; typedef parsl_annotation Annotation; parsl_mesh* mesh = &context->result; const bool closed = spines.closed; const bool wireframe = context->config.flags & PARSL_FLAG_WIREFRAME; const bool has_annotations = context->config.flags & PARSL_FLAG_ANNOTATIONS; const bool has_lengths = context->config.flags & PARSL_FLAG_SPINE_LENGTHS; const float miter_limit = context->config.miter_limit ? context->config.miter_limit : (context->config.thickness * 2); const float miter_acos_max = +1.0; const float miter_acos_min = -1.0; const uint32_t ind_per_tri = wireframe ? 4 : 3; mesh->num_vertices = 0; mesh->num_triangles = 0; for (uint32_t spine = 0; spine < spines.num_spines; spine++) { assert(spines.spine_lengths[spine] > 1); mesh->num_vertices += 2 * spines.spine_lengths[spine]; mesh->num_triangles += 2 * (spines.spine_lengths[spine] - 1); if (closed) { mesh->num_vertices += 2; mesh->num_triangles += 2; } } pa_clear(mesh->spine_lengths); pa_clear(mesh->annotations); pa_clear(mesh->positions); pa_clear(mesh->triangle_indices); if (has_lengths) { pa_add(mesh->spine_lengths, mesh->num_vertices); } if (has_annotations) { pa_add(mesh->annotations, mesh->num_vertices); } pa_add(mesh->positions, mesh->num_vertices); pa_add(mesh->triangle_indices, ind_per_tri * mesh->num_triangles); float* dst_lengths = mesh->spine_lengths; Annotation* dst_annotations = mesh->annotations; Position* dst_positions = mesh->positions; uint32_t* dst_indices = mesh->triangle_indices; const Position* src_position = spines.vertices; uint32_t base_index = 0; for (uint16_t spine = 0; spine < spines.num_spines; spine++) { const bool thin = context->guideline_start > 0 && spine >= context->guideline_start; const float thickness = thin ? 1.0f : context->config.thickness; const uint16_t spine_length = spines.spine_lengths[spine]; float dx = src_position[1].x - src_position[0].x; float dy = src_position[1].y - src_position[0].y; float segment_length = sqrtf(dx * dx + dy * dy); float invlen = segment_length ? 1.0f / segment_length : 0.0f; const float nx = -dy * invlen; const float ny = dx * invlen; const Position first_src_position = src_position[0]; const Position last_src_position = src_position[spine_length - 1]; float ex = nx * thickness / 2; float ey = ny * thickness / 2; if (closed) { const float dx = src_position[0].x - last_src_position.x; const float dy = src_position[0].y - last_src_position.y; const float segment_length = sqrtf(dx * dx + dy * dy); float invlen = segment_length ? 1.0f / segment_length : 0.0f; const float pnx = -dy * invlen; const float pny = dx * invlen; // NOTE: sin(pi / 2 - acos(X) / 2) == sqrt(1 + X) / sqrt(2) float extent = 0.5 * thickness; const float dotp = (pnx * nx + pny * ny); if (dotp < miter_acos_max && dotp > miter_acos_min) { const float phi = acos(dotp) / 2; const float theta = PAR_PI / 2 - phi; extent = PAR_CLAMP(extent / sin(theta), -miter_limit, miter_limit); } ex = pnx + nx; ey = pny + ny; const float len = sqrtf(ex * ex + ey * ey); invlen = len == 0.0 ? 0.0 : (1.0f / len); ex *= invlen * extent; ey *= invlen * extent; } dst_positions[0].x = src_position[0].x + ex; dst_positions[0].y = src_position[0].y + ey; dst_positions[1].x = src_position[0].x - ex; dst_positions[1].y = src_position[0].y - ey; float pnx = nx; float pny = ny; const Position first_dst_positions[2] = { dst_positions[0], dst_positions[1] }; src_position++; dst_positions += 2; if (has_annotations) { dst_annotations[0].u_along_curve = 0; dst_annotations[1].u_along_curve = 0; dst_annotations[0].v_across_curve = 1; dst_annotations[1].v_across_curve = -1; dst_annotations[0].spine_to_edge_x = ex; dst_annotations[1].spine_to_edge_x = -ex; dst_annotations[0].spine_to_edge_y = ey; dst_annotations[1].spine_to_edge_y = -ey; dst_annotations += 2; } float distance_along_spine = segment_length; uint16_t segment_index = 1; for (; segment_index < spine_length - 1; segment_index++) { const float dx = src_position[1].x - src_position[0].x; const float dy = src_position[1].y - src_position[0].y; const float segment_length = sqrtf(dx * dx + dy * dy); float invlen = segment_length ? 1.0f / segment_length : 0.0f; const float nx = -dy * invlen; const float ny = dx * invlen; // NOTE: sin(pi / 2 - acos(X) / 2) == sqrt(1 + X) / sqrt(2) float extent = 0.5 * thickness; const float dotp = (pnx * nx + pny * ny); if (dotp < miter_acos_max && dotp > miter_acos_min) { const float phi = acos(dotp) / 2; const float theta = PAR_PI / 2 - phi; extent = PAR_CLAMP(extent / sin(theta), -miter_limit, miter_limit); } float ex = pnx + nx; float ey = pny + ny; const float len = sqrtf(ex * ex + ey * ey); invlen = len == 0.0 ? 0.0 : (1.0f / len); ex *= invlen * extent; ey *= invlen * extent; dst_positions[0].x = src_position[0].x + ex; dst_positions[0].y = src_position[0].y + ey; dst_positions[1].x = src_position[0].x - ex; dst_positions[1].y = src_position[0].y - ey; src_position++; dst_positions += 2; pnx = nx; pny = ny; if (has_annotations) { dst_annotations[0].u_along_curve = distance_along_spine; dst_annotations[1].u_along_curve = distance_along_spine; dst_annotations[0].v_across_curve = 1; dst_annotations[1].v_across_curve = -1; dst_annotations[0].spine_to_edge_x = ex; dst_annotations[1].spine_to_edge_x = -ex; dst_annotations[0].spine_to_edge_y = ey; dst_annotations[1].spine_to_edge_y = -ey; dst_annotations += 2; } distance_along_spine += segment_length; if (wireframe) { dst_indices[0] = base_index + (segment_index - 1) * 2; dst_indices[1] = base_index + (segment_index - 1) * 2 + 1; dst_indices[2] = base_index + (segment_index - 0) * 2; dst_indices[3] = base_index + (segment_index - 1) * 2; dst_indices[4] = base_index + (segment_index - 0) * 2; dst_indices[5] = base_index + (segment_index - 1) * 2 + 1; dst_indices[6] = base_index + (segment_index - 0) * 2 + 1; dst_indices[7] = base_index + (segment_index - 0) * 2; dst_indices += 8; } else { dst_indices[0] = base_index + (segment_index - 1) * 2; dst_indices[1] = base_index + (segment_index - 1) * 2 + 1; dst_indices[2] = base_index + (segment_index - 0) * 2; dst_indices[3] = base_index + (segment_index - 0) * 2; dst_indices[4] = base_index + (segment_index - 1) * 2 + 1; dst_indices[5] = base_index + (segment_index - 0) * 2 + 1; dst_indices += 6; } } ex = pnx * thickness / 2; ey = pny * thickness / 2; if (closed) { const float dx = first_src_position.x - src_position[0].x; const float dy = first_src_position.y - src_position[0].y; segment_length = sqrtf(dx * dx + dy * dy); float invlen = segment_length ? 1.0f / segment_length : 0.0f; const float nx = -dy * invlen; const float ny = dx * invlen; // NOTE: sin(pi / 2 - acos(X) / 2) == sqrt(1 + X) / sqrt(2) float extent = 0.5 * thickness; const float dotp = (pnx * nx + pny * ny); if (dotp < miter_acos_max && dotp > miter_acos_min) { const float phi = acos(dotp) / 2; const float theta = PAR_PI / 2 - phi; extent = PAR_CLAMP(extent / sin(theta), -miter_limit, miter_limit); } ex = pnx + nx; ey = pny + ny; const float len = sqrtf(ex * ex + ey * ey); invlen = len == 0.0 ? 0.0 : (1.0f / len); ex *= invlen * extent; ey *= invlen * extent; } dst_positions[0].x = src_position[0].x + ex; dst_positions[0].y = src_position[0].y + ey; dst_positions[1].x = src_position[0].x - ex; dst_positions[1].y = src_position[0].y - ey; src_position++; dst_positions += 2; pnx = nx; pny = ny; if (has_annotations) { dst_annotations[0].u_along_curve = distance_along_spine; dst_annotations[1].u_along_curve = distance_along_spine; dst_annotations[0].v_across_curve = 1; dst_annotations[1].v_across_curve = -1; dst_annotations[0].spine_to_edge_x = ex; dst_annotations[1].spine_to_edge_x = -ex; dst_annotations[0].spine_to_edge_y = ey; dst_annotations[1].spine_to_edge_y = -ey; dst_annotations += 2; } if (wireframe) { dst_indices[0] = base_index + (segment_index - 1) * 2; dst_indices[1] = base_index + (segment_index - 1) * 2 + 1; dst_indices[2] = base_index + (segment_index - 0) * 2; dst_indices[3] = base_index + (segment_index - 1) * 2; dst_indices[4] = base_index + (segment_index - 0) * 2; dst_indices[5] = base_index + (segment_index - 1) * 2 + 1; dst_indices[6] = base_index + (segment_index - 0) * 2 + 1; dst_indices[7] = base_index + (segment_index - 0) * 2; dst_indices += 8; } else { dst_indices[0] = base_index + (segment_index - 1) * 2; dst_indices[1] = base_index + (segment_index - 1) * 2 + 1; dst_indices[2] = base_index + (segment_index - 0) * 2; dst_indices[3] = base_index + (segment_index - 0) * 2; dst_indices[4] = base_index + (segment_index - 1) * 2 + 1; dst_indices[5] = base_index + (segment_index - 0) * 2 + 1; dst_indices += 6; } if (closed) { segment_index++; distance_along_spine += segment_length; dst_positions[0] = first_dst_positions[0]; dst_positions[1] = first_dst_positions[1]; dst_positions += 2; if (has_annotations) { dst_annotations[0].u_along_curve = distance_along_spine; dst_annotations[1].u_along_curve = distance_along_spine; dst_annotations[0].v_across_curve = 1; dst_annotations[1].v_across_curve = -1; dst_annotations[0].spine_to_edge_x = ex; dst_annotations[1].spine_to_edge_x = -ex; dst_annotations[0].spine_to_edge_y = ey; dst_annotations[1].spine_to_edge_y = -ey; dst_annotations += 2; } if (wireframe) { dst_indices[0] = base_index + (segment_index - 1) * 2; dst_indices[1] = base_index + (segment_index - 1) * 2 + 1; dst_indices[2] = base_index + (segment_index - 0) * 2; dst_indices[3] = base_index + (segment_index - 1) * 2; dst_indices[4] = base_index + (segment_index - 0) * 2; dst_indices[5] = base_index + (segment_index - 1) * 2 + 1; dst_indices[6] = base_index + (segment_index - 0) * 2 + 1; dst_indices[7] = base_index + (segment_index - 0) * 2; dst_indices += 8; } else { dst_indices[0] = base_index + (segment_index - 1) * 2; dst_indices[1] = base_index + (segment_index - 1) * 2 + 1; dst_indices[2] = base_index + (segment_index - 0) * 2; dst_indices[3] = base_index + (segment_index - 0) * 2; dst_indices[4] = base_index + (segment_index - 1) * 2 + 1; dst_indices[5] = base_index + (segment_index - 0) * 2 + 1; dst_indices += 6; } } base_index += spine_length * 2 + (closed ? 2 : 0); const uint16_t nverts = spine_length + (closed ? 1 : 0); if (has_lengths) { for (uint16_t i = 0; i < nverts; i++) { dst_lengths[0] = distance_along_spine; dst_lengths[1] = distance_along_spine; dst_lengths += 2; } } // Go back through the curve and fix up the U coordinates. if (has_annotations) { const float invlength = 1.0f / distance_along_spine; const float invcount = 1.0f / spine_length; switch (context->config.u_mode) { case PAR_U_MODE_DISTANCE: break; case PAR_U_MODE_NORMALIZED_DISTANCE: dst_annotations -= nverts * 2; for (uint16_t i = 0; i < nverts; i++) { dst_annotations[0].u_along_curve *= invlength; dst_annotations[1].u_along_curve *= invlength; dst_annotations += 2; } break; case PAR_U_MODE_SEGMENT_INDEX: dst_annotations -= nverts * 2; for (uint16_t i = 0; i < nverts; i++) { dst_annotations[0].u_along_curve = i; dst_annotations[1].u_along_curve = i; dst_annotations += 2; } break; case PAR_U_MODE_SEGMENT_FRACTION: dst_annotations -= nverts * 2; for (uint16_t i = 0; i < nverts; i++) { dst_annotations[0].u_along_curve = invcount * i; dst_annotations[1].u_along_curve = invcount * i; dst_annotations += 2; } break; } } } assert(src_position - spines.vertices == spines.num_vertices); assert(dst_positions - mesh->positions == mesh->num_vertices); assert(dst_indices - mesh->triangle_indices == mesh->num_triangles * ind_per_tri); if (context->config.flags & PARSL_FLAG_RANDOM_OFFSETS) { pa_clear(mesh->random_offsets); pa_add(mesh->random_offsets, mesh->num_vertices); float* pvertex = mesh->random_offsets; for (uint16_t spine = 0; spine < spines.num_spines; spine++) { const uint16_t num_segments = spines.spine_lengths[spine]; const float r = (float) rand() / RAND_MAX; for (uint16_t segment = 0; segment < num_segments; segment++) { *pvertex++ = r; } } } return mesh; } // This function is designed to be called in two passes. In the first pass, the // points pointer is null, so this simply determines the number of required // points to fulfill the flatness criterion. On the second pass, points is // non-null it actually writes out the point positions. static void parsl__tesselate_cubic( parsl_position* points, uint32_t* num_points, float x0, float y0, float x1, float y1, float x2, float y2, float x3, float y3, float max_flatness_squared, int recursion_depth) { float dx0 = x1-x0; float dy0 = y1-y0; float dx1 = x2-x1; float dy1 = y2-y1; float dx2 = x3-x2; float dy2 = y3-y2; float dx = x3-x0; float dy = y3-y0; float longlen = (float) (sqrt(dx0*dx0 + dy0*dy0) + sqrt(dx1*dx1 + dy1*dy1) + sqrt(dx2*dx2 + dy2*dy2)); float shortlen = (float) sqrt(dx*dx+dy*dy); float flatness_squared = longlen*longlen - shortlen*shortlen; if (recursion_depth > PARSL_MAX_RECURSION) { return; } if (flatness_squared > max_flatness_squared) { const float x01 = (x0+x1) / 2; const float y01 = (y0+y1) / 2; const float x12 = (x1+x2) / 2; const float y12 = (y1+y2) / 2; const float x23 = (x2+x3) / 2; const float y23 = (y2+y3) / 2; const float xa = (x01+x12) / 2; const float ya = (y01+y12) / 2; const float xb = (x12+x23) / 2; const float yb = (y12+y23) / 2; const float mx = (xa+xb) / 2; const float my = (ya+yb) / 2; parsl__tesselate_cubic(points, num_points, x0,y0, x01,y01, xa,ya, mx,my, max_flatness_squared, recursion_depth + 1); parsl__tesselate_cubic(points, num_points, mx,my, xb,yb, x23,y23, x3,y3, max_flatness_squared, recursion_depth + 1); return; } int n = *num_points; if (points) { points[n].x = x3; points[n].y = y3; } *num_points = n + 1; } // This function is designed to be called in two passes. In the first pass, the // points pointer is null, so this simply determines the number of required // points to fulfill the flatness criterion. On the second pass, points is // non-null it actually writes out the point positions. static void parsl__tesselate_quadratic( parsl_position* points, uint32_t* num_points, float x0, float y0, float x1, float y1, float x2, float y2, float max_flatness_squared, int recursion_depth) { const float mx = (x0 + 2 * x1 + x2) / 4; const float my = (y0 + 2 * y1 + y2) / 4; const float dx = (x0 + x2) / 2 - mx; const float dy = (y0 + y2) / 2 - my; const float flatness_squared = dx * dx + dy * dy; if (recursion_depth++ > PARSL_MAX_RECURSION) { return; } if (flatness_squared > max_flatness_squared) { parsl__tesselate_quadratic(points, num_points, x0,y0, (x0 + x1) / 2.0f, (y0 + y1) / 2.0f, mx, my, max_flatness_squared, recursion_depth); parsl__tesselate_quadratic(points, num_points, mx,my, (x1 + x2) / 2.0f, (y1 + y2) / 2.0f, x2, y2, max_flatness_squared, recursion_depth); return; } int n = *num_points; if (points) { points[n].x = x2; points[n].y = y2; } *num_points = n + 1; } parsl_mesh* parsl_mesh_from_curves_cubic(parsl_context* context, parsl_spine_list source_spines) { float max_flatness = context->config.curves_max_flatness; if (max_flatness == 0) { max_flatness = 1.0f; } const float max_flatness_squared = max_flatness * max_flatness; parsl_spine_list* target_spines = &context->curve_spines; const bool has_guides = context->config.flags & PARSL_FLAG_CURVE_GUIDES; // Determine the number of spines in the target list. target_spines->num_spines = source_spines.num_spines; if (has_guides) { for (uint32_t spine = 0; spine < source_spines.num_spines; spine++) { uint32_t spine_length = source_spines.spine_lengths[spine]; uint32_t num_piecewise = 1 + (spine_length - 4) / 2; target_spines->num_spines += num_piecewise * 2; } } pa_clear(target_spines->spine_lengths); pa_add(target_spines->spine_lengths, target_spines->num_spines); // First pass: determine the number of required vertices. uint32_t total_required_spine_points = 0; const parsl_position* psource = source_spines.vertices; for (uint32_t spine = 0; spine < source_spines.num_spines; spine++) { // Source vertices look like: P1 C1 C2 P2 [C2 P2]* uint32_t spine_length = source_spines.spine_lengths[spine]; assert(spine_length >= 4); assert((spine_length % 2) == 0); uint32_t num_piecewise = 1 + (spine_length - 4) / 2; // First piecewise curve. uint32_t num_required_spine_points = 1; parsl__tesselate_cubic(NULL, &num_required_spine_points, psource[0].x, psource[0].y, psource[1].x, psource[1].y, psource[2].x, psource[2].y, psource[3].x, psource[3].y, max_flatness_squared, 0); psource += 4; // Subsequent piecewise curves. for (uint32_t piecewise = 1; piecewise < num_piecewise; piecewise++) { parsl_position p1 = psource[-1]; parsl_position previous_c2 = psource[-2]; parsl_position c1 = parsl__sub(p1, parsl__sub(previous_c2, p1)); parsl_position c2 = psource[0]; parsl_position p2 = psource[1]; parsl__tesselate_cubic(NULL, &num_required_spine_points, p1.x, p1.y, c1.x, c1.y, c2.x, c2.y, p2.x, p2.y, max_flatness_squared, 0); psource += 2; } target_spines->spine_lengths[spine] = num_required_spine_points; total_required_spine_points += num_required_spine_points; } if (has_guides) { uint32_t nsrcspines = source_spines.num_spines; uint16_t* guide_lengths = &target_spines->spine_lengths[nsrcspines]; for (uint32_t spine = 0; spine < nsrcspines; spine++) { uint32_t spine_length = source_spines.spine_lengths[spine]; uint32_t num_piecewise = 1 + (spine_length - 4) / 2; for (uint32_t pw = 0; pw < num_piecewise; pw++) { guide_lengths[0] = 2; guide_lengths[1] = 2; guide_lengths += 2; total_required_spine_points += 4; } } } // Allocate memory. target_spines->num_vertices = total_required_spine_points; pa_clear(target_spines->vertices); pa_add(target_spines->vertices, total_required_spine_points); // Second pass: write out the data. psource = source_spines.vertices; parsl_position* ptarget = target_spines->vertices; for (uint32_t spine = 0; spine < source_spines.num_spines; spine++) { // Source vertices look like: P1 C1 C2 P2 [C2 P2]* uint32_t spine_length = source_spines.spine_lengths[spine]; uint32_t num_piecewise = 1 + (spine_length - 4) / 2; __attribute__((unused)) parsl_position* target_spine_start = ptarget; // First piecewise curve. ptarget[0].x = psource[0].x; ptarget[0].y = psource[0].y; ptarget++; uint32_t num_written_points = 0; parsl__tesselate_cubic(ptarget, &num_written_points, psource[0].x, psource[0].y, psource[1].x, psource[1].y, psource[2].x, psource[2].y, psource[3].x, psource[3].y, max_flatness_squared, 0); psource += 4; ptarget += num_written_points; // Subsequent piecewise curves. for (uint32_t piecewise = 1; piecewise < num_piecewise; piecewise++) { parsl_position p1 = psource[-1]; parsl_position previous_c2 = psource[-2]; parsl_position c1 = parsl__sub(p1, parsl__sub(previous_c2, p1)); parsl_position c2 = psource[0]; parsl_position p2 = psource[1]; num_written_points = 0; parsl__tesselate_cubic(ptarget, &num_written_points, p1.x, p1.y, c1.x, c1.y, c2.x, c2.y, p2.x, p2.y, max_flatness_squared, 0); psource += 2; ptarget += num_written_points; } __attribute__((unused)) uint32_t num_written = ptarget - target_spine_start; assert(num_written == (uint32_t) target_spines->spine_lengths[spine]); } // Source vertices look like: P1 C1 C2 P2 [C2 P2]* if (has_guides) { uint32_t nsrcspines = source_spines.num_spines; context->guideline_start = nsrcspines; psource = source_spines.vertices; for (uint32_t spine = 0; spine < nsrcspines; spine++) { uint32_t spine_length = source_spines.spine_lengths[spine]; uint32_t num_piecewise = 1 + (spine_length - 4) / 2; *ptarget++ = psource[0]; *ptarget++ = psource[1]; *ptarget++ = psource[2]; *ptarget++ = psource[3]; psource += 4; for (uint32_t pw = 1; pw < num_piecewise; pw++) { parsl_position p1 = psource[-1]; parsl_position previous_c2 = psource[-2]; parsl_position c1 = parsl__sub(p1, parsl__sub(previous_c2, p1)); parsl_position c2 = psource[0]; parsl_position p2 = psource[1]; *ptarget++ = p1; *ptarget++ = c1; *ptarget++ = p2; *ptarget++ = c2; psource += 2; } } } assert(ptarget - target_spines->vertices == total_required_spine_points); parsl_mesh_from_lines(context, context->curve_spines); context->guideline_start = 0; return &context->result; } parsl_mesh* parsl_mesh_from_curves_quadratic(parsl_context* context, parsl_spine_list source_spines) { float max_flatness = context->config.curves_max_flatness; if (max_flatness == 0) { max_flatness = 1.0f; } const float max_flatness_squared = max_flatness * max_flatness; parsl_spine_list* target_spines = &context->curve_spines; const bool has_guides = context->config.flags & PARSL_FLAG_CURVE_GUIDES; // Determine the number of spines in the target list. target_spines->num_spines = source_spines.num_spines; if (has_guides) { target_spines->num_spines += source_spines.num_spines; } pa_clear(target_spines->spine_lengths); pa_add(target_spines->spine_lengths, target_spines->num_spines); // First pass: determine the number of required vertices. uint32_t total_required_spine_points = 0; const parsl_position* psource = source_spines.vertices; for (uint32_t spine = 0; spine < source_spines.num_spines; spine++) { // Source vertices look like: PT C PT [C PT]* uint32_t spine_length = source_spines.spine_lengths[spine]; assert(spine_length >= 3); assert((spine_length % 2) == 1); uint32_t num_piecewise = 1 + (spine_length - 3) / 2; // First piecewise curve. uint32_t num_required_spine_points = 1; parsl__tesselate_quadratic(NULL, &num_required_spine_points, psource[0].x, psource[0].y, psource[1].x, psource[1].y, psource[2].x, psource[2].y, max_flatness_squared, 0); psource += 3; // Subsequent piecewise curves. for (uint32_t piecewise = 1; piecewise < num_piecewise; piecewise++) { parsl_position p1 = psource[-1]; parsl_position c1 = psource[0]; parsl_position p2 = psource[1]; parsl__tesselate_quadratic(NULL, &num_required_spine_points, p1.x, p1.y, c1.x, c1.y, p2.x, p2.y, max_flatness_squared, 0); psource += 2; } target_spines->spine_lengths[spine] = num_required_spine_points; total_required_spine_points += num_required_spine_points; } if (has_guides) { uint32_t nsrcspines = source_spines.num_spines; uint16_t* guide_lengths = &target_spines->spine_lengths[nsrcspines]; for (uint32_t spine = 0; spine < nsrcspines; spine++) { uint32_t spine_length = source_spines.spine_lengths[spine]; uint32_t num_piecewise = 1 + (spine_length - 3) / 2; guide_lengths[0] = 3 + (num_piecewise - 1) * 2; total_required_spine_points += guide_lengths[0]; guide_lengths++; } } // Allocate memory. target_spines->num_vertices = total_required_spine_points; pa_clear(target_spines->vertices); pa_add(target_spines->vertices, total_required_spine_points); // Second pass: write out the data. psource = source_spines.vertices; parsl_position* ptarget = target_spines->vertices; for (uint32_t spine = 0; spine < source_spines.num_spines; spine++) { // Source vertices look like: PT C PT [C PT]* uint32_t spine_length = source_spines.spine_lengths[spine]; uint32_t num_piecewise = 1 + (spine_length - 3) / 2; __attribute__((unused)) parsl_position* target_spine_start = ptarget; // First piecewise curve. ptarget[0].x = psource[0].x; ptarget[0].y = psource[0].y; ptarget++; uint32_t num_written_points = 0; parsl__tesselate_quadratic(ptarget, &num_written_points, psource[0].x, psource[0].y, psource[1].x, psource[1].y, psource[2].x, psource[2].y, max_flatness_squared, 0); psource += 3; ptarget += num_written_points; // Subsequent piecewise curves. for (uint32_t piecewise = 1; piecewise < num_piecewise; piecewise++) { parsl_position p1 = psource[-1]; parsl_position c1 = psource[0]; parsl_position p2 = psource[1]; num_written_points = 0; parsl__tesselate_quadratic(ptarget, &num_written_points, p1.x, p1.y, c1.x, c1.y, p2.x, p2.y, max_flatness_squared, 0); psource += 2; ptarget += num_written_points; } __attribute__((unused)) uint32_t num_written = ptarget - target_spine_start; assert(num_written == (uint32_t) target_spines->spine_lengths[spine]); } // Source vertices look like: PT C PT [C PT]* if (has_guides) { uint32_t nsrcspines = source_spines.num_spines; context->guideline_start = nsrcspines; psource = source_spines.vertices; for (uint32_t spine = 0; spine < nsrcspines; spine++) { uint32_t spine_length = source_spines.spine_lengths[spine]; uint32_t num_piecewise = 1 + (spine_length - 3) / 2; *ptarget++ = psource[0]; *ptarget++ = psource[1]; *ptarget++ = psource[2]; psource += 3; for (uint32_t pw = 1; pw < num_piecewise; pw++) { *ptarget++ = psource[0]; *ptarget++ = psource[1]; psource += 2; } } } assert(ptarget - target_spines->vertices == total_required_spine_points); parsl_mesh_from_lines(context, context->curve_spines); context->guideline_start = 0; return &context->result; } static unsigned int par__randhash(unsigned int seed) { unsigned int i = (seed ^ 12345391u) * 2654435769u; i ^= (i << 6) ^ (i >> 26); i *= 2654435769u; i += (i << 5) ^ (i >> 12); return i; } static float par__randhashf(unsigned int seed, float a, float b) { return (b - a) * par__randhash(seed) / (float) UINT_MAX + a; } static parsl_position par__sample_annulus(float radius, parsl_position center, int* seedptr) { unsigned int seed = *seedptr; parsl_position r; float rscale = 1.0f / UINT_MAX; while (1) { r.x = 4 * rscale * par__randhash(seed++) - 2; r.y = 4 * rscale * par__randhash(seed++) - 2; float r2 = parsl__dot(r, r); if (r2 > 1 && r2 <= 4) { break; } } *seedptr = seed; return (parsl_position) { r.x * radius + center.x, r.y * radius + center.y }; } #define GRIDF(vec) \ grid [(int) (vec.x * invcell) + ncols * (int) (vec.y * invcell)] #define GRIDI(vec) grid [(int) vec.y * ncols + (int) vec.x] static parsl_position* par__generate_pts(float width, float height, float radius, int seed, parsl_position* result) { int maxattempts = 30; float rscale = 1.0f / UINT_MAX; parsl_position rvec; rvec.x = rvec.y = radius; float r2 = radius * radius; // Acceleration grid. float cellsize = radius / sqrtf(2); float invcell = 1.0f / cellsize; int ncols = ceil(width * invcell); int nrows = ceil(height * invcell); int maxcol = ncols - 1; int maxrow = nrows - 1; int ncells = ncols * nrows; int* grid = (int*) PAR_MALLOC(int, ncells); for (int i = 0; i < ncells; i++) { grid[i] = -1; } // Active list and resulting sample list. int* actives = (int*) PAR_MALLOC(int, ncells); int nactives = 0; pa_clear(result); pa_add(result, ncells); parsl_position* samples = result; int nsamples = 0; // First sample. parsl_position pt; pt.x = width * par__randhash(seed++) * rscale; pt.y = height * par__randhash(seed++) * rscale; GRIDF(pt) = actives[nactives++] = nsamples; samples[nsamples++] = pt; while (nsamples < ncells) { int aindex = PAR_MIN(par__randhashf(seed++, 0, nactives), nactives - 1.0f); int sindex = actives[aindex]; int found = 0; parsl_position j, minj, maxj, delta; int attempt; for (attempt = 0; attempt < maxattempts && !found; attempt++) { pt = par__sample_annulus(radius, samples[sindex], &seed); // Check that this sample is within bounds. if (pt.x < 0 || pt.x >= width || pt.y < 0 || pt.y >= height) { continue; } // Test proximity to nearby samples. maxj = parsl_mul(parsl__add(pt, rvec), invcell); minj = parsl_mul(parsl__sub(pt, rvec), invcell); minj.x = PAR_CLAMP((int) minj.x, 0, maxcol); minj.y = PAR_CLAMP((int) minj.y, 0, maxrow); maxj.x = PAR_CLAMP((int) maxj.x, 0, maxcol); maxj.y = PAR_CLAMP((int) maxj.y, 0, maxrow); int reject = 0; for (j.y = minj.y; j.y <= maxj.y && !reject; j.y++) { for (j.x = minj.x; j.x <= maxj.x && !reject; j.x++) { int entry = GRIDI(j); if (entry > -1 && entry != sindex) { delta = parsl__sub(samples[entry], pt); if (parsl__dot(delta, delta) < r2) { reject = 1; } } } } if (reject) { continue; } found = 1; } if (found) { GRIDF(pt) = actives[nactives++] = nsamples; samples[nsamples++] = pt; } else { if (--nactives <= 0) { break; } actives[aindex] = actives[nactives]; } } pa___n(result) = nsamples * 2; PAR_FREE(grid); PAR_FREE(actives); return result; } #undef GRIDF #undef GRIDI parsl_mesh* parsl_mesh_from_streamlines(parsl_context* context, parsl_advection_callback advect, uint32_t first_tick, uint32_t num_ticks, void* userdata) { const int seed = 42; const parsl_viewport vp = context->config.streamlines_seed_viewport; const float radius = context->config.streamlines_seed_spacing; float width = vp.right - vp.left; float height = vp.bottom - vp.top; if (context->streamline_seeds == NULL) { context->streamline_seeds = par__generate_pts(width, height, radius, seed, context->streamline_seeds); uint32_t num_points = pa_count(context->streamline_seeds); for (uint32_t p = 0; p < num_points; ++p) { context->streamline_seeds[p].x += vp.left; context->streamline_seeds[p].y += vp.top; } } uint32_t num_points = pa_count(context->streamline_seeds); pa_clear(context->streamline_points); pa_add(context->streamline_points, num_points); parsl_position* points = context->streamline_points; memcpy(points, context->streamline_seeds, num_points * sizeof(parsl_position)); context->streamline_spines.num_spines = num_points; pa_clear(context->streamline_spines.spine_lengths); pa_add(context->streamline_spines.spine_lengths, num_points); uint16_t* lengths = context->streamline_spines.spine_lengths; for (uint32_t i = 0; i < num_points; i++) { lengths[i] = num_ticks; } context->streamline_spines.num_vertices = num_points * num_ticks; pa_clear(context->streamline_spines.vertices); pa_add(context->streamline_spines.vertices, num_points * num_ticks); parsl_position* vertices = context->streamline_spines.vertices; for (uint32_t tick = 0; tick < first_tick; tick++) { for (uint32_t i = 0; i < num_points; i++) { advect(&points[i], userdata); } } parsl_position* pvertices = vertices; for (uint32_t i = 0; i < num_points; i++) { for (uint32_t tick = 0; tick < num_ticks; ++tick) { advect(&points[i], userdata); *pvertices++ = points[i]; } } parsl_mesh_from_lines(context, context->streamline_spines); return &context->result; } #endif // PAR_STREAMLINES_IMPLEMENTATION #endif // PAR_STREAMLINES_H // par_streamlines is distributed under the MIT license: // // Copyright (c) 2019 Philip Rideout // // Permission is hereby granted, free of charge, to any person obtaining a copy // of this software and associated documentation files (the "Software"), to deal // in the Software without restriction, including without limitation the rights // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell // copies of the Software, and to permit persons to whom the Software is // furnished to do so, subject to the following conditions: // // The above copyright notice and this permission notice shall be included in // all copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE // SOFTWARE.