#define TINYSPLINE_EXPORT #include "tinyspline.h" #include "parson.h" /* serialization */ #include /* fabs, sqrt, acos */ #include /* varargs */ #include /* FILE, fopen */ #include /* malloc, free */ #include /* memcpy, memmove */ /* Suppress some useless MSVC warnings. */ #ifdef _MSC_VER #pragma warning(push) /* address of dllimport */ #pragma warning(disable : 4232) /* function not inlined */ #pragma warning(disable : 4710) /* byte padding */ #pragma warning(disable : 4820) /* meaningless deprecation */ #pragma warning(disable : 4996) /* Spectre mitigation */ #pragma warning(disable : 5045) #endif #define INIT_OUT_BSPLINE(in, out) \ if ((in) != (out)) \ ts_int_bspline_init(out); /*! @name Internal Structs and Functions * * Internal functions are prefixed with \e ts_int (int for internal). * * @{ */ /** * Stores the private data of ::tsBSpline. */ struct tsBSplineImpl { size_t deg; /**< Degree of B-Spline basis function. */ size_t dim; /**< Dimensionality of the control points (2D => x, y). */ size_t n_ctrlp; /**< Number of control points. */ size_t n_knots; /**< Number of knots (n_ctrlp + deg + 1). */ }; /** * Stores the private data of ::tsDeBoorNet. */ struct tsDeBoorNetImpl { tsReal u; /**< The evaluated knot. */ size_t k; /**< The index [u_k, u_k+1) */ size_t s; /**< Multiplicity of u_k. */ size_t h; /**< Number of insertions required to obtain result. */ size_t dim; /**< Dimensionality of the points (2D => x, y). */ size_t n_points; /** Number of points in `points'. */ }; void ts_int_bspline_init(tsBSpline *spline) { spline->pImpl = NULL; } size_t ts_int_bspline_sof_state(const tsBSpline *spline) { return sizeof(struct tsBSplineImpl) + ts_bspline_sof_control_points(spline) + ts_bspline_sof_knots(spline); } tsReal * ts_int_bspline_access_ctrlp(const tsBSpline *spline) { return (tsReal *)(&spline->pImpl[1]); } tsReal * ts_int_bspline_access_knots(const tsBSpline *spline) { return ts_int_bspline_access_ctrlp(spline) + ts_bspline_len_control_points(spline); } tsError ts_int_bspline_access_ctrlp_at(const tsBSpline *spline, size_t index, tsReal **ctrlp, tsStatus *status) { const size_t num = ts_bspline_num_control_points(spline); if (index >= num) { TS_RETURN_2(status, TS_INDEX_ERROR, "index (%lu) >= num(control_points) (%lu)", (unsigned long)index, (unsigned long)num) } *ctrlp = ts_int_bspline_access_ctrlp(spline) + index * ts_bspline_dimension(spline); TS_RETURN_SUCCESS(status) } tsError ts_int_bspline_access_knot_at(const tsBSpline *spline, size_t index, tsReal *knot, tsStatus *status) { const size_t num = ts_bspline_num_knots(spline); if (index >= num) { TS_RETURN_2(status, TS_INDEX_ERROR, "index (%lu) >= num(knots) (%lu)", (unsigned long)index, (unsigned long)num) } *knot = ts_int_bspline_access_knots(spline)[index]; TS_RETURN_SUCCESS(status) } void ts_int_deboornet_init(tsDeBoorNet *net) { net->pImpl = NULL; } size_t ts_int_deboornet_sof_state(const tsDeBoorNet *net) { return sizeof(struct tsDeBoorNetImpl) + ts_deboornet_sof_points(net) + ts_deboornet_sof_result(net); } tsReal * ts_int_deboornet_access_points(const tsDeBoorNet *net) { return (tsReal *)(&net->pImpl[1]); } tsReal * ts_int_deboornet_access_result(const tsDeBoorNet *net) { if (ts_deboornet_num_result(net) == 2) { return ts_int_deboornet_access_points(net); } else { return ts_int_deboornet_access_points(net) + /* Last point in `points`. */ (ts_deboornet_len_points(net) - ts_deboornet_dimension(net)); } } /*! @} */ /*! @name B-Spline Data * * @{ */ size_t ts_bspline_degree(const tsBSpline *spline) { return spline->pImpl->deg; } size_t ts_bspline_order(const tsBSpline *spline) { return ts_bspline_degree(spline) + 1; } size_t ts_bspline_dimension(const tsBSpline *spline) { return spline->pImpl->dim; } size_t ts_bspline_len_control_points(const tsBSpline *spline) { return ts_bspline_num_control_points(spline) * ts_bspline_dimension(spline); } size_t ts_bspline_num_control_points(const tsBSpline *spline) { return spline->pImpl->n_ctrlp; } size_t ts_bspline_sof_control_points(const tsBSpline *spline) { return ts_bspline_len_control_points(spline) * sizeof(tsReal); } const tsReal * ts_bspline_control_points_ptr(const tsBSpline *spline) { return ts_int_bspline_access_ctrlp(spline); } tsError ts_bspline_control_points(const tsBSpline *spline, tsReal **ctrlp, tsStatus *status) { const size_t size = ts_bspline_sof_control_points(spline); *ctrlp = (tsReal *)malloc(size); if (!*ctrlp) TS_RETURN_0(status, TS_MALLOC, "out of memory") memcpy(*ctrlp, ts_int_bspline_access_ctrlp(spline), size); TS_RETURN_SUCCESS(status) } tsError ts_bspline_control_point_at_ptr(const tsBSpline *spline, size_t index, const tsReal **ctrlp, tsStatus *status) { tsReal *vals; tsError err; TS_TRY(try, err, status) TS_CALL(try, err, ts_int_bspline_access_ctrlp_at(spline, index, &vals, status)) *ctrlp = vals; TS_CATCH(err) *ctrlp = NULL; TS_END_TRY_RETURN(err) } tsError ts_bspline_set_control_points(tsBSpline *spline, const tsReal *ctrlp, tsStatus *status) { const size_t size = ts_bspline_sof_control_points(spline); memmove(ts_int_bspline_access_ctrlp(spline), ctrlp, size); TS_RETURN_SUCCESS(status) } tsError ts_bspline_set_control_point_at(tsBSpline *spline, size_t index, const tsReal *ctrlp, tsStatus *status) { tsReal *to; size_t size; tsError err; TS_TRY(try, err, status) TS_CALL(try, err, ts_int_bspline_access_ctrlp_at(spline, index, &to, status)) size = ts_bspline_dimension(spline) * sizeof(tsReal); memcpy(to, ctrlp, size); TS_END_TRY_RETURN(err) } size_t ts_bspline_num_knots(const tsBSpline *spline) { return spline->pImpl->n_knots; } size_t ts_bspline_sof_knots(const tsBSpline *spline) { return ts_bspline_num_knots(spline) * sizeof(tsReal); } const tsReal * ts_bspline_knots_ptr(const tsBSpline *spline) { return ts_int_bspline_access_knots(spline); } tsError ts_bspline_knots(const tsBSpline *spline, tsReal **knots, tsStatus *status) { const size_t size = ts_bspline_sof_knots(spline); *knots = (tsReal *)malloc(size); if (!*knots) TS_RETURN_0(status, TS_MALLOC, "out of memory") memcpy(*knots, ts_int_bspline_access_knots(spline), size); TS_RETURN_SUCCESS(status) } tsError ts_bspline_knot_at(const tsBSpline *spline, size_t index, tsReal *knot, tsStatus *status) { return ts_int_bspline_access_knot_at(spline, index, knot, status); } tsError ts_bspline_set_knots(tsBSpline *spline, const tsReal *knots, tsStatus *status) { const size_t size = ts_bspline_sof_knots(spline); const size_t num_knots = ts_bspline_num_knots(spline); const size_t order = ts_bspline_order(spline); size_t idx, mult; tsReal lst_knot, knot; lst_knot = knots[0]; mult = 1; for (idx = 1; idx < num_knots; idx++) { knot = knots[idx]; if (ts_knots_equal(lst_knot, knot)) { mult++; } else if (lst_knot > knot) { TS_RETURN_1(status, TS_KNOTS_DECR, "decreasing knot vector at index: %lu", (unsigned long)idx) } else { mult = 0; } if (mult > order) { TS_RETURN_3(status, TS_MULTIPLICITY, "mult(%f) (%lu) > order (%lu)", knot, (unsigned long)mult, (unsigned long)order) } lst_knot = knot; } memmove(ts_int_bspline_access_knots(spline), knots, size); TS_RETURN_SUCCESS(status) } tsError ts_bspline_set_knots_varargs(tsBSpline *spline, tsStatus *status, tsReal knot0, double knot1, ...) { tsReal *values = NULL; va_list argp; size_t idx; tsError err; TS_TRY(try, err, status) TS_CALL(try, err, ts_bspline_knots(spline, &values, status)) values[0] = knot0; values[1] = (tsReal)knot1; va_start(argp, knot1); for (idx = 2; idx < ts_bspline_num_knots(spline); idx++) values[idx] = (tsReal)va_arg(argp, double); va_end(argp); TS_CALL(try, err, ts_bspline_set_knots(spline, values, status)) TS_FINALLY if (values) free(values); TS_END_TRY_RETURN(err) } tsError ts_bspline_set_knot_at(tsBSpline *spline, size_t index, tsReal knot, tsStatus *status) { tsError err; tsReal *knots = NULL; /* This is only for initialization. */ tsReal oldKnot = ts_int_bspline_access_knots(spline)[0]; TS_TRY(try, err, status) TS_CALL(try, err, ts_int_bspline_access_knot_at(spline, index, &oldKnot, status)) /* knots must be set after reading oldKnot because the catch * block assumes that oldKnot contains the correct value if * knots is not NULL. */ knots = ts_int_bspline_access_knots(spline); knots[index] = knot; TS_CALL(try, err, ts_bspline_set_knots(spline, knots, status)) TS_CATCH(err) /* If knots is not NULL, oldKnot contains the correct value. */ if (knots) knots[index] = oldKnot; TS_END_TRY_RETURN(err) } /*! @} */ /*! @name B-Spline Initialization * * @{ */ tsBSpline ts_bspline_init(void) { tsBSpline spline; ts_int_bspline_init(&spline); return spline; } tsError ts_int_bspline_generate_knots(const tsBSpline *spline, tsBSplineType type, tsStatus *status) { const size_t n_knots = ts_bspline_num_knots(spline); const size_t deg = ts_bspline_degree(spline); const size_t order = ts_bspline_order(spline); tsReal fac; /**< Factor used to calculate the knot values. */ size_t i; /**< Used in for loops. */ tsReal *knots; /**< Pointer to the knots of \p _result_. */ /* order >= 1 implies 2*order >= 2 implies n_knots >= 2 */ if (type == TS_BEZIERS && n_knots % order != 0) { TS_RETURN_2(status, TS_NUM_KNOTS, "num(knots) (%lu) %% order (%lu) != 0", (unsigned long)n_knots, (unsigned long)order) } knots = ts_int_bspline_access_knots(spline); if (type == TS_OPENED) { knots[0] = TS_DOMAIN_DEFAULT_MIN; /* n_knots >= 2 */ fac = (TS_DOMAIN_DEFAULT_MAX - TS_DOMAIN_DEFAULT_MIN) / (n_knots - 1); /* n_knots >= 2 */ for (i = 1; i < n_knots - 1; i++) knots[i] = TS_DOMAIN_DEFAULT_MIN + i * fac; knots[i] = TS_DOMAIN_DEFAULT_MAX; /* n_knots >= 2 */ } else if (type == TS_CLAMPED) { /* n_knots >= 2*order == 2*(deg+1) == 2*deg + 2 > 2*deg - 1 */ fac = (TS_DOMAIN_DEFAULT_MAX - TS_DOMAIN_DEFAULT_MIN) / (n_knots - 2 * deg - 1); ts_arr_fill(knots, order, TS_DOMAIN_DEFAULT_MIN); for (i = order; i < n_knots - order; i++) knots[i] = TS_DOMAIN_DEFAULT_MIN + (i - deg) * fac; ts_arr_fill(knots + i, order, TS_DOMAIN_DEFAULT_MAX); } else if (type == TS_BEZIERS) { /* n_knots >= 2*order implies n_knots/order >= 2 */ fac = (TS_DOMAIN_DEFAULT_MAX - TS_DOMAIN_DEFAULT_MIN) / (n_knots / order - 1); ts_arr_fill(knots, order, TS_DOMAIN_DEFAULT_MIN); for (i = order; i < n_knots - order; i += order) ts_arr_fill(knots + i, order, TS_DOMAIN_DEFAULT_MIN + (i / order) * fac); ts_arr_fill(knots + i, order, TS_DOMAIN_DEFAULT_MAX); } TS_RETURN_SUCCESS(status) } tsError ts_bspline_new(size_t num_control_points, size_t dimension, size_t degree, tsBSplineType type, tsBSpline *spline, tsStatus *status) { const size_t order = degree + 1; const size_t num_knots = num_control_points + order; const size_t len_ctrlp = num_control_points * dimension; const size_t sof_real = sizeof(tsReal); const size_t sof_impl = sizeof(struct tsBSplineImpl); const size_t sof_ctrlp_vec = len_ctrlp * sof_real; const size_t sof_knots_vec = num_knots * sof_real; const size_t sof_spline = sof_impl + sof_ctrlp_vec + sof_knots_vec; tsError err; ts_int_bspline_init(spline); if (dimension < 1) { TS_RETURN_0(status, TS_DIM_ZERO, "unsupported dimension: 0") } if (num_knots > TS_MAX_NUM_KNOTS) { TS_RETURN_2(status, TS_NUM_KNOTS, "unsupported number of knots: %lu > %i", (unsigned long)num_knots, TS_MAX_NUM_KNOTS) } if (degree >= num_control_points) { TS_RETURN_2(status, TS_DEG_GE_NCTRLP, "degree (%lu) >= num(control_points) (%lu)", (unsigned long)degree, (unsigned long)num_control_points) } spline->pImpl = (struct tsBSplineImpl *)malloc(sof_spline); if (!spline->pImpl) TS_RETURN_0(status, TS_MALLOC, "out of memory") spline->pImpl->deg = degree; spline->pImpl->dim = dimension; spline->pImpl->n_ctrlp = num_control_points; spline->pImpl->n_knots = num_knots; TS_TRY(try, err, status) TS_CALL(try, err, ts_int_bspline_generate_knots(spline, type, status)) TS_CATCH(err) ts_bspline_free(spline); TS_END_TRY_RETURN(err) } tsError ts_bspline_new_with_control_points(size_t num_control_points, size_t dimension, size_t degree, tsBSplineType type, tsBSpline *spline, tsStatus *status, double first, ...) { tsReal *ctrlp = NULL; va_list argp; size_t i; tsError err; TS_TRY(try, err, status) TS_CALL(try, err, ts_bspline_new(num_control_points, dimension, degree, type, spline, status)) TS_CATCH(err) ts_bspline_free(spline); TS_END_TRY_ROE(err) ctrlp = ts_int_bspline_access_ctrlp(spline); ctrlp[0] = (tsReal)first; va_start(argp, first); for (i = 1; i < ts_bspline_len_control_points(spline); i++) ctrlp[i] = (tsReal)va_arg(argp, double); va_end(argp); TS_RETURN_SUCCESS(status) } tsError ts_bspline_copy(const tsBSpline *src, tsBSpline *dest, tsStatus *status) { size_t size; if (src == dest) TS_RETURN_SUCCESS(status) ts_int_bspline_init(dest); size = ts_int_bspline_sof_state(src); dest->pImpl = (struct tsBSplineImpl *)malloc(size); if (!dest->pImpl) TS_RETURN_0(status, TS_MALLOC, "out of memory") memcpy(dest->pImpl, src->pImpl, size); TS_RETURN_SUCCESS(status) } void ts_bspline_move(tsBSpline *src, tsBSpline *dest) { if (src == dest) return; dest->pImpl = src->pImpl; ts_int_bspline_init(src); } void ts_bspline_free(tsBSpline *spline) { if (spline->pImpl) free(spline->pImpl); ts_int_bspline_init(spline); } /*! @} */ /*! @name De Boor Net Data * * @{ */ tsReal ts_deboornet_knot(const tsDeBoorNet *net) { return net->pImpl->u; } size_t ts_deboornet_index(const tsDeBoorNet *net) { return net->pImpl->k; } size_t ts_deboornet_multiplicity(const tsDeBoorNet *net) { return net->pImpl->s; } size_t ts_deboornet_num_insertions(const tsDeBoorNet *net) { return net->pImpl->h; } size_t ts_deboornet_dimension(const tsDeBoorNet *net) { return net->pImpl->dim; } size_t ts_deboornet_len_points(const tsDeBoorNet *net) { return ts_deboornet_num_points(net) * ts_deboornet_dimension(net); } size_t ts_deboornet_num_points(const tsDeBoorNet *net) { return net->pImpl->n_points; } size_t ts_deboornet_sof_points(const tsDeBoorNet *net) { return ts_deboornet_len_points(net) * sizeof(tsReal); } const tsReal * ts_deboornet_points_ptr(const tsDeBoorNet *net) { return ts_int_deboornet_access_points(net); } tsError ts_deboornet_points(const tsDeBoorNet *net, tsReal **points, tsStatus *status) { const size_t size = ts_deboornet_sof_points(net); *points = (tsReal *)malloc(size); if (!*points) TS_RETURN_0(status, TS_MALLOC, "out of memory") memcpy(*points, ts_int_deboornet_access_points(net), size); TS_RETURN_SUCCESS(status) } size_t ts_deboornet_len_result(const tsDeBoorNet *net) { return ts_deboornet_num_result(net) * ts_deboornet_dimension(net); } size_t ts_deboornet_num_result(const tsDeBoorNet *net) { return ts_deboornet_num_points(net) == 2 ? 2 : 1; } size_t ts_deboornet_sof_result(const tsDeBoorNet *net) { return ts_deboornet_len_result(net) * sizeof(tsReal); } const tsReal * ts_deboornet_result_ptr(const tsDeBoorNet *net) { return ts_int_deboornet_access_result(net); } tsError ts_deboornet_result(const tsDeBoorNet *net, tsReal **result, tsStatus *status) { const size_t size = ts_deboornet_sof_result(net); *result = (tsReal *)malloc(size); if (!*result) TS_RETURN_0(status, TS_MALLOC, "out of memory") memcpy(*result, ts_int_deboornet_access_result(net), size); TS_RETURN_SUCCESS(status) } /*! @} */ /*! @name De Boor Net Initialization * * @{ */ tsDeBoorNet ts_deboornet_init(void) { tsDeBoorNet net; ts_int_deboornet_init(&net); return net; } tsError ts_int_deboornet_new(const tsBSpline *spline, tsDeBoorNet *net, tsStatus *status) { const size_t dim = ts_bspline_dimension(spline); const size_t deg = ts_bspline_degree(spline); const size_t order = ts_bspline_order(spline); const size_t num_points = (size_t)(order * (order + 1) * 0.5f); /* Handle `order == 1' which generates too few points. */ const size_t fixed_num_points = num_points < 2 ? 2 : num_points; const size_t sof_real = sizeof(tsReal); const size_t sof_impl = sizeof(struct tsDeBoorNetImpl); const size_t sof_points_vec = fixed_num_points * dim * sof_real; const size_t sof_net = sof_impl * sof_points_vec; net->pImpl = (struct tsDeBoorNetImpl *)malloc(sof_net); if (!net->pImpl) TS_RETURN_0(status, TS_MALLOC, "out of memory") net->pImpl->u = 0.f; net->pImpl->k = 0; net->pImpl->s = 0; net->pImpl->h = deg; net->pImpl->dim = dim; net->pImpl->n_points = fixed_num_points; TS_RETURN_SUCCESS(status) } void ts_deboornet_free(tsDeBoorNet *net) { if (net->pImpl) free(net->pImpl); ts_int_deboornet_init(net); } tsError ts_deboornet_copy(const tsDeBoorNet *src, tsDeBoorNet *dest, tsStatus *status) { size_t size; if (src == dest) TS_RETURN_SUCCESS(status) ts_int_deboornet_init(dest); size = ts_int_deboornet_sof_state(src); dest->pImpl = (struct tsDeBoorNetImpl *)malloc(size); if (!dest->pImpl) TS_RETURN_0(status, TS_MALLOC, "out of memory") memcpy(dest->pImpl, src->pImpl, size); TS_RETURN_SUCCESS(status) } void ts_deboornet_move(tsDeBoorNet *src, tsDeBoorNet *dest) { if (src == dest) return; dest->pImpl = src->pImpl; ts_int_deboornet_init(src); } /*! @} */ /*! @name Interpolation and Approximation Functions * * @{ */ tsError ts_int_cubic_point(const tsReal *point, size_t dim, tsBSpline *spline, tsStatus *status) { const size_t size = dim * sizeof(tsReal); tsReal *ctrlp = NULL; size_t i; tsError err; TS_CALL_ROE(err, ts_bspline_new( 4, dim, 3, TS_CLAMPED, spline, status)) ctrlp = ts_int_bspline_access_ctrlp(spline); for (i = 0; i < 4; i++) { memcpy(ctrlp + i * dim, point, size); } TS_RETURN_SUCCESS(status) } tsError ts_int_thomas_algorithm(const tsReal *a, const tsReal *b, const tsReal *c, size_t num, size_t dim, tsReal *d, tsStatus *status) { size_t i, j, k, l; tsReal m, *cc = NULL; tsError err; if (dim == 0) { TS_RETURN_0(status, TS_DIM_ZERO, "unsupported dimension: 0") } if (num <= 1) { TS_RETURN_1(status, TS_NUM_POINTS, "num(points) (%lu) <= 1", (unsigned long)num) } cc = (tsReal *)malloc(num * sizeof(tsReal)); if (!cc) TS_RETURN_0(status, TS_MALLOC, "out of memory") TS_TRY(try, err, status) /* Forward sweep. */ if (fabs(b[0]) <= fabs(c[0])) { TS_THROW_2(try, err, status, TS_NO_RESULT, "error: |%f| <= |%f|", b[0], c[0]) } /* |b[i]| > |c[i]| implies that |b[i]| > 0. Thus, the following * statements cannot evaluate to division by zero.*/ cc[0] = c[0] / b[0]; for (i = 0; i < dim; i++) d[i] = d[i] / b[0]; for (i = 1; i < num; i++) { if (fabs(b[i]) <= fabs(a[i]) + fabs(c[i])) { TS_THROW_3(try, err, status, TS_NO_RESULT, "error: |%f| <= |%f| + |%f|", b[i], a[i], c[i]) } /* |a[i]| < |b[i]| and cc[i - 1] < 1. Therefore, the * following statement cannot evaluate to division by * zero. */ m = 1.f / (b[i] - a[i] * cc[i - 1]); /* |b[i]| > |a[i]| + |c[i]| implies that there must be * an eps > 0 such that |b[i]| = |a[i]| + |c[i]| + eps. * Even if |a[i]| is 0 (by which the result of the * following statement becomes maximum), |c[i]| is less * than |b[i]| by an amount of eps. By substituting the * previous and the following statements (under the * assumption that |a[i]| is 0), we obtain c[i] / b[i], * which must be less than 1. */ cc[i] = c[i] * m; for (j = 0; j < dim; j++) { k = i * dim + j; l = (i - 1) * dim + j; d[k] = (d[k] - a[i] * d[l]) * m; } } /* Back substitution. */ for (i = num - 1; i > 0; i--) { for (j = 0; j < dim; j++) { k = (i - 1) * dim + j; l = i * dim + j; d[k] -= cc[i - 1] * d[l]; } } TS_FINALLY free(cc); TS_END_TRY_RETURN(err) } tsError ts_int_relaxed_uniform_cubic_bspline(const tsReal *points, size_t n, size_t dim, tsBSpline *spline, tsStatus *status) { const size_t order = 4; /**< Order of spline to interpolate. */ const tsReal as = 1.f / 6.f; /**< The value 'a sixth'. */ const tsReal at = 1.f / 3.f; /**< The value 'a third'. */ const tsReal tt = 2.f / 3.f; /**< The value 'two third'. */ size_t sof_ctrlp; /**< Size of a single control point. */ const tsReal *b = points; /**< Array of the b values. */ tsReal *s; /**< Array of the s values. */ size_t i, d; /**< Used in for loops */ size_t j, k, l; /**< Used as temporary indices. */ tsReal *ctrlp; /**< Pointer to the control points of \p _spline_. */ tsError err; /* input validation */ if (dim == 0) TS_RETURN_0(status, TS_DIM_ZERO, "unsupported dimension: 0") if (n <= 1) { TS_RETURN_1(status, TS_NUM_POINTS, "num(points) (%lu) <= 1", (unsigned long)n) } /* in the following n >= 2 applies */ sof_ctrlp = dim * sizeof(tsReal); /* dim > 0 implies sof_ctrlp > 0 */ s = NULL; TS_TRY(try, err, status) /* n >= 2 implies n-1 >= 1 implies (n-1)*4 >= 4 */ TS_CALL(try, err, ts_bspline_new((n - 1) * 4, dim, order - 1, TS_BEZIERS, spline, status)) ctrlp = ts_int_bspline_access_ctrlp(spline); s = (tsReal *)malloc(n * sof_ctrlp); if (!s) { TS_THROW_0(try, err, status, TS_MALLOC, "out of memory") } /* set s_0 to b_0 and s_n = b_n */ memcpy(s, b, sof_ctrlp); memcpy(s + (n - 1) * dim, b + (n - 1) * dim, sof_ctrlp); /* set s_i = 1/6*b_i + 2/3*b_{i-1} + 1/6*b_{i+1}*/ for (i = 1; i < n - 1; i++) { for (d = 0; d < dim; d++) { j = (i - 1) * dim + d; k = i * dim + d; l = (i + 1) * dim + d; s[k] = as * b[j]; s[k] += tt * b[k]; s[k] += as * b[l]; } } /* create beziers from b and s */ for (i = 0; i < n - 1; i++) { for (d = 0; d < dim; d++) { j = i * dim + d; k = i * 4 * dim + d; l = (i + 1) * dim + d; ctrlp[k] = s[j]; ctrlp[k + dim] = tt * b[j] + at * b[l]; ctrlp[k + 2 * dim] = at * b[j] + tt * b[l]; ctrlp[k + 3 * dim] = s[l]; } } TS_CATCH(err) ts_bspline_free(spline); TS_FINALLY if (s) free(s); TS_END_TRY_RETURN(err) } tsError ts_bspline_interpolate_cubic_natural(const tsReal *points, size_t num_points, size_t dimension, tsBSpline *spline, tsStatus *status) { const size_t sof_ctrlp = dimension * sizeof(tsReal); const size_t len_points = num_points * dimension; const size_t num_int_points = num_points - 2; const size_t len_int_points = num_int_points * dimension; tsReal *thomas, *a, *b, *c, *d; size_t i, j, k, l; tsError err; ts_int_bspline_init(spline); if (num_points == 0) TS_RETURN_0(status, TS_NUM_POINTS, "num(points) == 0") if (num_points == 1) { TS_CALL_ROE(err, ts_int_cubic_point( points, dimension, spline, status)) TS_RETURN_SUCCESS(status) } if (num_points == 2) { return ts_int_relaxed_uniform_cubic_bspline( points, num_points, dimension, spline, status); } /* `num_points` >= 3 */ thomas = NULL; TS_TRY(try, err, status) thomas = (tsReal *)malloc( /* `a', `b', `c' (note that `c' is equal to `a') */ 2 * num_int_points * sizeof(tsReal) + /* `d' and "result of the thomas algorithm" (which contains `num_points' points) */ num_points * dimension * sizeof(tsReal)); if (!thomas) { TS_THROW_0(try, err, status, TS_MALLOC, "out of memory") } /* The system of linear equations is taken from: * http://www.bakoma-tex.com/doc/generic/pst-bspline/ * pst-bspline-doc.pdf */ a = c = thomas; ts_arr_fill(a, num_int_points, 1); b = a + num_int_points; ts_arr_fill(b, num_int_points, 4); d = b + num_int_points; /* 6 * S_{i+1} */ for (i = 0; i < num_int_points; i++) { for (j = 0; j < dimension; j++) { k = i * dimension + j; l = (i + 1) * dimension + j; d[k] = 6 * points[l]; } } for (i = 0; i < dimension; i++) { /* 6 * S_{1} - S_{0} */ d[i] -= points[i]; /* 6 * S_{n-1} - S_{n} */ k = len_int_points - (i + 1); l = len_points - (i + 1); d[k] -= points[l]; } /* The Thomas algorithm requires at least two points. Hence, * `num_int_points` == 1 must be handled separately (let's call * it "Mini Thomas"). */ if (num_int_points == 1) { for (i = 0; i < dimension; i++) d[i] *= (tsReal)0.25f; } else { TS_CALL(try, err, ts_int_thomas_algorithm(a, b, c, num_int_points, dimension, d, status)) } memcpy(thomas, points, sof_ctrlp); memmove(thomas + dimension, d, num_int_points * sof_ctrlp); memcpy(thomas + (num_int_points + 1) * dimension, points + (num_points - 1) * dimension, sof_ctrlp); TS_CALL(try, err, ts_int_relaxed_uniform_cubic_bspline(thomas, num_points, dimension, spline, status)) TS_CATCH(err) ts_bspline_free(spline); TS_FINALLY if (thomas) free(thomas); TS_END_TRY_RETURN(err) } tsError ts_bspline_interpolate_catmull_rom(const tsReal *points, size_t num_points, size_t dimension, tsReal alpha, const tsReal *first, const tsReal *last, tsReal epsilon, tsBSpline *spline, tsStatus *status) { const size_t sof_real = sizeof(tsReal); const size_t sof_ctrlp = dimension * sof_real; const tsReal eps = (tsReal)fabs(epsilon); tsReal *bs_ctrlp; /* Points to the control points of `spline`. */ tsReal *cr_ctrlp; /**< The points to interpolate based on `points`. */ size_t i, d; /**< Used in for loops. */ tsError err; /**< Local error handling. */ /* [https://en.wikipedia.org/wiki/ * Centripetal_Catmull%E2%80%93Rom_spline] */ tsReal t0, t1, t2, t3; /**< Catmull-Rom knots. */ /* [https://stackoverflow.com/questions/30748316/ * catmull-rom-interpolation-on-svg-paths/30826434#30826434] */ tsReal c1, c2, d1, d2, m1, m2; /**< Used to calculate derivatives. */ tsReal *p0, *p1, *p2, *p3; /**< Processed Catmull-Rom points. */ ts_int_bspline_init(spline); if (dimension == 0) TS_RETURN_0(status, TS_DIM_ZERO, "unsupported dimension: 0") if (num_points == 0) TS_RETURN_0(status, TS_NUM_POINTS, "num(points) == 0") if (alpha < (tsReal)0.0) alpha = (tsReal)0.0; if (alpha > (tsReal)1.0) alpha = (tsReal)1.0; /* Copy `points` to `cr_ctrlp`. Add space for `first` and `last`. */ cr_ctrlp = (tsReal *)malloc((num_points + 2) * sof_ctrlp); if (!cr_ctrlp) TS_RETURN_0(status, TS_MALLOC, "out of memory") memcpy(cr_ctrlp + dimension, points, num_points * sof_ctrlp); /* Remove redundant points from `cr_ctrlp`. Update `num_points`. */ for (i = 1 /* 0 (`first`) is not assigned yet */; i < num_points /* skip last point (inclusive end) */; i++) { p0 = cr_ctrlp + (i * dimension); p1 = p0 + dimension; if (ts_distance(p0, p1, dimension) <= eps) { /* Are there any other points (after the one that is * to be removed) that need to be shifted? */ if (i < num_points - 1) { memmove(p1, p1 + dimension, (num_points - (i + 1)) * sof_ctrlp); } num_points--; i--; } } /* Check if there are still enough points for interpolation. */ if (num_points == 1) { /* `num_points` can't be 0 */ free(cr_ctrlp); /* The point is copied from `points`. */ TS_CALL_ROE(err, ts_int_cubic_point( points, dimension, spline, status)) TS_RETURN_SUCCESS(status) } /* Add or generate `first` and `last`. Update `num_points`. */ p0 = cr_ctrlp + dimension; if (first && ts_distance(first, p0, dimension) > eps) { memcpy(cr_ctrlp, first, sof_ctrlp); } else { p1 = p0 + dimension; for (d = 0; d < dimension; d++) cr_ctrlp[d] = p0[d] + (p0[d] - p1[d]); } p1 = cr_ctrlp + (num_points * dimension); if (last && ts_distance(p1, last, dimension) > eps) { memcpy(cr_ctrlp + ((num_points + 1) * dimension), last, sof_ctrlp); } else { p0 = p1 - dimension; for (d = 0; d < dimension; d++) { cr_ctrlp[((num_points + 1) * dimension) + d] = p1[d] + (p1[d] - p0[d]); } } num_points = num_points + 2; /* Transform the sequence of Catmull-Rom splines. */ bs_ctrlp = NULL; TS_TRY(try, err, status) TS_CALL(try, err, ts_bspline_new((num_points - 3) * 4, dimension, 3, TS_BEZIERS, spline, status)) bs_ctrlp = ts_int_bspline_access_ctrlp(spline); TS_CATCH(err) free(cr_ctrlp); TS_END_TRY_ROE(err) for (i = 0; i < ts_bspline_num_control_points(spline) / 4; i++) { p0 = cr_ctrlp + ((i + 0) * dimension); p1 = cr_ctrlp + ((i + 1) * dimension); p2 = cr_ctrlp + ((i + 2) * dimension); p3 = cr_ctrlp + ((i + 3) * dimension); t0 = (tsReal)0.f; t1 = t0 + (tsReal)pow(ts_distance(p0, p1, dimension), alpha); t2 = t1 + (tsReal)pow(ts_distance(p1, p2, dimension), alpha); t3 = t2 + (tsReal)pow(ts_distance(p2, p3, dimension), alpha); c1 = (t2 - t1) / (t2 - t0); c2 = (t1 - t0) / (t2 - t0); d1 = (t3 - t2) / (t3 - t1); d2 = (t2 - t1) / (t3 - t1); for (d = 0; d < dimension; d++) { m1 = (t2 - t1) * (c1 * (p1[d] - p0[d]) / (t1 - t0) + c2 * (p2[d] - p1[d]) / (t2 - t1)); m2 = (t2 - t1) * (d1 * (p2[d] - p1[d]) / (t2 - t1) + d2 * (p3[d] - p2[d]) / (t3 - t2)); bs_ctrlp[((i * 4 + 0) * dimension) + d] = p1[d]; bs_ctrlp[((i * 4 + 1) * dimension) + d] = p1[d] + m1 / 3; bs_ctrlp[((i * 4 + 2) * dimension) + d] = p2[d] - m2 / 3; bs_ctrlp[((i * 4 + 3) * dimension) + d] = p2[d]; } } free(cr_ctrlp); TS_RETURN_SUCCESS(status) } /*! @} */ /*! @name Query Functions * * @{ */ tsError ts_int_bspline_find_knot(const tsBSpline *spline, tsReal knot, size_t *index, size_t *multiplicity, tsStatus *status) { const size_t deg = ts_bspline_degree(spline); const size_t num_knots = ts_bspline_num_knots(spline); const tsReal *knots = ts_int_bspline_access_knots(spline); tsReal min, max; size_t low, high; ts_bspline_domain(spline, &min, &max); if (knot < min && !ts_knots_equal(knot, min)) { TS_RETURN_2(status, TS_U_UNDEFINED, "knot (%f) < min(domain) (%f)", knot, min) } if (knot > max && !ts_knots_equal(knot, max)) { TS_RETURN_2(status, TS_U_UNDEFINED, "knot (%f) > max(domain) (%f)", knot, max) } /* Based on 'The NURBS Book' (Les Piegl and Wayne Tiller). */ if (ts_knots_equal(knot, knots[num_knots - 1])) { *index = num_knots - 1; } else { low = 0; high = num_knots - 1; *index = (low + high) / 2; while (knot < knots[*index] || knot >= knots[*index + 1]) { if (knot < knots[*index]) high = *index; else low = *index; *index = (low + high) / 2; } } /* Handle floating point errors. */ while (*index < num_knots - 1 && /* there is a next knot */ ts_knots_equal(knot, knots[*index + 1])) { (*index)++; } /* Calculate knot's multiplicity. */ for (*multiplicity = deg + 1; *multiplicity > 0; (*multiplicity)--) { if (ts_knots_equal(knot, knots[*index - (*multiplicity - 1)])) break; } TS_RETURN_SUCCESS(status) } tsError ts_int_bspline_eval_woa(const tsBSpline *spline, tsReal u, tsDeBoorNet *net, tsStatus *status) { const size_t deg = ts_bspline_degree(spline); const size_t order = ts_bspline_order(spline); const size_t dim = ts_bspline_dimension(spline); const size_t num_knots = ts_bspline_num_knots(spline); const size_t sof_ctrlp = dim * sizeof(tsReal); const tsReal *ctrlp = ts_int_bspline_access_ctrlp(spline); const tsReal *knots = ts_int_bspline_access_knots(spline); tsReal *points = NULL; /**< Pointer to the points of \p net. */ size_t k; /**< Index of \p u. */ size_t s; /**< Multiplicity of \p u. */ tsReal uk; /**< The actual used u. */ size_t from; /**< Offset used to copy values. */ size_t fst; /**< First affected control point, inclusive. */ size_t lst; /**< Last affected control point, inclusive. */ size_t N; /**< Number of affected control points. */ /* The following indices are used to create the DeBoor net. */ size_t lidx; /**< Current left index. */ size_t ridx; /**< Current right index. */ size_t tidx; /**< Current to index. */ size_t r, i, d; /**< Used in for loop. */ tsReal ui; /**< Knot value at index i. */ tsReal a, a_hat; /**< Weighting factors of control points. */ tsError err; points = ts_int_deboornet_access_points(net); /* 1. Find index k such that u is in between [u_k, u_k+1). * 2. Setup already known values. * 3. Decide by multiplicity of u how to calculate point P(u). */ /* 1. */ k = s = 0; TS_CALL_ROE(err, ts_int_bspline_find_knot( spline, u, &k, &s, status)) /* 2. */ uk = knots[k]; /* Ensures that with any precision of */ net->pImpl->u = /* tsReal the knot vector stays valid. */ ts_knots_equal(u, uk) ? uk : u; net->pImpl->k = k; net->pImpl->s = s; net->pImpl->h = deg < s ? 0 : deg - s; /* prevent underflow */ /* 3. (by 1. s <= order) * * 3a) Check for s = order. * Take the two points k-s and k-s + 1. If one of * them doesn't exist, take only the other. * 3b) Use de boor algorithm to find point P(u). */ if (s == order) { /* only one of the two control points exists */ if (k == deg || /* only the first */ k == num_knots - 1) { /* only the last */ from = k == deg ? 0 : (k - s) * dim; net->pImpl->n_points = 1; memcpy(points, ctrlp + from, sof_ctrlp); } else { from = (k - s) * dim; net->pImpl->n_points = 2; memcpy(points, ctrlp + from, 2 * sof_ctrlp); } } else { /* by 3a) s <= deg (order = deg+1) */ fst = k - deg; /* by 1. k >= deg */ lst = k - s; /* s <= deg <= k */ N = lst - fst + 1; /* lst <= fst implies N >= 1 */ net->pImpl->n_points = (size_t)(N * (N + 1) * 0.5f); /* copy initial values to output */ memcpy(points, ctrlp + fst * dim, N * sof_ctrlp); lidx = 0; ridx = dim; tidx = N * dim; /* N >= 1 implies tidx > 0 */ r = 1; for (; r <= ts_deboornet_num_insertions(net); r++) { i = fst + r; for (; i <= lst; i++) { ui = knots[i]; a = (ts_deboornet_knot(net) - ui) / (knots[i + deg - r + 1] - ui); a_hat = 1.f - a; for (d = 0; d < dim; d++) { points[tidx++] = a_hat * points[lidx++] + a * points[ridx++]; } } lidx += dim; ridx += dim; } } TS_RETURN_SUCCESS(status) } tsError ts_bspline_eval(const tsBSpline *spline, tsReal knot, tsDeBoorNet *net, tsStatus *status) { tsError err; ts_int_deboornet_init(net); TS_TRY(try, err, status) TS_CALL(try, err, ts_int_deboornet_new(spline, net, status)) TS_CALL(try, err, ts_int_bspline_eval_woa(spline, knot, net, status)) TS_CATCH(err) ts_deboornet_free(net); TS_END_TRY_RETURN(err) } tsError ts_bspline_eval_all(const tsBSpline *spline, const tsReal *knots, size_t num, tsReal **points, tsStatus *status) { const size_t dim = ts_bspline_dimension(spline); const size_t sof_point = dim * sizeof(tsReal); const size_t sof_points = num * sof_point; tsDeBoorNet net = ts_deboornet_init(); tsReal *result; size_t i; tsError err; TS_TRY(try, err, status) *points = (tsReal *)malloc(sof_points); if (!*points) { TS_THROW_0(try, err, status, TS_MALLOC, "out of memory") } TS_CALL(try, err, ts_int_deboornet_new(spline, &net, status)) for (i = 0; i < num; i++) { TS_CALL(try, err, ts_int_bspline_eval_woa(spline, knots[i], &net, status)) result = ts_int_deboornet_access_result(&net); memcpy((*points) + i * dim, result, sof_point); } TS_CATCH(err) if (*points) free(*points); *points = NULL; TS_FINALLY ts_deboornet_free(&net); TS_END_TRY_RETURN(err) } tsError ts_bspline_sample(const tsBSpline *spline, size_t num, tsReal **points, size_t *actual_num, tsStatus *status) { tsError err; tsReal *knots; num = num == 0 ? 100 : num; *actual_num = num; knots = (tsReal *)malloc(num * sizeof(tsReal)); if (!knots) { *points = NULL; TS_RETURN_0(status, TS_MALLOC, "out of memory") } ts_bspline_uniform_knot_seq(spline, num, knots); TS_TRY(try, err, status) TS_CALL(try, err, ts_bspline_eval_all(spline, knots, num, points, status)) TS_FINALLY free(knots); TS_END_TRY_RETURN(err) } tsError ts_bspline_bisect(const tsBSpline *spline, tsReal value, tsReal epsilon, int persnickety, size_t index, int ascending, size_t max_iter, tsDeBoorNet *net, tsStatus *status) { tsError err; const size_t dim = ts_bspline_dimension(spline); const tsReal eps = (tsReal)fabs(epsilon); size_t i = 0; tsReal dist = 0; tsReal min, max, mid; tsReal *P; ts_int_deboornet_init(net); if (dim < index) { TS_RETURN_2(status, TS_INDEX_ERROR, "dimension (%lu) <= index (%lu)", (unsigned long)dim, (unsigned long)index) } if (max_iter == 0) TS_RETURN_0(status, TS_NO_RESULT, "0 iterations") ts_bspline_domain(spline, &min, &max); TS_TRY(try, err, status) TS_CALL(try, err, ts_int_deboornet_new(spline, net, status)) do { mid = (tsReal)((min + max) / 2.0); TS_CALL(try, err, ts_int_bspline_eval_woa(spline, mid, net, status)) P = ts_int_deboornet_access_result(net); dist = ts_distance(&P[index], &value, 1); if (dist <= eps) TS_RETURN_SUCCESS(status) if (ascending) { if (P[index] < value) min = mid; else max = mid; } else { if (P[index] < value) max = mid; else min = mid; } } while (i++ < max_iter); if (persnickety) { TS_THROW_1(try, err, status, TS_NO_RESULT, "maximum iterations (%lu) exceeded", (unsigned long)max_iter) } TS_CATCH(err) ts_deboornet_free(net); TS_END_TRY_RETURN(err) } void ts_bspline_domain(const tsBSpline *spline, tsReal *min, tsReal *max) { *min = ts_int_bspline_access_knots(spline) [ts_bspline_degree(spline)]; *max = ts_int_bspline_access_knots(spline) [ts_bspline_num_knots(spline) - ts_bspline_order(spline)]; } tsError ts_bspline_is_closed(const tsBSpline *spline, tsReal epsilon, int *closed, tsStatus *status) { const size_t deg = ts_bspline_degree(spline); const size_t dim = ts_bspline_dimension(spline); tsBSpline derivative; tsReal min, max; tsDeBoorNet first, last; size_t i; tsError err; ts_int_bspline_init(&derivative); ts_int_deboornet_init(&first); ts_int_deboornet_init(&last); TS_TRY(try, err, status) for (i = 0; i < deg; i++) { TS_CALL(try, err, ts_bspline_derive(spline, i, -1.f, &derivative, status)) ts_bspline_domain(&derivative, &min, &max); TS_CALL(try, err, ts_bspline_eval(&derivative, min, &first, status)) TS_CALL(try, err, ts_bspline_eval(&derivative, max, &last, status)) *closed = ts_distance( ts_int_deboornet_access_result(&first), ts_int_deboornet_access_result(&last), dim) <= epsilon ? 1 : 0; ts_bspline_free(&derivative); ts_deboornet_free(&first); ts_deboornet_free(&last); if (!*closed) TS_RETURN_SUCCESS(status) } TS_FINALLY ts_bspline_free(&derivative); ts_deboornet_free(&first); ts_deboornet_free(&last); TS_END_TRY_RETURN(err) } tsError ts_bspline_compute_rmf(const tsBSpline *spline, const tsReal *knots, size_t num, int has_first_normal, tsFrame *frames, tsStatus *status) { tsError err; size_t i; tsReal fx, fy, fz, fmin; tsReal xc[3], xn[3], v1[3], c1, v2[3], c2, rL[3], tL[3]; tsBSpline deriv = ts_bspline_init(); tsDeBoorNet curr = ts_deboornet_init(); tsDeBoorNet next = ts_deboornet_init(); if (num < 1) TS_RETURN_SUCCESS(status); TS_TRY(try, err, status) TS_CALL(try, err, ts_int_deboornet_new(spline, &curr, status)) TS_CALL(try, err, ts_int_deboornet_new(spline, &next, status)) TS_CALL(try, err, ts_bspline_derive(spline, 1, (tsReal)-1.0, &deriv, status)) /* Set position. */ TS_CALL(try, err, ts_int_bspline_eval_woa(spline, knots[0], &curr, status)) ts_vec3_set(frames[0].position, ts_int_deboornet_access_result(&curr), ts_bspline_dimension(spline)); /* Set tangent. */ TS_CALL(try, err, ts_int_bspline_eval_woa(&deriv, knots[0], &curr, status)) ts_vec3_set(frames[0].tangent, ts_int_deboornet_access_result(&curr), ts_bspline_dimension(&deriv)); ts_vec_norm(frames[0].tangent, 3, frames[0].tangent); /* Set normal. */ if (!has_first_normal) { fx = (tsReal)fabs(frames[0].tangent[0]); fy = (tsReal)fabs(frames[0].tangent[1]); fz = (tsReal)fabs(frames[0].tangent[2]); fmin = fx; /* x is min => 1, 0, 0 */ ts_vec3_init(frames[0].normal, (tsReal)1.0, (tsReal)0.0, (tsReal)0.0); if (fy < fmin) { /* y is min => 0, 1, 0 */ fmin = fy; ts_vec3_init(frames[0].normal, (tsReal)0.0, (tsReal)1.0, (tsReal)0.0); } if (fz < fmin) { /* z is min => 0, 0, 1 */ ts_vec3_init(frames[0].normal, (tsReal)0.0, (tsReal)0.0, (tsReal)1.0); } ts_vec3_cross(frames[0].tangent, frames[0].normal, frames[0].normal); ts_vec_norm(frames[0].normal, 3, frames[0].normal); ts_vec3_cross(frames[0].tangent, frames[0].normal, frames[0].normal); } else { /* Never trust user input! */ ts_vec_norm(frames[0].normal, 3, frames[0].normal); } /* Set binormal. */ ts_vec3_cross(frames[0].tangent, frames[0].normal, frames[0].binormal); for (i = 0; i < num - 1; i++) { /* Eval current and next point. */ TS_CALL(try, err, ts_int_bspline_eval_woa(spline, knots[i], &curr, status)) TS_CALL(try, err, ts_int_bspline_eval_woa(spline, knots[i + 1], &next, status)) ts_vec3_set(xc, /* xc is now the current point */ ts_int_deboornet_access_result(&curr), ts_bspline_dimension(spline)); ts_vec3_set(xn, /* xn is now the next point */ ts_int_deboornet_access_result(&next), ts_bspline_dimension(spline)); /* Set position of U_{i+1}. */ ts_vec3_set(frames[i + 1].position, xn, 3); /* Compute reflection vector of R_{1}. */ ts_vec_sub(xn, xc, 3, v1); c1 = ts_vec_dot(v1, v1, 3); /* Compute r_{i}^{L} = R_{1} * r_{i}. */ rL[0] = (tsReal)2.0 / c1; rL[1] = ts_vec_dot(v1, frames[i].normal, 3); rL[2] = rL[0] * rL[1]; ts_vec_mul(v1, 3, rL[2], rL); ts_vec_sub(frames[i].normal, rL, 3, rL); /* Compute t_{i}^{L} = R_{1} * t_{i}. */ tL[0] = (tsReal)2.0 / c1; tL[1] = ts_vec_dot(v1, frames[i].tangent, 3); tL[2] = tL[0] * tL[1]; ts_vec_mul(v1, 3, tL[2], tL); ts_vec_sub(frames[i].tangent, tL, 3, tL); /* Compute reflection vector of R_{2}. */ TS_CALL(try, err, ts_int_bspline_eval_woa(&deriv, knots[i + 1], &next, status)) ts_vec3_set(xn, /* xn is now the next tangent */ ts_int_deboornet_access_result(&next), ts_bspline_dimension(&deriv)); ts_vec_norm(xn, 3, xn); ts_vec_sub(xn, tL, 3, v2); c2 = ts_vec_dot(v2, v2, 3); /* Compute r_{i+1} = R_{2} * r_{i}^{L}. */ ts_vec3_set(xc, /* xc is now the next normal */ frames[i + 1].normal, 3); xc[0] = (tsReal)2.0 / c2; xc[1] = ts_vec_dot(v2, rL, 3); xc[2] = xc[0] * xc[1]; ts_vec_mul(v2, 3, xc[2], xc); ts_vec_sub(rL, xc, 3, xc); ts_vec_norm(xc, 3, xc); /* Compute vector s_{i+1} of U_{i+1}. */ ts_vec3_cross(xn, xc, frames[i + 1].binormal); /* Set vectors t_{i+1} and r_{i+1} of U_{i+1}. */ ts_vec3_set(frames[i + 1].tangent, xn, 3); ts_vec3_set(frames[i + 1].normal, xc, 3); } TS_FINALLY ts_bspline_free(&deriv); ts_deboornet_free(&curr); ts_deboornet_free(&next); TS_END_TRY_RETURN(err) } void ts_bspline_uniform_knot_seq(const tsBSpline *spline, size_t num, tsReal *knots) { size_t i; tsReal min, max; ts_bspline_domain(spline, &min, &max); for (i = 0; i < num; i++) { knots[i] = max - min; knots[i] *= (tsReal)i / (num - 1); knots[i] += min; } /* Set knots[0] after knots[num - 1] to ensure that * knots[0] = min if num is 1. */ knots[num - 1] = max; knots[0] = min; } /*! @} */ /*! @name Transformation Functions * * @{ */ tsError ts_int_bspline_resize(const tsBSpline *spline, int n, int back, tsBSpline *resized, tsStatus *status) { const size_t deg = ts_bspline_degree(spline); const size_t dim = ts_bspline_dimension(spline); const size_t sof_real = sizeof(tsReal); const size_t num_ctrlp = ts_bspline_num_control_points(spline); const size_t num_knots = ts_bspline_num_knots(spline); const size_t nnum_ctrlp = num_ctrlp + n; /**< New length of ctrlp. */ const size_t nnum_knots = num_knots + n; /**< New length of knots. */ const size_t min_num_ctrlp_vec = n < 0 ? nnum_ctrlp : num_ctrlp; const size_t min_num_knots_vec = n < 0 ? nnum_knots : num_knots; const size_t sof_min_num_ctrlp = min_num_ctrlp_vec * dim * sof_real; const size_t sof_min_num_knots = min_num_knots_vec * sof_real; tsBSpline tmp; /**< Temporarily stores the result. */ const tsReal *from_ctrlp = ts_int_bspline_access_ctrlp(spline); const tsReal *from_knots = ts_int_bspline_access_knots(spline); tsReal *to_ctrlp = NULL; /**< Pointer to the control points of tmp. */ tsReal *to_knots = NULL; /**< Pointer to the knots of tmp. */ tsError err; if (n == 0) return ts_bspline_copy(spline, resized, status); INIT_OUT_BSPLINE(spline, resized) TS_CALL_ROE(err, ts_bspline_new( nnum_ctrlp, dim, deg, TS_OPENED, &tmp, status)) to_ctrlp = ts_int_bspline_access_ctrlp(&tmp); to_knots = ts_int_bspline_access_knots(&tmp); /* Copy control points and knots. */ if (!back && n < 0) { memcpy(to_ctrlp, from_ctrlp - n * dim, sof_min_num_ctrlp); memcpy(to_knots, from_knots - n, sof_min_num_knots); } else if (!back && n > 0) { memcpy(to_ctrlp + n * dim, from_ctrlp, sof_min_num_ctrlp); memcpy(to_knots + n, from_knots, sof_min_num_knots); } else { /* n != 0 implies back == true */ memcpy(to_ctrlp, from_ctrlp, sof_min_num_ctrlp); memcpy(to_knots, from_knots, sof_min_num_knots); } if (spline == resized) ts_bspline_free(resized); ts_bspline_move(&tmp, resized); TS_RETURN_SUCCESS(status) } tsError ts_bspline_derive(const tsBSpline *spline, size_t n, tsReal epsilon, tsBSpline *deriv, tsStatus *status) { const size_t sof_real = sizeof(tsReal); const size_t dim = ts_bspline_dimension(spline); const size_t sof_ctrlp = dim * sof_real; size_t deg = ts_bspline_degree(spline); size_t num_ctrlp = ts_bspline_num_control_points(spline); size_t num_knots = ts_bspline_num_knots(spline); tsBSpline worker; /**< Stores the intermediate result. */ tsReal *ctrlp; /**< Pointer to the control points of worker. */ tsReal *knots; /**< Pointer to the knots of worker. */ size_t m, i, j, k, l; /**< Used in for loops. */ tsReal *fst, *snd; /**< Pointer to first and second control point. */ tsReal dist; /**< Distance between fst and snd. */ tsReal kid1, ki1; /**< Knots at i+deg+1 and i+1. */ tsReal span; /**< Distance between kid1 and ki1. */ tsBSpline swap; /**< Used to swap worker and derivative. */ tsError err; INIT_OUT_BSPLINE(spline, deriv) TS_CALL_ROE(err, ts_bspline_copy(spline, &worker, status)) ctrlp = ts_int_bspline_access_ctrlp(&worker); knots = ts_int_bspline_access_knots(&worker); TS_TRY(try, err, status) for (m = 1; m <= n; m++) { /* from 1st to n'th derivative */ if (deg == 0) { ts_arr_fill(ctrlp, dim, 0.f); ts_bspline_domain(spline, &knots[0], &knots[1]); num_ctrlp = 1; num_knots = 2; break; } /* Check and, if possible, fix discontinuity. */ for (i = 2 * deg + 1; i < num_knots - (deg + 1); i++) { if (!ts_knots_equal(knots[i], knots[i - deg])) continue; fst = ctrlp + (i - (deg + 1)) * dim; snd = fst + dim; dist = ts_distance(fst, snd, dim); if (epsilon >= 0.f && dist > epsilon) { TS_THROW_1(try, err, status, TS_UNDERIVABLE, "discontinuity at knot: %f", knots[i]) } memmove(snd, snd + dim, (num_ctrlp - (i + 1 - deg)) * sof_ctrlp); memmove(&knots[i], &knots[i + 1], (num_knots - (i + 1)) * sof_real); num_ctrlp--; num_knots--; i += deg - 1; } /* Derive continuous worker. */ for (i = 0; i < num_ctrlp - 1; i++) { for (j = 0; j < dim; j++) { k = i * dim + j; l = (i + 1) * dim + j; ctrlp[k] = ctrlp[l] - ctrlp[k]; kid1 = knots[i + deg + 1]; ki1 = knots[i + 1]; span = kid1 - ki1; if (span < TS_KNOT_EPSILON) span = TS_KNOT_EPSILON; ctrlp[k] *= deg; ctrlp[k] /= span; } } deg -= 1; num_ctrlp -= 1; num_knots -= 2; knots += 1; } TS_CALL(try, err, ts_bspline_new(num_ctrlp, dim, deg, TS_OPENED, &swap, status)) memcpy(ts_int_bspline_access_ctrlp(&swap), ctrlp, num_ctrlp * sof_ctrlp); memcpy(ts_int_bspline_access_knots(&swap), knots, num_knots * sof_real); if (spline == deriv) ts_bspline_free(deriv); ts_bspline_move(&swap, deriv); TS_FINALLY ts_bspline_free(&worker); TS_END_TRY_RETURN(err) } tsError ts_int_bspline_insert_knot(const tsBSpline *spline, const tsDeBoorNet *net, size_t n, tsBSpline *result, tsStatus *status) { const size_t deg = ts_bspline_degree(spline); const size_t order = ts_bspline_order(spline); const size_t dim = ts_bspline_dimension(spline); const tsReal knot = ts_deboornet_knot(net); const size_t k = ts_deboornet_index(net); const size_t mult = ts_deboornet_multiplicity(net); const size_t sof_real = sizeof(tsReal); const size_t sof_ctrlp = dim * sof_real; size_t N; /**< Number of affected control points. */ tsReal *from; /**< Pointer to copy the values from. */ tsReal *to; /**< Pointer to copy the values to. */ int stride; /**< Stride of the next pointer to copy. */ size_t i; /**< Used in for loops. */ tsReal *ctrlp_spline, *ctrlp_result; tsReal *knots_spline, *knots_result; size_t num_ctrlp_result; size_t num_knots_result; tsError err; INIT_OUT_BSPLINE(spline, result) if (n == 0) return ts_bspline_copy(spline, result, status); if (mult + n > order) { TS_RETURN_4(status, TS_MULTIPLICITY, "multiplicity(%f) (%lu) + %lu > order (%lu)", knot, (unsigned long)mult, (unsigned long)n, (unsigned long)order) } TS_CALL_ROE(err, ts_int_bspline_resize( spline, (int)n, 1, result, status)) ctrlp_spline = ts_int_bspline_access_ctrlp(spline); knots_spline = ts_int_bspline_access_knots(spline); ctrlp_result = ts_int_bspline_access_ctrlp(result); knots_result = ts_int_bspline_access_knots(result); num_ctrlp_result = ts_bspline_num_control_points(result); num_knots_result = ts_bspline_num_knots(result); /* mult + n <= deg + 1 (order) with n >= 1 * => mult <= deg * => regular evaluation * => N = h + 1 is valid */ N = ts_deboornet_num_insertions(net) + 1; /* 1. Copy the relevant control points and knots from `spline'. * 2. Copy the relevant control points and knots from `net'. */ /* 1. * * a) Copy left hand side control points from `spline'. * b) Copy right hand side control points from `spline'. * c) Copy left hand side knots from `spline'. * d) Copy right hand side knots form `spline'. */ /*** Copy Control Points ***/ memmove(ctrlp_result, ctrlp_spline, (k - deg) * sof_ctrlp); /* a) */ from = (tsReal *)ctrlp_spline + dim * (k - deg + N); /* n >= 0 implies to >= from */ to = ctrlp_result + dim * (k - deg + N + n); memmove(to, from, (num_ctrlp_result - n - (k - deg + N)) * sof_ctrlp); /* b) */ /*** Copy Knots ***/ memmove(knots_result, knots_spline, (k + 1) * sof_real); /* c) */ from = (tsReal *)knots_spline + k + 1; /* n >= 0 implies to >= from */ to = knots_result + k + 1 + n; memmove(to, from, (num_knots_result - n - (k + 1)) * sof_real); /* d) */ /* 2. * * a) Copy left hand side control points from `net'. * b) Copy middle part control points from `net'. * c) Copy right hand side control points from `net'. * d) Copy knot from `net' (`knot'). */ from = ts_int_deboornet_access_points(net); to = ctrlp_result + (k - deg) * dim; stride = (int)(N * dim); /*** Copy Control Points ***/ for (i = 0; i < n; i++) { /* a) */ memcpy(to, from, sof_ctrlp); from += stride; to += dim; stride -= (int)dim; } memcpy(to, from, (N - n) * sof_ctrlp); /* b) */ from -= dim; to += (N - n) * dim; /* N = h+1 with h = deg-mult (ts_int_bspline_eval) * => N = deg-mult+1 = order-mult. * * n <= order-mult * => N-n+1 >= order-mult - order-mult + 1 = 1 * => -(int)(N-n+1) <= -1. */ stride = -(int)(N - n + 1) * (int)dim; for (i = 0; i < n; i++) { /* c) */ memcpy(to, from, sof_ctrlp); from += stride; stride -= (int)dim; to += dim; } /*** Copy Knot ***/ to = knots_result + k + 1; for (i = 0; i < n; i++) { /* d) */ *to = knot; to++; } TS_RETURN_SUCCESS(status) } tsError ts_bspline_insert_knot(const tsBSpline *spline, tsReal knot, size_t num, tsBSpline *result, size_t *k, tsStatus *status) { tsDeBoorNet net; tsError err; INIT_OUT_BSPLINE(spline, result) ts_int_deboornet_init(&net); TS_TRY(try, err, status) TS_CALL(try, err, ts_bspline_eval(spline, knot, &net, status)) TS_CALL(try, err, ts_int_bspline_insert_knot(spline, &net, num, result, status)) ts_deboornet_free(&net); TS_CALL(try, err, ts_bspline_eval(result, knot, &net, status)) *k = ts_deboornet_index(&net); TS_CATCH(err) *k = 0; TS_FINALLY ts_deboornet_free(&net); TS_END_TRY_RETURN(err) } tsError ts_bspline_split(const tsBSpline *spline, tsReal knot, tsBSpline *split, size_t *k, tsStatus *status) { tsDeBoorNet net; tsError err; INIT_OUT_BSPLINE(spline, split) ts_int_deboornet_init(&net); TS_TRY(try, err, status) TS_CALL(try, err, ts_bspline_eval(spline, knot, &net, status)) if (ts_deboornet_multiplicity(&net) == ts_bspline_order(spline)) { TS_CALL(try, err, ts_bspline_copy(spline, split, status)) *k = ts_deboornet_index(&net); } else { TS_CALL(try, err, ts_int_bspline_insert_knot(spline, &net, ts_deboornet_num_insertions(&net) + 1, split, status)) *k = ts_deboornet_index(&net) + ts_deboornet_num_insertions(&net) + 1; } TS_CATCH(err) *k = 0; TS_FINALLY ts_deboornet_free(&net); TS_END_TRY_RETURN(err) } tsError ts_bspline_tension(const tsBSpline *spline, tsReal beta, tsBSpline *out, tsStatus *status) { const size_t dim = ts_bspline_dimension(spline); const size_t N = ts_bspline_num_control_points(spline); const tsReal *p0 = ts_int_bspline_access_ctrlp(spline); const tsReal *pn_1 = p0 + (N - 1) * dim; tsReal s; /**< The straightening factor. */ tsReal *ctrlp; /**< Pointer to the control points of `out'. */ size_t i, d; /**< Used in for loops. */ tsReal vec; /**< Straightening vector. */ tsError err; TS_CALL_ROE(err, ts_bspline_copy(spline, out, status)) ctrlp = ts_int_bspline_access_ctrlp(out); if (beta < (tsReal)0.0) beta = (tsReal)0.0; if (beta > (tsReal)1.0) beta = (tsReal)1.0; s = 1.f - beta; for (i = 0; i < N; i++) { for (d = 0; d < dim; d++) { vec = ((tsReal)i / (N - 1)) * (pn_1[d] - p0[d]); ctrlp[i * dim + d] = beta * ctrlp[i * dim + d] + s * (p0[d] + vec); } } TS_RETURN_SUCCESS(status) } tsError ts_bspline_to_beziers(const tsBSpline *spline, tsBSpline *beziers, tsStatus *status) { const size_t deg = ts_bspline_degree(spline); const size_t order = ts_bspline_order(spline); int resize; /**< Number of control points to add/remove. */ size_t k; /**< Index of the split knot value. */ tsReal u_min; /**< Minimum of the knot values. */ tsReal u_max; /**< Maximum of the knot values. */ tsBSpline tmp; /**< Temporarily stores the result. */ tsReal *knots; /**< Pointer to the knots of tmp. */ size_t num_knots; /**< Number of knots in tmp. */ tsError err; INIT_OUT_BSPLINE(spline, beziers) TS_CALL_ROE(err, ts_bspline_copy(spline, &tmp, status)) knots = ts_int_bspline_access_knots(&tmp); num_knots = ts_bspline_num_knots(&tmp); TS_TRY(try, err, status) /* DO NOT FORGET TO UPDATE knots AND num_knots AFTER EACH * TRANSFORMATION OF tmp! */ /* Fix first control point if necessary. */ u_min = knots[deg]; if (!ts_knots_equal(knots[0], u_min)) { TS_CALL(try, err, ts_bspline_split(&tmp, u_min, &tmp, &k, status)) resize = (int)(-1 * deg + (deg * 2 - k)); TS_CALL(try, err, ts_int_bspline_resize(&tmp, resize, 0, &tmp, status)) knots = ts_int_bspline_access_knots(&tmp); num_knots = ts_bspline_num_knots(&tmp); } /* Fix last control point if necessary. */ u_max = knots[num_knots - order]; if (!ts_knots_equal(knots[num_knots - 1], u_max)) { TS_CALL(try, err, ts_bspline_split(&tmp, u_max, &tmp, &k, status)) num_knots = ts_bspline_num_knots(&tmp); resize = (int)(-1 * deg + (k - (num_knots - order))); TS_CALL(try, err, ts_int_bspline_resize(&tmp, resize, 1, &tmp, status)) knots = ts_int_bspline_access_knots(&tmp); num_knots = ts_bspline_num_knots(&tmp); } /* Split internal knots. */ k = order; while (k < num_knots - order) { TS_CALL(try, err, ts_bspline_split(&tmp, knots[k], &tmp, &k, status)) knots = ts_int_bspline_access_knots(&tmp); num_knots = ts_bspline_num_knots(&tmp); k++; } if (spline == beziers) ts_bspline_free(beziers); ts_bspline_move(&tmp, beziers); TS_FINALLY ts_bspline_free(&tmp); TS_END_TRY_RETURN(err) } tsError ts_bspline_elevate_degree(const tsBSpline *spline, size_t amount, tsReal epsilon, tsBSpline *elevated, tsStatus *status) { tsBSpline worker; size_t dim, order; tsReal *ctrlp, *knots; size_t num_beziers, i, a, c, d, offset, idx; tsReal f, f_hat, *first, *last; tsError err; /* Trivial case. */ if (amount == 0) return ts_bspline_copy(spline, elevated, status); /* An overview of this algorithm can be found at: * https://pages.mtu.edu/~shene/COURSES/cs3621/LAB/curve/elevation.html */ INIT_OUT_BSPLINE(spline, elevated); worker = ts_bspline_init(); TS_TRY(try, err, status) /* Decompose `spline' into a sequence of bezier curves and make * space for the additional control points and knots that are * to be inserted. Results are stored in `worker'. */ TS_CALL(try, err, ts_bspline_to_beziers(spline, &worker, status)); num_beziers = ts_bspline_num_control_points(&worker) / ts_bspline_order(&worker); TS_CALL(try, err, ts_int_bspline_resize( /* Resize by the number of knots to be inserted. Note * that this creates too many control points (due to * increasing the degree), which are removed at the end * of this function. */ &worker, (int)((num_beziers + 1) * amount), 1, &worker, status)); dim = ts_bspline_dimension(&worker); order = ts_bspline_order(&worker); ctrlp = ts_int_bspline_access_ctrlp(&worker); knots = ts_int_bspline_access_knots(&worker); /* Move all but the first bezier curve to their new location in * the control point array so that the additional control * points can be inserted without overwriting the others. Note * that iteration must run backwards. Otherwise, the moved * values overwrite each other. */ for (i = num_beziers - 1; i > 0; i--) { /* `i' can be interpreted as the number of bezier * curves before the current bezier curve. */ /* Location of current bezier curve. */ offset = i * order * dim; /* Each elevation inserts an additional control point * into every bezier curve. `i * amount' is the total * number of control points to be inserted before the * current bezier curve. */ memmove(ctrlp + offset + (i * amount * dim), ctrlp + offset, dim * order * sizeof(tsReal)); } /* Move all but the first group of knots to their new location * in the knot vector so that the additional knots can be * inserted without overwriting the others. Note that iteration * must run backwards. Otherwise, the moved values overwrite * each other. */ for (i = num_beziers; i > 0; i--) { /* Note that the number of knot groups is one more than * the number of bezier curves. `i' can be interpreted * as the number of knot groups before the current * group. */ /* Location of current knot group. */ offset = i * order; /* Each elevation inserts an additional knot into every * group of knots. `i * amount' is the total number of * knots to be inserted before the current knot * group. */ memmove(knots + offset + (i * amount), knots + offset, order * sizeof(tsReal)); } /* `worker' is now fully set up. * The following formulas are based on: * https://pages.mtu.edu/~shene/COURSES/cs3621/NOTES/spline/Bezier/bezier-elev.html */ for (a = 0; a < amount; a++) { /* For each bezier curve... */ for (i = 0; i < num_beziers; i++) { /* ... 1) Insert and update control points. */ /* Location of current bezier curve. Each * elevation (`a') inserts an additional * control point into every bezier curve and * increases the degree (`order') by one. The * location is thus made up of two parts: * * i) `i * order', which is the location taking * into account the increasing order but * neglecting the control points that are to be * inserted before the current bezier curve. It * can be seen as some sort of base location: * Where would the bezier curve be (with * respect to the current value of `order') if * no additional control points had to be * inserted? * * ii) `i * (amount - a)', which is the total * number of control points to be inserted * before the current bezier curve * (`i * amount') taking into account the * increasing order (`order' and `a' are * increased equally, thus, `a' compensates for * the increasing value of `order'). This part * adds the necessary offset to the base * location (`i * order'). */ offset = (i * order + i * (amount - a)) * dim; /* Duplicate last control point to the new end * position (next control point). */ memmove(ctrlp + offset + ((order)*dim), ctrlp + offset + ((order - 1) * dim), dim * sizeof(tsReal)); /* All but the outer control points must be * recalculated (domain: [1, order - 1]). By * traversing backwards, control points can be * modified in-place. */ for (c = order - 1; c > 0; c--) { /* Location of current control point * within current bezier curve. */ idx = offset + c * dim; f = (tsReal)c / (tsReal)(order); f_hat = 1 - f; for (d = 0; d < dim; d++) { /* For the sake of space, we * increment idx by d and * decrement it at the end of * this loop. */ idx += d; ctrlp[idx] = f * ctrlp[idx - dim] + f_hat * ctrlp[idx]; /* Reset idx. */ idx -= d; } } /* ...2) Increase the multiplicity of the * second knot group (maximum of the domain of * the current bezier curve) by one. Note that * this loop misses the last knot group (the * group of the last bezier curve) as there is * one more knot group than bezier curves to * process. Thus, the last group must be * increased separately after this loop. */ /* Location of current knot group. Each * elevation (`a') inserts an additional * knot into the knot vector of every bezier * curve and increases the degree (`order') by * one. The location is thus made up of two * parts: * * i) `i * order', which is the location taking * into account the increasing order but * neglecting the knots that are to be inserted * before the current knot group. It can be * seen as some sort of base location: Where * would the knot group be (with respect to the * current value of `order') if no additional * knots had to be inserted? * * ii) `i * (amount - a)', which is the total * number of knots to be inserted before the * current knot group (`i * amount') taking * into account the increasing order (`order' * and `a' are increased equally, thus, `a' * compensates for the increasing value of * `order'). This part adds the necessary * offset to the base location * (`i * order'). */ offset = i * order + i * (amount - a); /* Duplicate knot. */ knots[offset + order] = knots[offset]; } /* Increase the multiplicity of the very last knot * group (the second group of the last bezier curve) * by one. For more details, see knot duplication in * previous loop. */ offset = num_beziers * order + num_beziers * (amount - a); knots[offset + order] = knots[offset]; /* Elevated by one. */ order++; } /* Combine bezier curves. */ d = 0; /* Number of removed knots/control points. */ for (i = 0; i < num_beziers - 1; i++) { /* Is the last control point of bezier curve `i' equal * to the first control point of bezier curve `i+1'? */ last = ctrlp + (i * order /* base location of `i' */ - d /* minus the number of removed values */ + (order - 1) /* jump to last control point */ ) * dim; first = last + dim; /* next control point */ if (ts_distance(last, first, dim) <= epsilon) { /* Move control points. */ memmove(last, first, (num_beziers - 1 - i) * order * dim * sizeof(tsReal)); /* Move knots. `last' is the last knot of the * second knot group of bezier curve `i'. * `first' is the first knot of the first knot * group of bezier curve `i+1'. The * calculations are quite similar to those for * the control points `last' and `first' (see * above). */ last = knots + i * order - d + (2 * order - 1); first = last + 1; memmove(last, first, (num_beziers - 1 - i) * order * sizeof(tsReal)); /* Removed one knot/control point. */ d++; } } /* Repair internal state. */ worker.pImpl->deg = order - 1; worker.pImpl->n_knots -= d; worker.pImpl->n_ctrlp = ts_bspline_num_knots(&worker) - order; memmove(ts_int_bspline_access_knots(&worker), knots, ts_bspline_sof_knots(&worker)); worker.pImpl = realloc(worker.pImpl, ts_int_bspline_sof_state(&worker)); if (worker.pImpl == NULL) { TS_THROW_0(try, err, status, TS_MALLOC, "out of memory") } /* Move `worker' to output parameter. */ if (spline == elevated) ts_bspline_free(elevated); ts_bspline_move(&worker, elevated); TS_FINALLY ts_bspline_free(&worker); TS_END_TRY_RETURN(err) } tsError ts_bspline_align(const tsBSpline *s1, const tsBSpline *s2, tsReal epsilon, tsBSpline *s1_out, tsBSpline *s2_out, tsStatus *status) { tsBSpline s1_worker, s2_worker, *smaller, *larger; tsDeBoorNet net; /* the net of `smaller'. */ size_t i, missing, remaining; tsReal min, max, shift, nextKnot; tsError err; INIT_OUT_BSPLINE(s1, s1_out) INIT_OUT_BSPLINE(s2, s2_out) s1_worker = ts_bspline_init(); s2_worker = ts_bspline_init(); smaller = larger = NULL; TS_TRY(try, err, status) /* Set up `s1_worker' and `s2_worker'. After this * if-elseif-else-block, `s1_worker' and `s2_worker' have same * degree. */ if (ts_bspline_degree(s1) < ts_bspline_degree(s2)) { TS_CALL(try, err, ts_bspline_elevate_degree(s1, ts_bspline_degree(s2) - ts_bspline_degree(s1), epsilon, &s1_worker, status)) TS_CALL(try, err, ts_bspline_copy(s2, &s2_worker, status)) } else if (ts_bspline_degree(s2) < ts_bspline_degree(s1)) { TS_CALL(try, err, ts_bspline_elevate_degree(s2, ts_bspline_degree(s1) - ts_bspline_degree(s2), epsilon, &s2_worker, status)) TS_CALL(try, err, ts_bspline_copy(s1, &s1_worker, status)) } else { TS_CALL(try, err, ts_bspline_copy(s1, &s1_worker, status)) TS_CALL(try, err, ts_bspline_copy(s2, &s2_worker, status)) } /* Set up `smaller', `larger', and `net'. */ if (ts_bspline_num_knots(&s1_worker) < ts_bspline_num_knots(&s2_worker)) { smaller = &s1_worker; larger = &s2_worker; } else { smaller = &s2_worker; larger = &s1_worker; } TS_CALL(try, err, ts_int_deboornet_new(smaller, &net, status)) /* Insert knots into `smaller' until it has the same number of * knots (and therefore the same number of control points) as * `larger'. */ ts_bspline_domain(smaller, &min, &max); missing = remaining = ts_bspline_num_knots(larger) - ts_bspline_num_knots(smaller); shift = (tsReal)0.0; if (missing > 0) shift = ((tsReal)1.0 / missing) * (tsReal)0.5; for (i = 0; remaining > 0; i++, remaining--) { nextKnot = (max - min) * ((tsReal)i / missing) + min; nextKnot += shift; TS_CALL(try, err, ts_int_bspline_eval_woa(smaller, nextKnot, &net, status)) while (!ts_deboornet_num_insertions(&net)) { /* Linear exploration for next knot. */ nextKnot += 5 * TS_KNOT_EPSILON; if (nextKnot > max) { TS_THROW_0(try, err, status, TS_NO_RESULT, "no more knots for insertion") } TS_CALL(try, err, ts_int_bspline_eval_woa(smaller, nextKnot, &net, status)) } TS_CALL(try, err, ts_int_bspline_insert_knot(smaller, &net, 1, smaller, status)) } if (s1 == s1_out) ts_bspline_free(s1_out); if (s2 == s2_out) ts_bspline_free(s2_out); ts_bspline_move(&s1_worker, s1_out); /* if `s1_out' == `s2_out', `s2_worker' must not be moved * because otherwise the memory of `s1_worker' is leaked * (`s2_worker' overrides `s1_worker'). */ if (s1_out != s2_out) ts_bspline_move(&s2_worker, s2_out); TS_FINALLY ts_bspline_free(&s1_worker); ts_bspline_free(&s2_worker); ts_deboornet_free(&net); TS_END_TRY_RETURN(err) } tsError ts_bspline_morph(const tsBSpline *origin, const tsBSpline *target, tsReal t, tsReal epsilon, tsBSpline *out, tsStatus *status) { tsBSpline origin_al, target_al; /* aligned origin and target */ tsReal *origin_al_c, *origin_al_k; /* control points and knots */ tsReal *target_al_c, *target_al_k; /* control points and knots */ /* Properties of `out'. */ size_t deg, dim, num_ctrlp, num_knots; tsReal *ctrlp, *knots; tsBSpline tmp; /* temporary buffer if `out' must be resized */ tsReal t_hat; size_t i, offset, d; tsError err; origin_al = ts_bspline_init(); target_al = ts_bspline_init(); TS_TRY(try, err, status) /* Clamp `t' to domain [0, 1] and set up `t_hat'. */ if (t < (tsReal)0.0) t = (tsReal)0.0; if (t > (tsReal)1.0) t = (tsReal)1.0; t_hat = (tsReal)1.0 - t; /* Set up `origin_al' and `target_al'. */ /* Degree must be elevated... */ if (ts_bspline_degree(origin) != ts_bspline_degree(target) || /* .. or knots (and thus control points) must be inserted. */ ts_bspline_num_knots(origin) != ts_bspline_num_knots(target)) { TS_CALL(try, err, ts_bspline_align(origin, target, epsilon, &origin_al, &target_al, status)); } else { /* Flat copy. */ origin_al = *origin; target_al = *target; } origin_al_c = ts_int_bspline_access_ctrlp(&origin_al); origin_al_k = ts_int_bspline_access_knots(&origin_al); target_al_c = ts_int_bspline_access_ctrlp(&target_al); target_al_k = ts_int_bspline_access_knots(&target_al); /* Set up `out'. */ deg = ts_bspline_degree(&origin_al); num_ctrlp = ts_bspline_num_control_points(&origin_al); dim = ts_bspline_dimension(&origin_al); if (ts_bspline_dimension(&target_al) < dim) dim = ts_bspline_dimension(&target_al); if (out->pImpl == NULL) { TS_CALL(try, err, ts_bspline_new(num_ctrlp, dim, deg, TS_OPENED /* doesn't matter */, out, status)) } else if (ts_bspline_degree(out) != deg || ts_bspline_num_control_points(out) != num_ctrlp || ts_bspline_dimension(out) != dim) { TS_CALL(try, err, ts_bspline_new(num_ctrlp, dim, deg, TS_OPENED /* doesn't matter */, &tmp, status)) ts_bspline_free(out); ts_bspline_move(&tmp, out); } num_knots = ts_bspline_num_knots(out); ctrlp = ts_int_bspline_access_ctrlp(out); knots = ts_int_bspline_access_knots(out); /* Interpolate control points. */ for (i = 0; i < num_ctrlp; i++) { for (d = 0; d < dim; d++) { offset = i * dim + d; ctrlp[offset] = t * target_al_c[offset] + t_hat * origin_al_c[offset]; } } /* Interpolate knots. */ for (i = 0; i < num_knots; i++) { knots[i] = t * target_al_k[i] + t_hat * origin_al_k[i]; } TS_FINALLY if (origin->pImpl != origin_al.pImpl) ts_bspline_free(&origin_al); if (target->pImpl != target_al.pImpl) ts_bspline_free(&target_al); TS_END_TRY_RETURN(err) } /*! @} */ /*! @name Serialization and Persistence * * @{ */ tsError ts_int_bspline_to_json(const tsBSpline *spline, JSON_Value **value, tsStatus *status) { const size_t deg = ts_bspline_degree(spline); const size_t dim = ts_bspline_dimension(spline); const size_t len_ctrlp = ts_bspline_len_control_points(spline); const size_t len_knots = ts_bspline_num_knots(spline); const tsReal *ctrlp = ts_int_bspline_access_ctrlp(spline); const tsReal *knots = ts_int_bspline_access_knots(spline); size_t i; /**< Used in loops */ tsError err; JSON_Value *ctrlp_value; JSON_Value *knots_value; JSON_Object *spline_object; JSON_Array *ctrlp_array; JSON_Array *knots_array; *value = ctrlp_value = knots_value = NULL; TS_TRY(values, err, status) /* Init memory. */ *value = json_value_init_object(); if (!*value) { TS_THROW_0(values, err, status, TS_MALLOC, "out of memory") } ctrlp_value = json_value_init_array(); if (!ctrlp_value) { TS_THROW_0(values, err, status, TS_MALLOC, "out of memory") } knots_value = json_value_init_array(); if (!knots_value) { TS_THROW_0(values, err, status, TS_MALLOC, "out of memory") } /* Although the following functions cannot fail, that is, they * won't return NULL or JSONFailure, we nevertheless handle * unexpected return values. */ /* Init output. */ spline_object = json_value_get_object(*value); if (!spline_object) { TS_THROW_0(values, err, status, TS_MALLOC, "out of memory") } /* Set degree and dimension. */ if (JSONSuccess != json_object_set_number(spline_object, "degree", (double)deg)) { TS_THROW_0(values, err, status, TS_MALLOC, "out of memory") } if (JSONSuccess != json_object_set_number(spline_object, "dimension", (double)dim)) { TS_THROW_0(values, err, status, TS_MALLOC, "out of memory") } /* Set control points. */ if (JSONSuccess != json_object_set_value(spline_object, "control_points", ctrlp_value)) { TS_THROW_0(values, err, status, TS_MALLOC, "out of memory") } ctrlp_array = json_array(ctrlp_value); if (!ctrlp_array) { TS_THROW_0(values, err, status, TS_MALLOC, "out of memory") } for (i = 0; i < len_ctrlp; i++) { if (JSONSuccess != json_array_append_number( ctrlp_array, (double)ctrlp[i])) { TS_THROW_0(values, err, status, TS_MALLOC, "out of memory") } } /* Set knots. */ if (JSONSuccess != json_object_set_value(spline_object, "knots", knots_value)) { TS_THROW_0(values, err, status, TS_MALLOC, "out of memory") } knots_array = json_array(knots_value); if (!knots_array) { TS_THROW_0(values, err, status, TS_MALLOC, "out of memory") } for (i = 0; i < len_knots; i++) { if (JSONSuccess != json_array_append_number( knots_array, (double)knots[i])) { TS_THROW_0(values, err, status, TS_MALLOC, "out of memory") } } TS_CATCH(err) if (*value) json_value_free(*value); if (ctrlp_value && !json_value_get_parent(ctrlp_value)) json_value_free(ctrlp_value); if (knots_value && !json_value_get_parent(knots_value)) json_value_free(knots_value); *value = NULL; TS_END_TRY_RETURN(err) } tsError ts_int_bspline_parse_json(const JSON_Value *spline_value, tsBSpline *spline, tsStatus *status) { size_t deg, dim, len_ctrlp, num_knots; tsReal *ctrlp, *knots; JSON_Object *spline_object; JSON_Value *deg_value; JSON_Value *dim_value; JSON_Value *ctrlp_value; JSON_Array *ctrlp_array; JSON_Value *knots_value; JSON_Array *knots_array; JSON_Value *real_value; size_t i; tsError err; ts_int_bspline_init(spline); /* Read spline object. */ if (json_value_get_type(spline_value) != JSONObject) TS_RETURN_0(status, TS_PARSE_ERROR, "invalid json input") spline_object = json_value_get_object(spline_value); if (!spline_object) TS_RETURN_0(status, TS_PARSE_ERROR, "invalid json input") /* Read degree. */ deg_value = json_object_get_value(spline_object, "degree"); if (json_value_get_type(deg_value) != JSONNumber) TS_RETURN_0(status, TS_PARSE_ERROR, "degree is not a number") if (json_value_get_number(deg_value) < -0.01f) { TS_RETURN_1(status, TS_PARSE_ERROR, "degree (%f) < 0", json_value_get_number(deg_value)) } deg = (size_t)json_value_get_number(deg_value); /* Read dimension. */ dim_value = json_object_get_value(spline_object, "dimension"); if (json_value_get_type(dim_value) != JSONNumber) { TS_RETURN_0(status, TS_PARSE_ERROR, "dimension is not a number") } if (json_value_get_number(dim_value) < 0.99f) { TS_RETURN_1(status, TS_PARSE_ERROR, "dimension (%f) < 1", json_value_get_number(deg_value)) } dim = (size_t)json_value_get_number(dim_value); /* Read length of control point vector. */ ctrlp_value = json_object_get_value(spline_object, "control_points"); if (json_value_get_type(ctrlp_value) != JSONArray) { TS_RETURN_0(status, TS_PARSE_ERROR, "control_points is not an array") } ctrlp_array = json_value_get_array(ctrlp_value); len_ctrlp = json_array_get_count(ctrlp_array); if (len_ctrlp % dim != 0) { TS_RETURN_2(status, TS_PARSE_ERROR, "len(control_points) (%lu) %% dimension (%lu) != 0", (unsigned long)len_ctrlp, (unsigned long)dim) } /* Read number of knots. */ knots_value = json_object_get_value(spline_object, "knots"); if (json_value_get_type(knots_value) != JSONArray) { TS_RETURN_0(status, TS_PARSE_ERROR, "knots is not an array") } knots_array = json_value_get_array(knots_value); num_knots = json_array_get_count(knots_array); /* Create spline. */ TS_TRY(try, err, status) TS_CALL(try, err, ts_bspline_new(len_ctrlp / dim, dim, deg, TS_CLAMPED, spline, status)) if (num_knots != ts_bspline_num_knots(spline)) TS_THROW_2(try, err, status, TS_NUM_KNOTS, "unexpected num(knots): (%lu) != (%lu)", (unsigned long)num_knots, (unsigned long)ts_bspline_num_knots(spline)) /* Set control points. */ ctrlp = ts_int_bspline_access_ctrlp(spline); for (i = 0; i < len_ctrlp; i++) { real_value = json_array_get_value(ctrlp_array, i); if (json_value_get_type(real_value) != JSONNumber) TS_THROW_1(try, err, status, TS_PARSE_ERROR, "control_points: value at index %lu is not a number", (unsigned long)i) ctrlp[i] = (tsReal)json_value_get_number(real_value); } TS_CALL(try, err, ts_bspline_set_control_points(spline, ctrlp, status)) /* Set knots. */ knots = ts_int_bspline_access_knots(spline); for (i = 0; i < num_knots; i++) { real_value = json_array_get_value(knots_array, i); if (json_value_get_type(real_value) != JSONNumber) TS_THROW_1(try, err, status, TS_PARSE_ERROR, "knots: value at index %lu is not a number", (unsigned long)i) knots[i] = (tsReal)json_value_get_number(real_value); } TS_CALL(try, err, ts_bspline_set_knots(spline, knots, status)) TS_CATCH(err) ts_bspline_free(spline); TS_END_TRY_RETURN(err) } tsError ts_bspline_to_json(const tsBSpline *spline, char **json, tsStatus *status) { tsError err; JSON_Value *value = NULL; *json = NULL; TS_CALL_ROE(err, ts_int_bspline_to_json(spline, &value, status)) *json = json_serialize_to_string_pretty(value); json_value_free(value); if (!*json) TS_RETURN_0(status, TS_MALLOC, "out of memory") TS_RETURN_SUCCESS(status) } tsError ts_bspline_parse_json(const char *json, tsBSpline *spline, tsStatus *status) { tsError err; JSON_Value *value = NULL; ts_int_bspline_init(spline); TS_TRY(try, err, status) value = json_parse_string(json); if (!value) { TS_RETURN_0(status, TS_PARSE_ERROR, "invalid json input") } TS_CALL(try, err, ts_int_bspline_parse_json(value, spline, status)) TS_FINALLY if (value) json_value_free(value); TS_END_TRY_RETURN(err) } tsError ts_bspline_save(const tsBSpline *spline, const char *path, tsStatus *status) { tsError err; JSON_Status json_status; JSON_Value *value = NULL; TS_CALL_ROE(err, ts_int_bspline_to_json(spline, &value, status)) json_status = json_serialize_to_file_pretty(value, path); json_value_free(value); if (json_status != JSONSuccess) TS_RETURN_0(status, TS_IO_ERROR, "unexpected io error") TS_RETURN_SUCCESS(status) } tsError ts_bspline_load(const char *path, tsBSpline *spline, tsStatus *status) { tsError err; FILE *file = NULL; JSON_Value *value = NULL; ts_int_bspline_init(spline); TS_TRY(try, err, status) file = fopen(path, "r"); if (!file) { TS_THROW_0(try, err, status, TS_IO_ERROR, "unable to open file") } value = json_parse_file(path); if (!value) { TS_RETURN_0(status, TS_PARSE_ERROR, "invalid json input") } TS_CALL(try, err, ts_int_bspline_parse_json(value, spline, status)) TS_FINALLY if (file) fclose(file); if (value) json_value_free(value); TS_CATCH(err) ts_bspline_free(spline); TS_END_TRY_RETURN(err) } /*! @} */ /*! @name Vector Math * @{ */ void ts_vec2_init(tsReal *out, tsReal x, tsReal y) { out[0] = x; out[1] = y; } void ts_vec3_init(tsReal *out, tsReal x, tsReal y, tsReal z) { out[0] = x; out[1] = y; out[2] = z; } void ts_vec4_init(tsReal *out, tsReal x, tsReal y, tsReal z, tsReal w) { out[0] = x; out[1] = y; out[2] = z; out[3] = w; } void ts_vec2_set(tsReal *out, const tsReal *x, size_t dim) { const size_t n = dim > 2 ? 2 : dim; memmove(out, x, n * sizeof(tsReal)); if (dim < 2) ts_arr_fill(out + dim, 2 - dim, (tsReal)0.0); } void ts_vec3_set(tsReal *out, const tsReal *x, size_t dim) { const size_t n = dim > 3 ? 3 : dim; memmove(out, x, n * sizeof(tsReal)); if (dim < 3) ts_arr_fill(out + dim, 3 - dim, (tsReal)0.0); } void ts_vec4_set(tsReal *out, const tsReal *x, size_t dim) { const size_t n = dim > 4 ? 4 : dim; memmove(out, x, n * sizeof(tsReal)); if (dim < 4) ts_arr_fill(out + dim, 4 - dim, (tsReal)0.0); } void ts_vec_add(const tsReal *x, const tsReal *y, size_t dim, tsReal *out) { size_t i; for (i = 0; i < dim; i++) out[i] = x[i] + y[i]; } void ts_vec_sub(const tsReal *x, const tsReal *y, size_t dim, tsReal *out) { size_t i; if (x == y) { /* More stable version. */ ts_arr_fill(out, dim, (tsReal)0.0); return; } for (i = 0; i < dim; i++) out[i] = x[i] - y[i]; } tsReal ts_vec_dot(const tsReal *x, const tsReal *y, size_t dim) { size_t i; tsReal dot = 0; for (i = 0; i < dim; i++) dot += x[i] * y[i]; return dot; } tsReal ts_vec_angle(const tsReal *x, const tsReal *y, tsReal *buf, size_t dim) { const tsReal *x_norm, *y_norm; if (buf) { ts_vec_norm(x, dim, buf); ts_vec_norm(y, dim, buf + dim); x_norm = buf; y_norm = buf + dim; } else { x_norm = x; y_norm = y; } return (tsReal)( /* Use doubles as long as possible. */ acos(ts_vec_dot(x_norm, y_norm, dim)) * (180.0 / TS_PI) /* radiant to degree */ ); } void ts_vec3_cross(const tsReal *x, const tsReal *y, tsReal *out) { tsReal a, b, c; a = x[1] * y[2] - x[2] * y[1]; b = x[2] * y[0] - x[0] * y[2]; c = x[0] * y[1] - x[1] * y[0]; out[0] = a; out[1] = b; out[2] = c; } void ts_vec_norm(const tsReal *x, size_t dim, tsReal *out) { size_t i; const tsReal m = ts_vec_mag(x, dim); if (m < TS_LENGTH_ZERO) { ts_arr_fill(out, dim, (tsReal)0.0); return; } for (i = 0; i < dim; i++) out[i] = x[i] / m; } tsReal ts_vec_mag(const tsReal *x, size_t dim) { size_t i; tsReal sum = 0; for (i = 0; i < dim; i++) sum += (x[i] * x[i]); return (tsReal)sqrt(sum); } void ts_vec_mul(const tsReal *x, size_t dim, tsReal val, tsReal *out) { size_t i; for (i = 0; i < dim; i++) out[i] = x[i] * val; } /*! @} */ /*! @name Utility Functions * * @{ */ int ts_knots_equal(tsReal x, tsReal y) { return fabs(x - y) < TS_KNOT_EPSILON ? 1 : 0; } void ts_arr_fill(tsReal *arr, size_t num, tsReal val) { size_t i; for (i = 0; i < num; i++) arr[i] = val; } tsReal ts_distance(const tsReal *x, const tsReal *y, size_t dim) { size_t i; tsReal sum = 0; for (i = 0; i < dim; i++) sum += (x[i] - y[i]) * (x[i] - y[i]); return (tsReal)sqrt(sum); } /*! @} */ #ifdef _MSC_VER #pragma warning(pop) #endif