#include "model.h" #include "log.h" #include "resources.h" #include "stb_ds.h" #include "gameobject.h" #include "render.h" #include "HandmadeMath.h" #include "math.h" #include "time.h" #include #include #include #include #include "yugine.h" #include "jsffi.h" #include "texture.h" #include "sokol/sokol_gfx.h" static void processnode(); static void processmesh(); static void processtexture(); static cgltf_data *cdata; static char *cpath; cgltf_attribute *get_attr_type(cgltf_primitive *p, cgltf_attribute_type t) { for (int i = 0; i < p->attributes_count; i++) { if (p->attributes[i].type == t) return &p->attributes[i]; } return NULL; } unsigned short pack_short_tex(float c) { return c * USHRT_MAX; } uint32_t pack_int10_n2(float *norm) { uint32_t ret = 0; for (int i = 0; i < 3; i++) { int n = (norm[i]+1.0)*511; ret |= (n & 0x3ff) << (10*i); } return ret; } void mesh_add_material(primitive *prim, cgltf_material *mat) { if (!mat) return; prim->mat = calloc(sizeof(*prim->mat), 1); material *pmat = prim->mat; if (mat->has_pbr_metallic_roughness && mat->pbr_metallic_roughness.base_color_texture.texture) { cgltf_image *img = mat->pbr_metallic_roughness.base_color_texture.texture->image; if (img->buffer_view) { cgltf_buffer_view *buf = img->buffer_view; pmat->diffuse = texture_fromdata(buf->buffer->data, buf->size); } else { char *path = makepath(dirname(cpath), img->uri); pmat->diffuse = texture_from_file(path); free(path); } } else pmat->diffuse = texture_from_file("icons/moon.gif"); } sg_buffer texcoord_floats(float *f, int n) { unsigned short packed[n]; for (int i = 0; i < n; i++) { float v = f[i]; if (v < 0) v = 0; if (v > 1) v = 1; packed[i] = pack_short_tex(v); printf("val: %g, packed: %u\n", v, packed[i]); } return sg_make_buffer(&(sg_buffer_desc){ .data = SG_RANGE(packed), .label = "tex coord vert buffer", }); } sg_buffer par_idx_buffer(uint32_t *p, int v) { uint16_t idx[v]; for (int i = 0; i < v; i++) idx[i] = p[i]; return sg_make_buffer(&(sg_buffer_desc){ .data = SG_RANGE(idx), .type = SG_BUFFERTYPE_INDEXBUFFER }); } sg_buffer float_buffer(float *f, int v) { return sg_make_buffer(&(sg_buffer_desc){ .data = (sg_range){ .ptr = f, .size = sizeof(*f)*v } }); } sg_buffer index_buffer(float *f, int verts) { uint16_t idxs[verts]; for (int i = 0; i < verts; i++) idxs[i] = f[i]; return sg_make_buffer(&(sg_buffer_desc){ .data = SG_RANGE(idxs), .type = SG_BUFFERTYPE_INDEXBUFFER, }); } sg_buffer normal_floats(float *f, int n) { uint32_t packed_norms[n/3]; for (int v = 0, i = 0; v < n/3; v++, i+= 3) packed_norms[v] = pack_int10_n2(f+i); return sg_make_buffer(&(sg_buffer_desc){ .data = SG_RANGE(packed_norms), .label = "normal vert buffer", }); } sg_buffer ubyten_buffer(float *f, int v) { unsigned char b[v]; for (int i = 0; i < (v); i++) b[i] = f[i]*255; return sg_make_buffer(&(sg_buffer_desc){.data=SG_RANGE(b)}); } sg_buffer ubyte_buffer(float *f, int v) { unsigned char b[v]; for (int i = 0; i < (v); i++) b[i] = f[i]; return sg_make_buffer(&(sg_buffer_desc){.data=SG_RANGE(b)}); } sg_buffer joint_buf(float *f, int v) { char joints[v]; for (int i = 0; i < (v); i++) joints[i] = f[i]; return sg_make_buffer(&(sg_buffer_desc){ .data = SG_RANGE(joints)}); } sg_buffer weight_buf(float *f, int v) { unsigned char weights[v]; for (int i = 0; i < (v); i++) weights[i] = f[i]*255; return sg_make_buffer(&(sg_buffer_desc){ .data = SG_RANGE(weights)}); } HMM_Vec3 index_to_vert(uint32_t idx, float *f) { return (HMM_Vec3){f[idx*3], f[idx*3+1], f[idx*3+2]}; } void primitive_gen_indices(primitive *prim) { if (prim->idx_count == 0) return; uint16_t *idxs = malloc(sizeof(*idxs)*prim->idx_count); for (int z = 0; z < prim->idx_count; z++) idxs[z] = z; prim->idx = sg_make_buffer(&(sg_buffer_desc){ .data.ptr = idxs, .data.size = sizeof(uint16_t) * prim->idx_count, .type = SG_BUFFERTYPE_INDEXBUFFER}); free(idxs); } struct primitive mesh_add_primitive(cgltf_primitive *prim) { primitive retp = (primitive){0}; uint16_t *idxs; if (prim->indices) { int n = cgltf_accessor_unpack_floats(prim->indices, NULL, 0); float fidx[n]; cgltf_accessor_unpack_floats(prim->indices, fidx, n); idxs = malloc(sizeof(*idxs)*n); for (int i = 0; i < n; i++) idxs[i] = fidx[i]; retp.idx = sg_make_buffer(&(sg_buffer_desc){ .data.ptr = idxs, .data.size = sizeof(*idxs) * n, .type = SG_BUFFERTYPE_INDEXBUFFER, .label = "mesh index buffer", }); retp.idx_count = n; free(idxs); } else { retp.idx_count = cgltf_accessor_unpack_floats(prim->attributes[0].data, NULL, 0); primitive_gen_indices(&retp); } printf("adding material\n"); mesh_add_material(&retp, prim->material); for (int k = 0; k < prim->attributes_count; k++) { cgltf_attribute attribute = prim->attributes[k]; int n = cgltf_accessor_unpack_floats(attribute.data, NULL, 0); /* floats per vertex x num elements. In other words, total floats pulled */ int comp = cgltf_num_components(attribute.data->type); int verts = n/comp; float vs[n]; cgltf_accessor_unpack_floats(attribute.data, vs, n); switch (attribute.type) { case cgltf_attribute_type_position: retp.pos = sg_make_buffer(&(sg_buffer_desc){ .data.ptr = vs, .data.size = sizeof(float) * n, .label = "mesh vert buffer" }); break; case cgltf_attribute_type_normal: retp.norm = normal_floats(vs, n); break; case cgltf_attribute_type_tangent: break; case cgltf_attribute_type_color: retp.color = ubyten_buffer(vs,n); break; case cgltf_attribute_type_weights: retp.weight = ubyten_buffer(vs, n); break; case cgltf_attribute_type_joints: retp.bone = ubyte_buffer(vs, n); break; case cgltf_attribute_type_texcoord: retp.uv = texcoord_floats(vs, n); break; case cgltf_attribute_type_invalid: YughWarn("Invalid type."); break; case cgltf_attribute_type_custom: break; case cgltf_attribute_type_max_enum: break; } } if (!retp.bone.id) { char joints[retp.idx_count*4]; memset(joints, 0, retp.idx_count*4); retp.bone = sg_make_buffer(&(sg_buffer_desc){ .data = SG_RANGE(joints)}); } if (!retp.weight.id) { char weights[retp.idx_count*4]; memset(weights,0,retp.idx_count*4); retp.weight = sg_make_buffer(&(sg_buffer_desc){ .data = SG_RANGE(weights)}); } if (!retp.color.id) { char colors[retp.idx_count*4]; memset(colors,0,retp.idx_count*4); retp.color = sg_make_buffer(&(sg_buffer_desc) { .data = SG_RANGE(colors) }); } if (!retp.norm.id) { YughInfo("Making normals."); cgltf_attribute *pa = get_attr_type(prim, cgltf_attribute_type_position); int n = cgltf_accessor_unpack_floats(pa->data, NULL,0); int comp = 3; int verts = n/comp; uint32_t face_norms[verts]; float ps[n]; cgltf_accessor_unpack_floats(pa->data,ps,n); for (int i = 0; i < verts; i+=3) { HMM_Vec3 a = index_to_vert(i,ps); HMM_Vec3 b = index_to_vert(i+1,ps); HMM_Vec3 c = index_to_vert(i+2,ps); HMM_Vec3 norm = HMM_NormV3(HMM_Cross(HMM_SubV3(b,a), HMM_SubV3(c,a))); uint32_t packed_norm = pack_int10_n2(norm.Elements); face_norms[i] = face_norms[i+1] = face_norms[i+2] = packed_norm; } retp.norm = sg_make_buffer(&(sg_buffer_desc){ .data.ptr = face_norms, .data.size = sizeof(uint32_t) * verts}); } return retp; } void model_add_cgltf_mesh(mesh *m, cgltf_mesh *gltf_mesh) { printf("mesh has %d primitives\n", gltf_mesh->primitives_count); for (int i = 0; i < gltf_mesh->primitives_count; i++) arrput(m->primitives, mesh_add_primitive(gltf_mesh->primitives+i)); } void packFloats(float *src, float *dest, int srcLength) { int i, j; for (i = 0, j = 0; i < srcLength; i += 3, j += 4) { dest[j] = src[i]; dest[j + 1] = src[i + 1]; dest[j + 2] = src[i + 2]; dest[j + 3] = 0.0f; } } void model_add_cgltf_anim(model *model, cgltf_animation *anim) { YughInfo("FOUND ANIM, using %d channels and %d samplers", anim->channels_count, anim->samplers_count); struct animation an = (struct animation){0}; arrsetlen(an.samplers, anim->samplers_count); for (int i = 0; i < anim->samplers_count; i++) { cgltf_animation_sampler s = anim->samplers[i]; sampler samp = (sampler){0}; int n = cgltf_accessor_unpack_floats(s.input, NULL, 0); arrsetlen(samp.times, n); cgltf_accessor_unpack_floats(s.input, samp.times, n); n = cgltf_accessor_unpack_floats(s.output, NULL, 0); int comp = cgltf_num_components(s.output->type); arrsetlen(samp.data, n/comp); if (comp == 4) cgltf_accessor_unpack_floats(s.output, samp.data, n); else { float *out = malloc(sizeof(*out)*n); cgltf_accessor_unpack_floats(s.output, out, n); packFloats(out, samp.data, n); free(out); } samp.type = s.interpolation; if (samp.type == LINEAR && comp == 4) samp.type = SLERP; an.samplers[i] = samp; } for (int i = 0; i < anim->channels_count; i++) { cgltf_animation_channel ch = anim->channels[i]; struct anim_channel ach = (struct anim_channel){0}; md5joint *md = model->nodes+(ch.target_node-cdata->nodes); switch(ch.target_path) { case cgltf_animation_path_type_translation: ach.target = &md->pos; break; case cgltf_animation_path_type_rotation: ach.target = &md->rot; break; case cgltf_animation_path_type_scale: ach.target = &md->scale; break; } ach.sampler = an.samplers+(ch.sampler-anim->samplers); arrput(an.channels, ach); } model->anim = an; model->anim.time = apptime(); } void model_add_cgltf_skin(model *model, cgltf_skin *skin) { int n = cgltf_accessor_unpack_floats(skin->inverse_bind_matrices, NULL, 0); struct skin sk = (struct skin){0}; arrsetlen(sk.invbind, n/16); cgltf_accessor_unpack_floats(skin->inverse_bind_matrices, sk.invbind, n); YughInfo("FOUND SKIN, of %d bones, and %d vert comps", skin->joints_count, n); cgltf_node *root = skin->skeleton; arrsetlen(sk.joints, skin->joints_count); sk.root = model->nodes+(skin->skeleton-cdata->nodes); for (int i = 0; i < 50; i++) sk.binds[i] = MAT1; for (int i = 0; i < skin->joints_count; i++) { int offset = skin->joints[i]-cdata->nodes; sk.joints[i] = model->nodes+offset; md5joint *j = sk.joints[i]; cgltf_node *n = skin->joints[i]; for (int i = 0; i < 3; i++) { j->pos.e[i] = n->translation[i]; j->scale.e[i] = n->scale[i]; } for (int i = 0; i < 4; i++) j->rot.e[i] = n->rotation[i]; } model->skin = sk; } void model_process_node(model *model, cgltf_node *node) { int n = node-cdata->nodes; cgltf_node_transform_world(node, model->nodes[n].t.e); model->nodes[n].parent = model->nodes+(node->parent-cdata->nodes); if (node->mesh) { int meshn = node->mesh-cdata->meshes; arrsetlen(model->meshes, meshn+1); model->meshes[meshn].m = &model->nodes[n].t; model_add_cgltf_mesh(model->meshes+meshn, node->mesh); } } struct model *model_make(const char *path) { YughInfo("Making the model from %s.", path); cpath = path; cgltf_options options = {0}; cgltf_data *data = NULL; cgltf_result result = cgltf_parse_file(&options, path, &data); struct model *model = NULL; if (result) { YughError("CGLTF could not parse file %s, err %d.", path, result); goto CLEAN; } result = cgltf_load_buffers(&options, data, path); if (result) { YughError("CGLTF could not load buffers for file %s, err %d.", path, result); goto CLEAN; } cdata = data; model = calloc(1, sizeof(*model)); arrsetlen(model->nodes, data->nodes_count); for (int i = 0; i < data->nodes_count; i++) model_process_node(model, data->nodes+i); for (int i = 0; i < data->animations_count; i++) model_add_cgltf_anim(model, data->animations+i); for (int i = 0; i < data->skins_count; i++) model_add_cgltf_skin(model, data->skins+i); CLEAN: cgltf_free(data); return model; } void model_free(model *m) { } sg_bindings primitive_bind(primitive *p) { sg_bindings b = {0}; b.vertex_buffers[MAT_POS] = p->pos; b.vertex_buffers[MAT_UV] = p->uv; b.vertex_buffers[MAT_NORM] = p->norm; b.vertex_buffers[MAT_BONE] = p->bone; b.vertex_buffers[MAT_WEIGHT] = p->weight; b.vertex_buffers[MAT_COLOR] = p->color; b.index_buffer = p->idx; b.fs.images[0] = p->mat->diffuse->id; b.fs.samplers[0] = tex_sampler; return b; } void model_draw_go(model *model, gameobject *go, gameobject *cam) { HMM_Mat4 view = t3d_go2world(cam); HMM_Mat4 proj = HMM_Perspective_RH_NO(20, 1, 0.01, 10000); HMM_Mat4 vp = HMM_MulM4(proj, view); HMM_Mat4 gom = transform3d2mat(go2t3(go)); animation_run(&model->anim, apptime()); skin *sk = &model->skin; for (int i = 0; i < arrlen(sk->joints); i++) { md5joint *md = sk->joints[i]; HMM_Mat4 local = HMM_M4TRS(md->pos.xyz, md->rot, md->scale.xyz); if (md->parent) local = HMM_MulM4(md->parent->t, local); md->t = local; sk->binds[i] = HMM_MulM4(md->t, sk->invbind[i]); } /*sg_apply_uniforms(SG_SHADERSTAGE_VS, SLOT_skinv, &(sg_range){ .ptr = sk->binds, .size = sizeof(*sk->binds)*50 }); */ for (int i = 0; i < arrlen(model->meshes); i++) { HMM_Mat4 mod = *model->meshes[i].m; mod = HMM_MulM4(mod, gom); mesh msh = model->meshes[i]; for (int j = 0; j < arrlen(msh.primitives); j++) { sg_bindings b = primitive_bind(msh.primitives+j); sg_apply_bindings(&b); sg_draw(0, msh.primitives[j].idx_count, 1); } } } int mat2type(int mat) { switch(mat) { case MAT_POS: case MAT_WH: case MAT_ST: return SG_VERTEXFORMAT_FLOAT2; case MAT_UV: case MAT_TAN: return SG_VERTEXFORMAT_USHORT2N; case MAT_NORM: return SG_VERTEXFORMAT_UINT10_N2; case MAT_BONE: return SG_VERTEXFORMAT_UBYTE4; case MAT_WEIGHT: case MAT_COLOR: return SG_VERTEXFORMAT_UBYTE4N; case MAT_ANGLE: return SG_VERTEXFORMAT_FLOAT; }; return 0; } sg_buffer mat2buffer(int mat, primitive *p) { switch(mat) { case MAT_POS: return p->pos; case MAT_NORM: return p->norm; case MAT_UV: return p->uv; case MAT_BONE: return p->bone; case MAT_WEIGHT: return p->weight; case MAT_COLOR: return p->color; }; return p->pos; } sg_bindings primitive_bindings(primitive *p, JSValue v) { sg_bindings b = {0}; JSValue inputs = js_getpropstr(js_getpropstr(v, "vs"), "inputs"); for (int i = 0; i < js_arrlen(inputs); i++) { JSValue attr = js_getpropidx(inputs, i); int mat = js2number(js_getpropstr(attr, "mat")); int slot = js2number(js_getpropstr(attr, "slot")); sg_buffer buf = mat2buffer(mat,p); if (!buf.id) { // ERROR } b.vertex_buffers[slot] = buf; } b.index_buffer = p->idx; return b; } void primitive_free(primitive *prim) { } void material_free(material *mat) { }