#include "sound.h" #include "limits.h" #include "log.h" #include "math.h" #include "music.h" #include "resources.h" #include "stb_vorbis.h" #include "string.h" #include "time.h" #include #include "samplerate.h" #include "stb_ds.h" #include "dsp.h" #include "mix.h" #include "miniaudio.h" #define TSF_IMPLEMENTATION #include "tsf.h" #define TML_IMPLEMENTATION #include "tml.h" static struct { char *key; struct wav *value; } *wavhash = NULL; static struct wav change_channels(struct wav w, int ch) { short *data = w.data; int samples = ch * w.frames; short *new = malloc(sizeof(short) * samples); if (ch > w.ch) { /* Sets all new channels equal to the first one */ for (int i = 0; i < w.frames; i++) { for (int j = 0; j < ch; j++) new[i * ch + j] = data[i]; } } else { /* Simple method; just use first N channels present in wav */ for (int i = 0; i < w.frames; i++) for (int j = 0; j < ch; j++) new[i * ch + j] = data[i * ch + j]; } free(w.data); w.data = new; return w; } static struct wav change_samplerate(struct wav w, int rate) { float ratio = (float)rate / w.samplerate; int outframes = w.frames * ratio; SRC_DATA ssrc; float floatdata[w.frames * w.ch]; src_short_to_float_array(w.data, floatdata, w.frames * w.ch); float resampled[w.ch * outframes]; ssrc.data_in = floatdata; ssrc.data_out = resampled; ssrc.input_frames = w.frames; ssrc.output_frames = outframes; ssrc.src_ratio = ratio; src_simple(&ssrc, SRC_SINC_BEST_QUALITY, w.ch); short *newdata = malloc(sizeof(short) * outframes * w.ch); src_float_to_short_array(resampled, newdata, outframes * w.ch); free(w.data); w.data = newdata; w.samplerate = rate; return w; } void wav_norm_gain(struct wav *w, double lv) { short tarmax = db2short(lv); short max = 0; short *s = w->data; for (int i = 0; i < w->frames; i++) { for (int j = 0; j < w->ch; j++) { max = (abs(s[i * w->ch + j]) > max) ? abs(s[i * w->ch + j]) : max; } } float mult = (float)max / tarmax; for (int i = 0; i < w->frames; i++) { for (int j = 0; j < w->ch; j++) { s[i * w->ch + j] *= mult; } } } static ma_engine *engine; void sound_init() { ma_result result; engine = malloc(sizeof(*engine)); result = ma_engine_init(NULL, engine); if (result != MA_SUCCESS) { return; } return; mixer_init(); } struct wav *make_sound(const char *wav) { int index = shgeti(wavhash, wav); if (index != -1) return wavhash[index].value; struct wav mwav; // mwav.data = drwav_open_file_and_read_pcm_frames_s16(wav, &mwav.ch, &mwav.samplerate, &mwav.frames, NULL); if (mwav.samplerate != SAMPLERATE) { YughInfo("Changing samplerate of %s from %d to %d.", wav, mwav.samplerate, SAMPLERATE); // mwav = change_samplerate(mwav, SAMPLERATE); } if (mwav.ch != CHANNELS) { YughInfo("Changing channels of %s from %d to %d.", wav, mwav.ch, CHANNELS); mwav = change_channels(mwav, CHANNELS); } mwav.gain = 1.f; struct wav *newwav = malloc(sizeof(*newwav)); *newwav = mwav; if (shlen(wavhash) == 0) sh_new_arena(wavhash); shput(wavhash, wav, newwav); return newwav; } void free_sound(const char *wav) { struct wav *w = shget(wavhash, wav); if (w == NULL) return; free(w->data); free(w); shdel(wavhash, wav); } struct soundstream *soundstream_make() { struct soundstream *new = malloc(sizeof(*new)); new->buf = circbuf_make(sizeof(short), BUF_FRAMES * CHANNELS * 2); return new; } void mini_sound(char *path) { ma_engine_play_sound(engine, path, NULL); } static ma_sound music_sound; void mini_music_play(char *path) { ma_sound_uninit(&music_sound); int result = ma_sound_init_from_file(engine, path, MA_SOUND_FLAG_NO_SPATIALIZATION, NULL, NULL, &music_sound); if (result != MA_SUCCESS) { YughInfo("Could not load music at path: %s", path); } YughInfo("Loading %s...", path); ma_sound_start(&music_sound); } void mini_music_pause() { ma_sound_stop(&music_sound); } void mini_music_stop() { ma_sound_stop(&music_sound); } void mini_master(float v) { ma_engine_set_volume(engine, v); } void kill_oneshot(struct sound *s) { free(s); } void play_oneshot(struct wav *wav) { struct sound *new = malloc(sizeof(*new)); new->data = wav; new->bus = first_free_bus(dsp_filter(new, sound_fillbuf)); new->playing = 1; new->loop = 0; new->frame = 0; new->endcb = kill_oneshot; } struct sound *play_sound(struct wav *wav) { struct sound *new = calloc(1, sizeof(*new)); new->data = wav; new->bus = first_free_bus(dsp_filter(new, sound_fillbuf)); new->playing = 1; return new; } int sound_playing(const struct sound *s) { return s->playing; } int sound_paused(const struct sound *s) { return (!s->playing && s->frame < s->data->frames); } void sound_pause(struct sound *s) { s->playing = 0; bus_free(s->bus); } void sound_resume(struct sound *s) { s->playing = 1; s->bus = first_free_bus(dsp_filter(s, sound_fillbuf)); } void sound_stop(struct sound *s) { s->playing = 0; s->frame = 0; bus_free(s->bus); } int sound_finished(const struct sound *s) { return !s->playing && s->frame == s->data->frames; } int sound_stopped(const struct sound *s) { return !s->playing && s->frame == 0; } struct mp3 make_music(const char *mp3) { // drmp3 new; // if (!drmp3_init_file(&new, mp3, NULL)) { // YughError("Could not open mp3 file %s.", mp3); // } struct mp3 newmp3 = {}; return newmp3; } void close_audio_device(int device) { } int open_device(const char *adriver) { return 0; } void sound_fillbuf(struct sound *s, short *buf, int n) { float gainmult = pct2mult(s->data->gain); short *in = s->data->data; for (int i = 0; i < n; i++) { for (int j = 0; j < CHANNELS; j++) buf[i * CHANNELS + j] = in[s->frame + j] * gainmult; s->frame++; if (s->frame == s->data->frames) { bus_free(s->bus); s->bus = NULL; s->endcb(s); return; } } } void mp3_fillbuf(struct sound *s, short *buf, int n) { } void soundstream_fillbuf(struct soundstream *s, short *buf, int n) { int max = s->buf->write - s->buf->read; int lim = (max < n * CHANNELS) ? max : n * CHANNELS; for (int i = 0; i < lim; i++) { buf[i] = cbuf_shift(s->buf); } } float short2db(short val) { return 20 * log10(abs(val) / SHRT_MAX); } short db2short(float db) { return pow(10, db / 20.f) * SHRT_MAX; } short short_gain(short val, float db) { return (short)(pow(10, db / 20.f) * val); } float pct2db(float pct) { if (pct <= 0) return -72.f; return 10 * log2(pct); } float pct2mult(float pct) { if (pct <= 0) return 0.f; return pow(10, 0.5 * log2(pct)); }