#include "HandmadeMath.h" const HMM_Vec2 v2zero = {0,0}; const HMM_Vec2 v2one = {1,1}; const HMM_Vec3 v3zero = {0,0,0}; const HMM_Vec4 v4zero = {0,0,0,0}; const HMM_Vec3 vX = {1.0,0.0,0.0}; const HMM_Vec3 vY = {0.0,1.0,0.0}; const HMM_Vec3 vZ = {0.0,0.0,1.0}; const HMM_Vec3 vUP = {0,1,0}; const HMM_Vec3 vDOWN = {0,-1,0}; const HMM_Vec3 vFWD = {0,0,1}; const HMM_Vec3 vBKWD = {0,0,-1}; const HMM_Vec3 vLEFT = {-1,0,0}; const HMM_Vec3 vRIGHT = {1,0,0}; const HMM_Mat4 MAT1 = {1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1}; const HMM_Quat QUAT1 = {1,0,0,0}; /* * Angle unit conversion functions */ float HMM_ToRad(float Angle) { #if defined(HANDMADE_MATH_USE_RADIANS) float Result = Angle; #elif defined(HANDMADE_MATH_USE_DEGREES) float Result = Angle * HMM_DegToRad; #elif defined(HANDMADE_MATH_USE_TURNS) float Result = Angle * HMM_TurnToRad; #endif return Result; } float HMM_ToDeg(float Angle) { #if defined(HANDMADE_MATH_USE_RADIANS) float Result = Angle * HMM_RadToDeg; #elif defined(HANDMADE_MATH_USE_DEGREES) float Result = Angle; #elif defined(HANDMADE_MATH_USE_TURNS) float Result = Angle * HMM_TurnToDeg; #endif return Result; } float HMM_ToTurn(float Angle) { #if defined(HANDMADE_MATH_USE_RADIANS) float Result = Angle * HMM_RadToTurn; #elif defined(HANDMADE_MATH_USE_DEGREES) float Result = Angle * HMM_DegToTurn; #elif defined(HANDMADE_MATH_USE_TURNS) float Result = Angle; #endif return Result; } /* * Floating-point math functions */ float HMM_SinF(float Angle) { return HMM_SINF(HMM_ANGLE_USER_TO_INTERNAL(Angle)); } float HMM_CosF(float Angle) { return HMM_COSF(HMM_ANGLE_USER_TO_INTERNAL(Angle)); } float HMM_TanF(float Angle) { return HMM_TANF(HMM_ANGLE_USER_TO_INTERNAL(Angle)); } float HMM_ACosF(float Arg) { return HMM_ANGLE_INTERNAL_TO_USER(HMM_ACOSF(Arg)); } float HMM_SqrtF(float Float) { float Result; #ifdef HANDMADE_MATH__USE_SSE __m128 In = _mm_set_ss(Float); __m128 Out = _mm_sqrt_ss(In); Result = _mm_cvtss_f32(Out); #else Result = HMM_SQRTF(Float); #endif return Result; } float HMM_InvSqrtF(float Float) { float Result; Result = 1.0f / HMM_SqrtF(Float); return Result; } /* * Utility functions */ float HMM_Lerp(float A, float Time, float B) { return (1.0f - Time) * A + Time * B; } float HMM_Clamp(float Min, float Value, float Max) { float Result = Value; if (Result < Min) { Result = Min; } if (Result > Max) { Result = Max; } return Result; } float frand(float max) { return ((float)rand()/(float)(RAND_MAX))*max; } /* * Vector initialization */ HMM_Vec2 HMM_V2(float X, float Y) { HMM_Vec2 Result; Result.X = X; Result.Y = Y; return Result; } HMM_Vec3 HMM_V3(float X, float Y, float Z) { HMM_Vec3 Result; Result.X = X; Result.Y = Y; Result.Z = Z; return Result; } HMM_Vec3 HMM_V3i(float i) { return (HMM_Vec3){i,i,i}; } HMM_Vec4 HMM_V4(float X, float Y, float Z, float W) { HMM_Vec4 Result; #ifdef HANDMADE_MATH__USE_SSE Result.SSE = _mm_setr_ps(X, Y, Z, W); #else Result.X = X; Result.Y = Y; Result.Z = Z; Result.W = W; #endif return Result; } HMM_Vec4 HMM_V4V(HMM_Vec3 Vector, float W) { HMM_Vec4 Result; #ifdef HANDMADE_MATH__USE_SSE Result.SSE = _mm_setr_ps(Vector.X, Vector.Y, Vector.Z, W); #else Result.XYZ = Vector; Result.W = W; #endif return Result; } /* * Binary vector operations */ HMM_Vec2 HMM_AddV2(HMM_Vec2 Left, HMM_Vec2 Right) { HMM_Vec2 Result; Result.X = Left.X + Right.X; Result.Y = Left.Y + Right.Y; return Result; } HMM_Vec3 HMM_AddV3(HMM_Vec3 Left, HMM_Vec3 Right) { HMM_Vec3 Result; Result.X = Left.X + Right.X; Result.Y = Left.Y + Right.Y; Result.Z = Left.Z + Right.Z; return Result; } HMM_Vec4 HMM_AddV4(HMM_Vec4 Left, HMM_Vec4 Right) { HMM_Vec4 Result; #ifdef HANDMADE_MATH__USE_SSE Result.SSE = _mm_add_ps(Left.SSE, Right.SSE); #else Result.X = Left.X + Right.X; Result.Y = Left.Y + Right.Y; Result.Z = Left.Z + Right.Z; Result.W = Left.W + Right.W; #endif return Result; } HMM_Vec2 HMM_SubV2(HMM_Vec2 Left, HMM_Vec2 Right) { HMM_Vec2 Result; Result.X = Left.X - Right.X; Result.Y = Left.Y - Right.Y; return Result; } HMM_Vec3 HMM_SubV3(HMM_Vec3 Left, HMM_Vec3 Right) { HMM_Vec3 Result; Result.X = Left.X - Right.X; Result.Y = Left.Y - Right.Y; Result.Z = Left.Z - Right.Z; return Result; } HMM_Vec4 HMM_SubV4(HMM_Vec4 Left, HMM_Vec4 Right) { HMM_Vec4 Result; #ifdef HANDMADE_MATH__USE_SSE Result.SSE = _mm_sub_ps(Left.SSE, Right.SSE); #else Result.X = Left.X - Right.X; Result.Y = Left.Y - Right.Y; Result.Z = Left.Z - Right.Z; Result.W = Left.W - Right.W; #endif return Result; } HMM_Vec2 HMM_ScaleV2(HMM_Vec2 v, double s) { return HMM_V2(v.X*s, v.Y*s); } HMM_Vec3 HMM_ScaleV3(HMM_Vec3 v, double s) { return HMM_V3(v.x*s,v.y*s,v.z*s); } HMM_Vec2 HMM_MulV2(HMM_Vec2 Left, HMM_Vec2 Right) { HMM_Vec2 Result; Result.X = Left.X * Right.X; Result.Y = Left.Y * Right.Y; return Result; } HMM_Vec2 HMM_MulV2F(HMM_Vec2 Left, float Right) { HMM_Vec2 Result; Result.X = Left.X * Right; Result.Y = Left.Y * Right; return Result; } HMM_Vec3 HMM_MulV3(HMM_Vec3 Left, HMM_Vec3 Right) { HMM_Vec3 Result; Result.X = Left.X * Right.X; Result.Y = Left.Y * Right.Y; Result.Z = Left.Z * Right.Z; return Result; } HMM_Vec3 HMM_MulV3F(HMM_Vec3 Left, float Right) { HMM_Vec3 Result; Result.X = Left.X * Right; Result.Y = Left.Y * Right; Result.Z = Left.Z * Right; return Result; } HMM_Vec4 HMM_MulV4(HMM_Vec4 Left, HMM_Vec4 Right) { HMM_Vec4 Result; #ifdef HANDMADE_MATH__USE_SSE Result.SSE = _mm_mul_ps(Left.SSE, Right.SSE); #else Result.X = Left.X * Right.X; Result.Y = Left.Y * Right.Y; Result.Z = Left.Z * Right.Z; Result.W = Left.W * Right.W; #endif return Result; } HMM_Vec4 HMM_MulV4F(HMM_Vec4 Left, float Right) { HMM_Vec4 Result; #ifdef HANDMADE_MATH__USE_SSE __m128 Scalar = _mm_set1_ps(Right); Result.SSE = _mm_mul_ps(Left.SSE, Scalar); #else Result.X = Left.X * Right; Result.Y = Left.Y * Right; Result.Z = Left.Z * Right; Result.W = Left.W * Right; #endif return Result; } HMM_Vec2 HMM_DivV2(HMM_Vec2 Left, HMM_Vec2 Right) { HMM_Vec2 Result; Result.X = Left.X / Right.X; Result.Y = Left.Y / Right.Y; return Result; } HMM_Vec2 HMM_DivV2F(HMM_Vec2 Left, float Right) { HMM_Vec2 Result; Result.X = Left.X / Right; Result.Y = Left.Y / Right; return Result; } HMM_Vec3 HMM_DivV3(HMM_Vec3 Left, HMM_Vec3 Right) { HMM_Vec3 Result; Result.X = Left.X / Right.X; Result.Y = Left.Y / Right.Y; Result.Z = Left.Z / Right.Z; return Result; } HMM_Vec3 HMM_DivV3F(HMM_Vec3 Left, float Right) { HMM_Vec3 Result; Result.X = Left.X / Right; Result.Y = Left.Y / Right; Result.Z = Left.Z / Right; return Result; } HMM_Vec4 HMM_DivV4(HMM_Vec4 Left, HMM_Vec4 Right) { HMM_Vec4 Result; #ifdef HANDMADE_MATH__USE_SSE Result.SSE = _mm_div_ps(Left.SSE, Right.SSE); #else Result.X = Left.X / Right.X; Result.Y = Left.Y / Right.Y; Result.Z = Left.Z / Right.Z; Result.W = Left.W / Right.W; #endif return Result; } HMM_Vec4 HMM_DivV4F(HMM_Vec4 Left, float Right) { HMM_Vec4 Result; #ifdef HANDMADE_MATH__USE_SSE __m128 Scalar = _mm_set1_ps(Right); Result.SSE = _mm_div_ps(Left.SSE, Scalar); #else Result.X = Left.X / Right; Result.Y = Left.Y / Right; Result.Z = Left.Z / Right; Result.W = Left.W / Right; #endif return Result; } HMM_Bool HMM_EqV2(HMM_Vec2 Left, HMM_Vec2 Right) { return Left.X == Right.X && Left.Y == Right.Y; } HMM_Bool HMM_EqV3(HMM_Vec3 Left, HMM_Vec3 Right) { return Left.X == Right.X && Left.Y == Right.Y && Left.Z == Right.Z; } HMM_Bool HMM_EqV4(HMM_Vec4 Left, HMM_Vec4 Right) { return Left.X == Right.X && Left.Y == Right.Y && Left.Z == Right.Z && Left.W == Right.W; } float HMM_DotV2(HMM_Vec2 Left, HMM_Vec2 Right) { return (Left.X * Right.X) + (Left.Y * Right.Y); } HMM_Vec2 HMM_ProjV2(HMM_Vec2 a, HMM_Vec2 b) { return HMM_MulV2F(b, HMM_DotV2(a,b)/HMM_DotV2(b,b)); } float HMM_DotV3(HMM_Vec3 Left, HMM_Vec3 Right) { return (Left.X * Right.X) + (Left.Y * Right.Y) + (Left.Z * Right.Z); } float HMM_DotV4(HMM_Vec4 Left, HMM_Vec4 Right) { float Result; // NOTE(zak): IN the future if we wanna check what version SSE is support // we can use _mm_dp_ps (4.3) but for now we will use the old way. // Or a r = _mm_mul_ps(v1, v2), r = _mm_hadd_ps(r, r), r = _mm_hadd_ps(r, r) for SSE3 #ifdef HANDMADE_MATH__USE_SSE __m128 SSEResultOne = _mm_mul_ps(Left.SSE, Right.SSE); __m128 SSEResultTwo = _mm_shuffle_ps(SSEResultOne, SSEResultOne, _MM_SHUFFLE(2, 3, 0, 1)); SSEResultOne = _mm_add_ps(SSEResultOne, SSEResultTwo); SSEResultTwo = _mm_shuffle_ps(SSEResultOne, SSEResultOne, _MM_SHUFFLE(0, 1, 2, 3)); SSEResultOne = _mm_add_ps(SSEResultOne, SSEResultTwo); _mm_store_ss(&Result, SSEResultOne); #else Result = ((Left.X * Right.X) + (Left.Z * Right.Z)) + ((Left.Y * Right.Y) + (Left.W * Right.W)); #endif return Result; } HMM_Vec3 HMM_Cross(HMM_Vec3 Left, HMM_Vec3 Right) { HMM_Vec3 Result; Result.X = (Left.Y * Right.Z) - (Left.Z * Right.Y); Result.Y = (Left.Z * Right.X) - (Left.X * Right.Z); Result.Z = (Left.X * Right.Y) - (Left.Y * Right.X); return Result; } /* * Unary vector operations */ float HMM_LenSqrV2(HMM_Vec2 A) { return HMM_DotV2(A, A); } float HMM_LenSqrV3(HMM_Vec3 A) { return HMM_DotV3(A, A); } float HMM_LenSqrV4(HMM_Vec4 A) { return HMM_DotV4(A, A); } float HMM_LenV2(HMM_Vec2 A) { return HMM_SqrtF(HMM_LenSqrV2(A)); } float HMM_AngleV2(HMM_Vec2 a, HMM_Vec2 b) { return acos(HMM_DotV2(a,b)/(HMM_LenV2(a)*HMM_LenV2(b))); } float HMM_DistV2(HMM_Vec2 a, HMM_Vec2 b) { return HMM_LenV2(HMM_SubV2(a,b)); } HMM_Vec2 HMM_V2Rotate(HMM_Vec2 v, float angle) { float r = HMM_LenV2(v); angle += atan2(v.x, v.y); return (HMM_Vec2){r*cos(angle), r*sin(angle)}; } float HMM_LenV3(HMM_Vec3 A) { return HMM_SqrtF(HMM_LenSqrV3(A)); } float HMM_DistV3(HMM_Vec3 a, HMM_Vec3 b) { return HMM_LenV3(HMM_SubV3(a,b)); } float HMM_AngleV3(HMM_Vec3 a, HMM_Vec3 b) { return acos(HMM_DotV3(a,b)/(HMM_LenV3(a)*HMM_LenV3(b))); } float HMM_LenV4(HMM_Vec4 A) { return HMM_SqrtF(HMM_LenSqrV4(A)); } float HMM_AngleV4(HMM_Vec4 a, HMM_Vec4 b) { return acos(HMM_DotV4(a,b)/(HMM_LenV4(a)*HMM_LenV4(b))); } HMM_Vec2 HMM_NormV2(HMM_Vec2 A) { // HMM_MulV2F(A, 1.0/HMM_LenV2(A)+FLOAT_MIN); return HMM_MulV2F(A, HMM_InvSqrtF(HMM_DotV2(A, A))); } HMM_Vec3 HMM_NormV3(HMM_Vec3 A) { return HMM_MulV3F(A, HMM_InvSqrtF(HMM_DotV3(A, A))); } HMM_Vec4 HMM_NormV4(HMM_Vec4 A) { return HMM_MulV4F(A, HMM_InvSqrtF(HMM_DotV4(A, A))); } /* * Utility vector functions */ HMM_Vec2 HMM_LerpV2(HMM_Vec2 A, float Time, HMM_Vec2 B) { return HMM_AddV2(HMM_MulV2F(A, 1.0f - Time), HMM_MulV2F(B, Time)); } HMM_Vec3 HMM_LerpV3(HMM_Vec3 A, float Time, HMM_Vec3 B) { return HMM_AddV3(HMM_MulV3F(A, 1.0f - Time), HMM_MulV3F(B, Time)); } HMM_Vec4 HMM_LerpV4(HMM_Vec4 A, float Time, HMM_Vec4 B) { return HMM_AddV4(HMM_MulV4F(A, 1.0f - Time), HMM_MulV4F(B, Time)); } /* * SSE stuff */ HMM_Vec4 HMM_LinearCombineV4M4(HMM_Vec4 Left, HMM_Mat4 Right) { HMM_Vec4 Result; #ifdef HANDMADE_MATH__USE_SSE Result.SSE = _mm_mul_ps(_mm_shuffle_ps(Left.SSE, Left.SSE, 0x00), Right.Columns[0].SSE); Result.SSE = _mm_add_ps(Result.SSE, _mm_mul_ps(_mm_shuffle_ps(Left.SSE, Left.SSE, 0x55), Right.Columns[1].SSE)); Result.SSE = _mm_add_ps(Result.SSE, _mm_mul_ps(_mm_shuffle_ps(Left.SSE, Left.SSE, 0xaa), Right.Columns[2].SSE)); Result.SSE = _mm_add_ps(Result.SSE, _mm_mul_ps(_mm_shuffle_ps(Left.SSE, Left.SSE, 0xff), Right.Columns[3].SSE)); #else Result.X = Left.Elements[0] * Right.Columns[0].X; Result.Y = Left.Elements[0] * Right.Columns[0].Y; Result.Z = Left.Elements[0] * Right.Columns[0].Z; Result.W = Left.Elements[0] * Right.Columns[0].W; Result.X += Left.Elements[1] * Right.Columns[1].X; Result.Y += Left.Elements[1] * Right.Columns[1].Y; Result.Z += Left.Elements[1] * Right.Columns[1].Z; Result.W += Left.Elements[1] * Right.Columns[1].W; Result.X += Left.Elements[2] * Right.Columns[2].X; Result.Y += Left.Elements[2] * Right.Columns[2].Y; Result.Z += Left.Elements[2] * Right.Columns[2].Z; Result.W += Left.Elements[2] * Right.Columns[2].W; Result.X += Left.Elements[3] * Right.Columns[3].X; Result.Y += Left.Elements[3] * Right.Columns[3].Y; Result.Z += Left.Elements[3] * Right.Columns[3].Z; Result.W += Left.Elements[3] * Right.Columns[3].W; #endif return Result; } /* * 2x2 Matrices */ HMM_Mat2 HMM_M2(void) { HMM_Mat2 Result = {0}; return Result; } HMM_Mat2 HMM_M2D(float Diagonal) { HMM_Mat2 Result = {0}; Result.Elements[0][0] = Diagonal; Result.Elements[1][1] = Diagonal; return Result; } HMM_Mat2 HMM_TransposeM2(HMM_Mat2 Matrix) { HMM_Mat2 Result = Matrix; Result.Elements[0][1] = Matrix.Elements[1][0]; Result.Elements[1][0] = Matrix.Elements[0][1]; return Result; } HMM_Mat2 HMM_RotateM2(float angle) { HMM_Mat2 result; result.Elements[0][0] = cos(angle); result.Elements[0][1] = sin(angle); result.Elements[1][0] = -result.Elements[0][1]; result.Elements[1][1] = result.Elements[0][0]; return result; } HMM_Mat2 HMM_AddM2(HMM_Mat2 Left, HMM_Mat2 Right) { HMM_Mat2 Result; Result.Elements[0][0] = Left.Elements[0][0] + Right.Elements[0][0]; Result.Elements[0][1] = Left.Elements[0][1] + Right.Elements[0][1]; Result.Elements[1][0] = Left.Elements[1][0] + Right.Elements[1][0]; Result.Elements[1][1] = Left.Elements[1][1] + Right.Elements[1][1]; return Result; } HMM_Mat2 HMM_SubM2(HMM_Mat2 Left, HMM_Mat2 Right) { HMM_Mat2 Result; Result.Elements[0][0] = Left.Elements[0][0] - Right.Elements[0][0]; Result.Elements[0][1] = Left.Elements[0][1] - Right.Elements[0][1]; Result.Elements[1][0] = Left.Elements[1][0] - Right.Elements[1][0]; Result.Elements[1][1] = Left.Elements[1][1] - Right.Elements[1][1]; return Result; } HMM_Vec2 HMM_MulM2V2(HMM_Mat2 Matrix, HMM_Vec2 Vector) { HMM_Vec2 Result; Result.X = Vector.Elements[0] * Matrix.Columns[0].X; Result.Y = Vector.Elements[0] * Matrix.Columns[0].Y; Result.X += Vector.Elements[1] * Matrix.Columns[1].X; Result.Y += Vector.Elements[1] * Matrix.Columns[1].Y; return Result; } HMM_Mat2 HMM_MulM2(HMM_Mat2 Left, HMM_Mat2 Right) { HMM_Mat2 Result; Result.Columns[0] = HMM_MulM2V2(Left, Right.Columns[0]); Result.Columns[1] = HMM_MulM2V2(Left, Right.Columns[1]); return Result; } HMM_Mat2 HMM_MulM2F(HMM_Mat2 Matrix, float Scalar) { HMM_Mat2 Result; Result.Elements[0][0] = Matrix.Elements[0][0] * Scalar; Result.Elements[0][1] = Matrix.Elements[0][1] * Scalar; Result.Elements[1][0] = Matrix.Elements[1][0] * Scalar; Result.Elements[1][1] = Matrix.Elements[1][1] * Scalar; return Result; } HMM_Mat2 HMM_DivM2F(HMM_Mat2 Matrix, float Scalar) { HMM_Mat2 Result; Result.Elements[0][0] = Matrix.Elements[0][0] / Scalar; Result.Elements[0][1] = Matrix.Elements[0][1] / Scalar; Result.Elements[1][0] = Matrix.Elements[1][0] / Scalar; Result.Elements[1][1] = Matrix.Elements[1][1] / Scalar; return Result; } float HMM_DeterminantM2(HMM_Mat2 Matrix) { return Matrix.Elements[0][0] * Matrix.Elements[1][1] - Matrix.Elements[0][1] * Matrix.Elements[1][0]; } HMM_Mat2 HMM_InvGeneralM2(HMM_Mat2 Matrix) { HMM_Mat2 Result; float InvDeterminant = 1.0f / HMM_DeterminantM2(Matrix); Result.Elements[0][0] = InvDeterminant * +Matrix.Elements[1][1]; Result.Elements[1][1] = InvDeterminant * +Matrix.Elements[0][0]; Result.Elements[0][1] = InvDeterminant * -Matrix.Elements[0][1]; Result.Elements[1][0] = InvDeterminant * -Matrix.Elements[1][0]; return Result; } /* * 3x3 Matrices */ HMM_Mat3 HMM_M3(void) { HMM_Mat3 Result = {0}; return Result; } HMM_Mat3 HMM_M3D(float Diagonal) { HMM_Mat3 Result = {0}; Result.Elements[0][0] = Diagonal; Result.Elements[1][1] = Diagonal; Result.Elements[2][2] = Diagonal; return Result; } HMM_Mat3 HMM_Translate2D(HMM_Vec2 p) { HMM_Mat3 res = HMM_M3D(1); res.Columns[2].XY = p; return res; } HMM_Mat3 HMM_RotateM3(float angle) { HMM_Mat3 r = HMM_M3D(1); r.Columns[0] = (HMM_Vec3){cos(angle), sin(angle), 0}; r.Columns[1] = (HMM_Vec3){-sin(angle), cos(angle), 0}; return r; } HMM_Mat3 HMM_ScaleM3(HMM_Vec2 s) { HMM_Mat3 sm = HMM_M3D(1); sm.Columns[0].X = s.x; sm.Columns[1].Y = s.y; return sm; } HMM_Mat3 HMM_TransposeM3(HMM_Mat3 Matrix) { HMM_Mat3 Result = Matrix; Result.Elements[0][1] = Matrix.Elements[1][0]; Result.Elements[0][2] = Matrix.Elements[2][0]; Result.Elements[1][0] = Matrix.Elements[0][1]; Result.Elements[1][2] = Matrix.Elements[2][1]; Result.Elements[2][1] = Matrix.Elements[1][2]; Result.Elements[2][0] = Matrix.Elements[0][2]; return Result; } HMM_Mat3 HMM_AddM3(HMM_Mat3 Left, HMM_Mat3 Right) { HMM_Mat3 Result; Result.Elements[0][0] = Left.Elements[0][0] + Right.Elements[0][0]; Result.Elements[0][1] = Left.Elements[0][1] + Right.Elements[0][1]; Result.Elements[0][2] = Left.Elements[0][2] + Right.Elements[0][2]; Result.Elements[1][0] = Left.Elements[1][0] + Right.Elements[1][0]; Result.Elements[1][1] = Left.Elements[1][1] + Right.Elements[1][1]; Result.Elements[1][2] = Left.Elements[1][2] + Right.Elements[1][2]; Result.Elements[2][0] = Left.Elements[2][0] + Right.Elements[2][0]; Result.Elements[2][1] = Left.Elements[2][1] + Right.Elements[2][1]; Result.Elements[2][2] = Left.Elements[2][2] + Right.Elements[2][2]; return Result; } HMM_Mat3 HMM_SubM3(HMM_Mat3 Left, HMM_Mat3 Right) { HMM_Mat3 Result; Result.Elements[0][0] = Left.Elements[0][0] - Right.Elements[0][0]; Result.Elements[0][1] = Left.Elements[0][1] - Right.Elements[0][1]; Result.Elements[0][2] = Left.Elements[0][2] - Right.Elements[0][2]; Result.Elements[1][0] = Left.Elements[1][0] - Right.Elements[1][0]; Result.Elements[1][1] = Left.Elements[1][1] - Right.Elements[1][1]; Result.Elements[1][2] = Left.Elements[1][2] - Right.Elements[1][2]; Result.Elements[2][0] = Left.Elements[2][0] - Right.Elements[2][0]; Result.Elements[2][1] = Left.Elements[2][1] - Right.Elements[2][1]; Result.Elements[2][2] = Left.Elements[2][2] - Right.Elements[2][2]; return Result; } HMM_Vec3 HMM_MulM3V3(HMM_Mat3 Matrix, HMM_Vec3 Vector) { HMM_Vec3 Result; Result.X = Vector.Elements[0] * Matrix.Columns[0].X; Result.Y = Vector.Elements[0] * Matrix.Columns[0].Y; Result.Z = Vector.Elements[0] * Matrix.Columns[0].Z; Result.X += Vector.Elements[1] * Matrix.Columns[1].X; Result.Y += Vector.Elements[1] * Matrix.Columns[1].Y; Result.Z += Vector.Elements[1] * Matrix.Columns[1].Z; Result.X += Vector.Elements[2] * Matrix.Columns[2].X; Result.Y += Vector.Elements[2] * Matrix.Columns[2].Y; Result.Z += Vector.Elements[2] * Matrix.Columns[2].Z; return Result; } HMM_Mat3 HMM_MulM3(HMM_Mat3 Left, HMM_Mat3 Right) { HMM_Mat3 Result; Result.Columns[0] = HMM_MulM3V3(Left, Right.Columns[0]); Result.Columns[1] = HMM_MulM3V3(Left, Right.Columns[1]); Result.Columns[2] = HMM_MulM3V3(Left, Right.Columns[2]); return Result; } /*HMM_Mat3 HMM_VMulM3(int c, ...) { HMM_Mat3 res = HMM_M3D(1); va_list args; va_start(args, c); for (int i = 0; i < c; i++) { HMM_Mat3 m = va_arg(args, HMM_Mat3); res = HMM_MulM3(m, res); } va_end(args); return res; } */ HMM_Mat3 HMM_MulM3F(HMM_Mat3 Matrix, float Scalar) { HMM_Mat3 Result; Result.Elements[0][0] = Matrix.Elements[0][0] * Scalar; Result.Elements[0][1] = Matrix.Elements[0][1] * Scalar; Result.Elements[0][2] = Matrix.Elements[0][2] * Scalar; Result.Elements[1][0] = Matrix.Elements[1][0] * Scalar; Result.Elements[1][1] = Matrix.Elements[1][1] * Scalar; Result.Elements[1][2] = Matrix.Elements[1][2] * Scalar; Result.Elements[2][0] = Matrix.Elements[2][0] * Scalar; Result.Elements[2][1] = Matrix.Elements[2][1] * Scalar; Result.Elements[2][2] = Matrix.Elements[2][2] * Scalar; return Result; } HMM_Mat3 HMM_DivM3F(HMM_Mat3 Matrix, float Scalar) { HMM_Mat3 Result; Result.Elements[0][0] = Matrix.Elements[0][0] / Scalar; Result.Elements[0][1] = Matrix.Elements[0][1] / Scalar; Result.Elements[0][2] = Matrix.Elements[0][2] / Scalar; Result.Elements[1][0] = Matrix.Elements[1][0] / Scalar; Result.Elements[1][1] = Matrix.Elements[1][1] / Scalar; Result.Elements[1][2] = Matrix.Elements[1][2] / Scalar; Result.Elements[2][0] = Matrix.Elements[2][0] / Scalar; Result.Elements[2][1] = Matrix.Elements[2][1] / Scalar; Result.Elements[2][2] = Matrix.Elements[2][2] / Scalar; return Result; } HMM_Mat2 HMM_ScaleM2(HMM_Vec2 Scale) { HMM_Mat2 Result = HMM_M2D(1.0f); Result.Elements[0][0] = Scale.X; Result.Elements[1][1] = Scale.Y; return Result; } float HMM_DeterminantM3(HMM_Mat3 Matrix) { HMM_Mat3 Cross; Cross.Columns[0] = HMM_Cross(Matrix.Columns[1], Matrix.Columns[2]); Cross.Columns[1] = HMM_Cross(Matrix.Columns[2], Matrix.Columns[0]); Cross.Columns[2] = HMM_Cross(Matrix.Columns[0], Matrix.Columns[1]); return HMM_DotV3(Cross.Columns[2], Matrix.Columns[2]); } HMM_Mat3 HMM_M2Basis(HMM_Mat2 basis) { HMM_Mat3 m; m.Columns[0].XY = basis.Columns[0]; m.Columns[1].XY = basis.Columns[1]; m.Columns[2].Z = 1; return m; } HMM_Mat3 HMM_InvGeneralM3(HMM_Mat3 Matrix) { HMM_Mat3 Cross; Cross.Columns[0] = HMM_Cross(Matrix.Columns[1], Matrix.Columns[2]); Cross.Columns[1] = HMM_Cross(Matrix.Columns[2], Matrix.Columns[0]); Cross.Columns[2] = HMM_Cross(Matrix.Columns[0], Matrix.Columns[1]); float InvDeterminant = 1.0f / HMM_DotV3(Cross.Columns[2], Matrix.Columns[2]); HMM_Mat3 Result; Result.Columns[0] = HMM_MulV3F(Cross.Columns[0], InvDeterminant); Result.Columns[1] = HMM_MulV3F(Cross.Columns[1], InvDeterminant); Result.Columns[2] = HMM_MulV3F(Cross.Columns[2], InvDeterminant); return HMM_TransposeM3(Result); } /* * 4x4 Matrices */ HMM_Mat4 HMM_M4(void) { HMM_Mat4 Result = {0}; return Result; } HMM_Mat4 HMM_M4D(float Diagonal) { HMM_Mat4 Result = {0}; Result.Elements[0][0] = Diagonal; Result.Elements[1][1] = Diagonal; Result.Elements[2][2] = Diagonal; Result.Elements[3][3] = Diagonal; return Result; } HMM_Mat4 HMM_TransposeM4(HMM_Mat4 Matrix) { HMM_Mat4 Result = Matrix; #ifdef HANDMADE_MATH__USE_SSE _MM_TRANSPOSE4_PS(Result.Columns[0].SSE, Result.Columns[1].SSE, Result.Columns[2].SSE, Result.Columns[3].SSE); #else Result.Elements[0][1] = Matrix.Elements[1][0]; Result.Elements[0][2] = Matrix.Elements[2][0]; Result.Elements[0][3] = Matrix.Elements[3][0]; Result.Elements[1][0] = Matrix.Elements[0][1]; Result.Elements[1][2] = Matrix.Elements[2][1]; Result.Elements[1][3] = Matrix.Elements[3][1]; Result.Elements[2][1] = Matrix.Elements[1][2]; Result.Elements[2][0] = Matrix.Elements[0][2]; Result.Elements[2][3] = Matrix.Elements[3][2]; Result.Elements[3][1] = Matrix.Elements[1][3]; Result.Elements[3][2] = Matrix.Elements[2][3]; Result.Elements[3][0] = Matrix.Elements[0][3]; #endif return Result; } HMM_Mat4 HMM_AddM4(HMM_Mat4 Left, HMM_Mat4 Right) { HMM_Mat4 Result; #ifdef HANDMADE_MATH__USE_SSE Result.Columns[0].SSE = _mm_add_ps(Left.Columns[0].SSE, Right.Columns[0].SSE); Result.Columns[1].SSE = _mm_add_ps(Left.Columns[1].SSE, Right.Columns[1].SSE); Result.Columns[2].SSE = _mm_add_ps(Left.Columns[2].SSE, Right.Columns[2].SSE); Result.Columns[3].SSE = _mm_add_ps(Left.Columns[3].SSE, Right.Columns[3].SSE); #else Result.Elements[0][0] = Left.Elements[0][0] + Right.Elements[0][0]; Result.Elements[0][1] = Left.Elements[0][1] + Right.Elements[0][1]; Result.Elements[0][2] = Left.Elements[0][2] + Right.Elements[0][2]; Result.Elements[0][3] = Left.Elements[0][3] + Right.Elements[0][3]; Result.Elements[1][0] = Left.Elements[1][0] + Right.Elements[1][0]; Result.Elements[1][1] = Left.Elements[1][1] + Right.Elements[1][1]; Result.Elements[1][2] = Left.Elements[1][2] + Right.Elements[1][2]; Result.Elements[1][3] = Left.Elements[1][3] + Right.Elements[1][3]; Result.Elements[2][0] = Left.Elements[2][0] + Right.Elements[2][0]; Result.Elements[2][1] = Left.Elements[2][1] + Right.Elements[2][1]; Result.Elements[2][2] = Left.Elements[2][2] + Right.Elements[2][2]; Result.Elements[2][3] = Left.Elements[2][3] + Right.Elements[2][3]; Result.Elements[3][0] = Left.Elements[3][0] + Right.Elements[3][0]; Result.Elements[3][1] = Left.Elements[3][1] + Right.Elements[3][1]; Result.Elements[3][2] = Left.Elements[3][2] + Right.Elements[3][2]; Result.Elements[3][3] = Left.Elements[3][3] + Right.Elements[3][3]; #endif return Result; } HMM_Mat4 HMM_SubM4(HMM_Mat4 Left, HMM_Mat4 Right) { HMM_Mat4 Result; #ifdef HANDMADE_MATH__USE_SSE Result.Columns[0].SSE = _mm_sub_ps(Left.Columns[0].SSE, Right.Columns[0].SSE); Result.Columns[1].SSE = _mm_sub_ps(Left.Columns[1].SSE, Right.Columns[1].SSE); Result.Columns[2].SSE = _mm_sub_ps(Left.Columns[2].SSE, Right.Columns[2].SSE); Result.Columns[3].SSE = _mm_sub_ps(Left.Columns[3].SSE, Right.Columns[3].SSE); #else Result.Elements[0][0] = Left.Elements[0][0] - Right.Elements[0][0]; Result.Elements[0][1] = Left.Elements[0][1] - Right.Elements[0][1]; Result.Elements[0][2] = Left.Elements[0][2] - Right.Elements[0][2]; Result.Elements[0][3] = Left.Elements[0][3] - Right.Elements[0][3]; Result.Elements[1][0] = Left.Elements[1][0] - Right.Elements[1][0]; Result.Elements[1][1] = Left.Elements[1][1] - Right.Elements[1][1]; Result.Elements[1][2] = Left.Elements[1][2] - Right.Elements[1][2]; Result.Elements[1][3] = Left.Elements[1][3] - Right.Elements[1][3]; Result.Elements[2][0] = Left.Elements[2][0] - Right.Elements[2][0]; Result.Elements[2][1] = Left.Elements[2][1] - Right.Elements[2][1]; Result.Elements[2][2] = Left.Elements[2][2] - Right.Elements[2][2]; Result.Elements[2][3] = Left.Elements[2][3] - Right.Elements[2][3]; Result.Elements[3][0] = Left.Elements[3][0] - Right.Elements[3][0]; Result.Elements[3][1] = Left.Elements[3][1] - Right.Elements[3][1]; Result.Elements[3][2] = Left.Elements[3][2] - Right.Elements[3][2]; Result.Elements[3][3] = Left.Elements[3][3] - Right.Elements[3][3]; #endif return Result; } HMM_Mat4 HMM_MulM4(HMM_Mat4 Left, HMM_Mat4 Right) { HMM_Mat4 Result; Result.Columns[0] = HMM_LinearCombineV4M4(Right.Columns[0], Left); Result.Columns[1] = HMM_LinearCombineV4M4(Right.Columns[1], Left); Result.Columns[2] = HMM_LinearCombineV4M4(Right.Columns[2], Left); Result.Columns[3] = HMM_LinearCombineV4M4(Right.Columns[3], Left); return Result; } HMM_Mat4 HMM_MulM4F(HMM_Mat4 Matrix, float Scalar) { HMM_Mat4 Result; #ifdef HANDMADE_MATH__USE_SSE __m128 SSEScalar = _mm_set1_ps(Scalar); Result.Columns[0].SSE = _mm_mul_ps(Matrix.Columns[0].SSE, SSEScalar); Result.Columns[1].SSE = _mm_mul_ps(Matrix.Columns[1].SSE, SSEScalar); Result.Columns[2].SSE = _mm_mul_ps(Matrix.Columns[2].SSE, SSEScalar); Result.Columns[3].SSE = _mm_mul_ps(Matrix.Columns[3].SSE, SSEScalar); #else Result.Elements[0][0] = Matrix.Elements[0][0] * Scalar; Result.Elements[0][1] = Matrix.Elements[0][1] * Scalar; Result.Elements[0][2] = Matrix.Elements[0][2] * Scalar; Result.Elements[0][3] = Matrix.Elements[0][3] * Scalar; Result.Elements[1][0] = Matrix.Elements[1][0] * Scalar; Result.Elements[1][1] = Matrix.Elements[1][1] * Scalar; Result.Elements[1][2] = Matrix.Elements[1][2] * Scalar; Result.Elements[1][3] = Matrix.Elements[1][3] * Scalar; Result.Elements[2][0] = Matrix.Elements[2][0] * Scalar; Result.Elements[2][1] = Matrix.Elements[2][1] * Scalar; Result.Elements[2][2] = Matrix.Elements[2][2] * Scalar; Result.Elements[2][3] = Matrix.Elements[2][3] * Scalar; Result.Elements[3][0] = Matrix.Elements[3][0] * Scalar; Result.Elements[3][1] = Matrix.Elements[3][1] * Scalar; Result.Elements[3][2] = Matrix.Elements[3][2] * Scalar; Result.Elements[3][3] = Matrix.Elements[3][3] * Scalar; #endif return Result; } HMM_Vec4 HMM_MulM4V4(HMM_Mat4 Matrix, HMM_Vec4 Vector) { return HMM_LinearCombineV4M4(Vector, Matrix); } HMM_Mat4 HMM_DivM4F(HMM_Mat4 Matrix, float Scalar) { HMM_Mat4 Result; #ifdef HANDMADE_MATH__USE_SSE __m128 SSEScalar = _mm_set1_ps(Scalar); Result.Columns[0].SSE = _mm_div_ps(Matrix.Columns[0].SSE, SSEScalar); Result.Columns[1].SSE = _mm_div_ps(Matrix.Columns[1].SSE, SSEScalar); Result.Columns[2].SSE = _mm_div_ps(Matrix.Columns[2].SSE, SSEScalar); Result.Columns[3].SSE = _mm_div_ps(Matrix.Columns[3].SSE, SSEScalar); #else Result.Elements[0][0] = Matrix.Elements[0][0] / Scalar; Result.Elements[0][1] = Matrix.Elements[0][1] / Scalar; Result.Elements[0][2] = Matrix.Elements[0][2] / Scalar; Result.Elements[0][3] = Matrix.Elements[0][3] / Scalar; Result.Elements[1][0] = Matrix.Elements[1][0] / Scalar; Result.Elements[1][1] = Matrix.Elements[1][1] / Scalar; Result.Elements[1][2] = Matrix.Elements[1][2] / Scalar; Result.Elements[1][3] = Matrix.Elements[1][3] / Scalar; Result.Elements[2][0] = Matrix.Elements[2][0] / Scalar; Result.Elements[2][1] = Matrix.Elements[2][1] / Scalar; Result.Elements[2][2] = Matrix.Elements[2][2] / Scalar; Result.Elements[2][3] = Matrix.Elements[2][3] / Scalar; Result.Elements[3][0] = Matrix.Elements[3][0] / Scalar; Result.Elements[3][1] = Matrix.Elements[3][1] / Scalar; Result.Elements[3][2] = Matrix.Elements[3][2] / Scalar; Result.Elements[3][3] = Matrix.Elements[3][3] / Scalar; #endif return Result; } float HMM_DeterminantM4(HMM_Mat4 Matrix) { HMM_Vec3 C01 = HMM_Cross(Matrix.Columns[0].XYZ, Matrix.Columns[1].XYZ); HMM_Vec3 C23 = HMM_Cross(Matrix.Columns[2].XYZ, Matrix.Columns[3].XYZ); HMM_Vec3 B10 = HMM_SubV3(HMM_MulV3F(Matrix.Columns[0].XYZ, Matrix.Columns[1].W), HMM_MulV3F(Matrix.Columns[1].XYZ, Matrix.Columns[0].W)); HMM_Vec3 B32 = HMM_SubV3(HMM_MulV3F(Matrix.Columns[2].XYZ, Matrix.Columns[3].W), HMM_MulV3F(Matrix.Columns[3].XYZ, Matrix.Columns[2].W)); return HMM_DotV3(C01, B32) + HMM_DotV3(C23, B10); } // Returns a general-purpose inverse of an HMM_Mat4. Note that special-purpose inverses of many transformations // are available and will be more efficient. HMM_Mat4 HMM_InvGeneralM4(HMM_Mat4 Matrix) { HMM_Vec3 C01 = HMM_Cross(Matrix.Columns[0].XYZ, Matrix.Columns[1].XYZ); HMM_Vec3 C23 = HMM_Cross(Matrix.Columns[2].XYZ, Matrix.Columns[3].XYZ); HMM_Vec3 B10 = HMM_SubV3(HMM_MulV3F(Matrix.Columns[0].XYZ, Matrix.Columns[1].W), HMM_MulV3F(Matrix.Columns[1].XYZ, Matrix.Columns[0].W)); HMM_Vec3 B32 = HMM_SubV3(HMM_MulV3F(Matrix.Columns[2].XYZ, Matrix.Columns[3].W), HMM_MulV3F(Matrix.Columns[3].XYZ, Matrix.Columns[2].W)); float InvDeterminant = 1.0f / (HMM_DotV3(C01, B32) + HMM_DotV3(C23, B10)); C01 = HMM_MulV3F(C01, InvDeterminant); C23 = HMM_MulV3F(C23, InvDeterminant); B10 = HMM_MulV3F(B10, InvDeterminant); B32 = HMM_MulV3F(B32, InvDeterminant); HMM_Mat4 Result; Result.Columns[0] = HMM_V4V(HMM_AddV3(HMM_Cross(Matrix.Columns[1].XYZ, B32), HMM_MulV3F(C23, Matrix.Columns[1].W)), -HMM_DotV3(Matrix.Columns[1].XYZ, C23)); Result.Columns[1] = HMM_V4V(HMM_SubV3(HMM_Cross(B32, Matrix.Columns[0].XYZ), HMM_MulV3F(C23, Matrix.Columns[0].W)), +HMM_DotV3(Matrix.Columns[0].XYZ, C23)); Result.Columns[2] = HMM_V4V(HMM_AddV3(HMM_Cross(Matrix.Columns[3].XYZ, B10), HMM_MulV3F(C01, Matrix.Columns[3].W)), -HMM_DotV3(Matrix.Columns[3].XYZ, C01)); Result.Columns[3] = HMM_V4V(HMM_SubV3(HMM_Cross(B10, Matrix.Columns[2].XYZ), HMM_MulV3F(C01, Matrix.Columns[2].W)), +HMM_DotV3(Matrix.Columns[2].XYZ, C01)); return HMM_TransposeM4(Result); } /* * Common graphics transformations */ // Produces a right-handed orthographic projection matrix with Z ranging from -1 to 1 (the GL convention). // Left, Right, Bottom, and Top specify the coordinates of their respective clipping planes. // Near and Far specify the distances to the near and far clipping planes. HMM_Mat4 HMM_Orthographic_RH_NO(float Left, float Right, float Bottom, float Top, float Near, float Far) { HMM_Mat4 Result = {0}; Result.Elements[0][0] = 2.0f / (Right - Left); Result.Elements[1][1] = 2.0f / (Top - Bottom); Result.Elements[2][2] = 2.0f / (Near - Far); Result.Elements[3][3] = 1.0f; Result.Elements[3][0] = (Left + Right) / (Left - Right); Result.Elements[3][1] = (Bottom + Top) / (Bottom - Top); Result.Elements[3][2] = (Near + Far) / (Near - Far); return Result; } // Produces a right-handed orthographic projection matrix with Z ranging from 0 to 1 (the DirectX convention). // Left, Right, Bottom, and Top specify the coordinates of their respective clipping planes. // Near and Far specify the distances to the near and far clipping planes. HMM_Mat4 HMM_Orthographic_RH_ZO(float Left, float Right, float Bottom, float Top, float Near, float Far) { HMM_Mat4 Result = {0}; Result.Elements[0][0] = 2.0f / (Right - Left); Result.Elements[1][1] = 2.0f / (Top - Bottom); Result.Elements[2][2] = 1.0f / (Near - Far); Result.Elements[3][3] = 1.0f; Result.Elements[3][0] = (Left + Right) / (Left - Right); Result.Elements[3][1] = (Bottom + Top) / (Bottom - Top); Result.Elements[3][2] = (Near) / (Near - Far); return Result; } // Produces a left-handed orthographic projection matrix with Z ranging from -1 to 1 (the GL convention). // Left, Right, Bottom, and Top specify the coordinates of their respective clipping planes. // Near and Far specify the distances to the near and far clipping planes. HMM_Mat4 HMM_Orthographic_LH_NO(float Left, float Right, float Bottom, float Top, float Near, float Far) { HMM_Mat4 Result = HMM_Orthographic_RH_NO(Left, Right, Bottom, Top, Near, Far); Result.Elements[2][2] = -Result.Elements[2][2]; return Result; } // Produces a left-handed orthographic projection matrix with Z ranging from 0 to 1 (the DirectX convention). // Left, Right, Bottom, and Top specify the coordinates of their respective clipping planes. // Near and Far specify the distances to the near and far clipping planes. HMM_Mat4 HMM_Orthographic_LH_ZO(float Left, float Right, float Bottom, float Top, float Near, float Far) { HMM_Mat4 Result = HMM_Orthographic_RH_ZO(Left, Right, Bottom, Top, Near, Far); Result.Elements[2][2] = -Result.Elements[2][2]; return Result; } // Returns an inverse for the given orthographic projection matrix. Works for all orthographic // projection matrices, regardless of handedness or NDC convention. HMM_Mat4 HMM_InvOrthographic(HMM_Mat4 OrthoMatrix) { HMM_Mat4 Result = {0}; Result.Elements[0][0] = 1.0f / OrthoMatrix.Elements[0][0]; Result.Elements[1][1] = 1.0f / OrthoMatrix.Elements[1][1]; Result.Elements[2][2] = 1.0f / OrthoMatrix.Elements[2][2]; Result.Elements[3][3] = 1.0f; Result.Elements[3][0] = -OrthoMatrix.Elements[3][0] * Result.Elements[0][0]; Result.Elements[3][1] = -OrthoMatrix.Elements[3][1] * Result.Elements[1][1]; Result.Elements[3][2] = -OrthoMatrix.Elements[3][2] * Result.Elements[2][2]; return Result; } HMM_Mat4 HMM_Orthographic_Metal(float l, float r, float b, float t, float near, float far) { HMM_Mat4 adjust = {0}; adjust.e[0][0] = 1; adjust.e[1][1] = 1; adjust.e[2][2] = 0.5; adjust.e[3][2] = 0.5; adjust.e[3][3] = 1; HMM_Mat4 opengl = HMM_Orthographic_LH_ZO(l, r, b, t, near, far); return HMM_MulM4(opengl, adjust); } HMM_Mat4 HMM_Perspective_Metal(float FOV, float AspectRatio, float Near, float Far) { HMM_Mat4 adjust = {0}; adjust.e[0][0] = 1; adjust.e[1][1] = 1; adjust.e[2][2] = 0.5; adjust.e[3][2] = 0.5; adjust.e[3][3] = 1; HMM_Mat4 opengl = HMM_Perspective_LH_NO(FOV, AspectRatio, Near, Far); return HMM_MulM4(opengl,adjust); } HMM_Mat4 HMM_Perspective_RH_NO(float FOV, float AspectRatio, float Near, float Far) { HMM_Mat4 Result = {0}; // See https://www.khronos.org/registry/OpenGL-Refpages/gl2.1/xhtml/gluPerspective.xml float Cotangent = 1.0f / HMM_TanF(FOV / 2.0f); Result.Elements[0][0] = Cotangent / AspectRatio; Result.Elements[1][1] = Cotangent; Result.Elements[2][3] = -1.0f; Result.Elements[2][2] = (Near + Far) / (Near - Far); Result.Elements[3][2] = (2.0f * Near * Far) / (Near - Far); return Result; } HMM_Mat4 HMM_Perspective_RH_ZO(float FOV, float AspectRatio, float Near, float Far) { HMM_Mat4 Result = {0}; // See https://www.khronos.org/registry/OpenGL-Refpages/gl2.1/xhtml/gluPerspective.xml float Cotangent = 1.0f / HMM_TanF(FOV / 2.0f); Result.Elements[0][0] = Cotangent / AspectRatio; Result.Elements[1][1] = Cotangent; Result.Elements[2][3] = -1.0f; Result.Elements[2][2] = (Far) / (Near - Far); Result.Elements[3][2] = (Near * Far) / (Near - Far); return Result; } HMM_Mat4 HMM_Perspective_LH_NO(float FOV, float AspectRatio, float Near, float Far) { HMM_Mat4 Result = HMM_Perspective_RH_NO(FOV, AspectRatio, Near, Far); Result.Elements[2][2] = -Result.Elements[2][2]; Result.Elements[2][3] = -Result.Elements[2][3]; return Result; } HMM_Mat4 HMM_Perspective_LH_ZO(float FOV, float AspectRatio, float Near, float Far) { HMM_Mat4 Result = HMM_Perspective_RH_ZO(FOV, AspectRatio, Near, Far); Result.Elements[2][2] = -Result.Elements[2][2]; Result.Elements[2][3] = -Result.Elements[2][3]; return Result; } HMM_Mat4 HMM_InvPerspective_RH(HMM_Mat4 PerspectiveMatrix) { HMM_Mat4 Result = {0}; Result.Elements[0][0] = 1.0f / PerspectiveMatrix.Elements[0][0]; Result.Elements[1][1] = 1.0f / PerspectiveMatrix.Elements[1][1]; Result.Elements[2][2] = 0.0f; Result.Elements[2][3] = 1.0f / PerspectiveMatrix.Elements[3][2]; Result.Elements[3][3] = PerspectiveMatrix.Elements[2][2] * Result.Elements[2][3]; Result.Elements[3][2] = PerspectiveMatrix.Elements[2][3]; return Result; } HMM_Mat4 HMM_InvPerspective_LH(HMM_Mat4 PerspectiveMatrix) { HMM_Mat4 Result = {0}; Result.Elements[0][0] = 1.0f / PerspectiveMatrix.Elements[0][0]; Result.Elements[1][1] = 1.0f / PerspectiveMatrix.Elements[1][1]; Result.Elements[2][2] = 0.0f; Result.Elements[2][3] = 1.0f / PerspectiveMatrix.Elements[3][2]; Result.Elements[3][3] = PerspectiveMatrix.Elements[2][2] * -Result.Elements[2][3]; Result.Elements[3][2] = PerspectiveMatrix.Elements[2][3]; return Result; } HMM_Mat4 HMM_Translate(HMM_Vec3 Translation) { HMM_Mat4 Result = HMM_M4D(1.0f); Result.Elements[3][0] = Translation.X; Result.Elements[3][1] = Translation.Y; Result.Elements[3][2] = Translation.Z; return Result; } HMM_Mat4 HMM_InvTranslate(HMM_Mat4 TranslationMatrix) { HMM_Mat4 Result = TranslationMatrix; Result.Elements[3][0] = -Result.Elements[3][0]; Result.Elements[3][1] = -Result.Elements[3][1]; Result.Elements[3][2] = -Result.Elements[3][2]; return Result; } HMM_Mat4 HMM_Rotate_RH(float Angle, HMM_Vec3 Axis) { HMM_Mat4 Result = HMM_M4D(1.0f); Axis = HMM_NormV3(Axis); float SinTheta = HMM_SinF(Angle); float CosTheta = HMM_CosF(Angle); float CosValue = 1.0f - CosTheta; Result.Elements[0][0] = (Axis.X * Axis.X * CosValue) + CosTheta; Result.Elements[0][1] = (Axis.X * Axis.Y * CosValue) + (Axis.Z * SinTheta); Result.Elements[0][2] = (Axis.X * Axis.Z * CosValue) - (Axis.Y * SinTheta); Result.Elements[1][0] = (Axis.Y * Axis.X * CosValue) - (Axis.Z * SinTheta); Result.Elements[1][1] = (Axis.Y * Axis.Y * CosValue) + CosTheta; Result.Elements[1][2] = (Axis.Y * Axis.Z * CosValue) + (Axis.X * SinTheta); Result.Elements[2][0] = (Axis.Z * Axis.X * CosValue) + (Axis.Y * SinTheta); Result.Elements[2][1] = (Axis.Z * Axis.Y * CosValue) - (Axis.X * SinTheta); Result.Elements[2][2] = (Axis.Z * Axis.Z * CosValue) + CosTheta; return Result; } HMM_Mat4 HMM_Rotate_LH(float Angle, HMM_Vec3 Axis) { /* NOTE(lcf): Matrix will be inverse/transpose of RH. */ return HMM_Rotate_RH(-Angle, Axis); } HMM_Mat4 HMM_InvRotate(HMM_Mat4 RotationMatrix) { return HMM_TransposeM4(RotationMatrix); } HMM_Mat4 HMM_Scale(HMM_Vec3 Scale) { HMM_Mat4 Result = HMM_M4D(1.0f); Result.Elements[0][0] = Scale.X; Result.Elements[1][1] = Scale.Y; Result.Elements[2][2] = Scale.Z; return Result; } HMM_Mat4 HMM_InvScale(HMM_Mat4 ScaleMatrix) { HMM_Mat4 Result = ScaleMatrix; Result.Elements[0][0] = 1.0f / Result.Elements[0][0]; Result.Elements[1][1] = 1.0f / Result.Elements[1][1]; Result.Elements[2][2] = 1.0f / Result.Elements[2][2]; return Result; } HMM_Mat4 _HMM_LookAt(HMM_Vec3 F, HMM_Vec3 S, HMM_Vec3 U, HMM_Vec3 Eye) { HMM_Mat4 Result; Result.Elements[0][0] = S.X; Result.Elements[0][1] = U.X; Result.Elements[0][2] = -F.X; Result.Elements[0][3] = 0.0f; Result.Elements[1][0] = S.Y; Result.Elements[1][1] = U.Y; Result.Elements[1][2] = -F.Y; Result.Elements[1][3] = 0.0f; Result.Elements[2][0] = S.Z; Result.Elements[2][1] = U.Z; Result.Elements[2][2] = -F.Z; Result.Elements[2][3] = 0.0f; Result.Elements[3][0] = -HMM_DotV3(S, Eye); Result.Elements[3][1] = -HMM_DotV3(U, Eye); Result.Elements[3][2] = HMM_DotV3(F, Eye); Result.Elements[3][3] = 1.0f; return Result; } HMM_Mat4 HMM_LookAt_RH(HMM_Vec3 Eye, HMM_Vec3 Center, HMM_Vec3 Up) { HMM_Vec3 F = HMM_NormV3(HMM_SubV3(Center, Eye)); HMM_Vec3 S = HMM_NormV3(HMM_Cross(F, Up)); HMM_Vec3 U = HMM_Cross(S, F); return _HMM_LookAt(F, S, U, Eye); } HMM_Mat4 HMM_LookAt_LH(HMM_Vec3 Eye, HMM_Vec3 Center, HMM_Vec3 Up) { HMM_Vec3 F = HMM_NormV3(HMM_SubV3(Eye, Center)); HMM_Vec3 S = HMM_NormV3(HMM_Cross(F, Up)); HMM_Vec3 U = HMM_Cross(S, F); return _HMM_LookAt(F, S, U, Eye); } HMM_Mat4 HMM_InvLookAt(HMM_Mat4 Matrix) { HMM_Mat4 Result; HMM_Mat3 Rotation = {0}; Rotation.Columns[0] = Matrix.Columns[0].XYZ; Rotation.Columns[1] = Matrix.Columns[1].XYZ; Rotation.Columns[2] = Matrix.Columns[2].XYZ; Rotation = HMM_TransposeM3(Rotation); Result.Columns[0] = HMM_V4V(Rotation.Columns[0], 0.0f); Result.Columns[1] = HMM_V4V(Rotation.Columns[1], 0.0f); Result.Columns[2] = HMM_V4V(Rotation.Columns[2], 0.0f); Result.Columns[3] = HMM_MulV4F(Matrix.Columns[3], -1.0f); Result.Elements[3][0] = -1.0f * Matrix.Elements[3][0] / (Rotation.Elements[0][0] + Rotation.Elements[0][1] + Rotation.Elements[0][2]); Result.Elements[3][1] = -1.0f * Matrix.Elements[3][1] / (Rotation.Elements[1][0] + Rotation.Elements[1][1] + Rotation.Elements[1][2]); Result.Elements[3][2] = -1.0f * Matrix.Elements[3][2] / (Rotation.Elements[2][0] + Rotation.Elements[2][1] + Rotation.Elements[2][2]); Result.Elements[3][3] = 1.0f; return Result; } /* * Quaternion operations */ HMM_Vec3 HMM_QVRot(HMM_Vec3 v, HMM_Quat q) { HMM_Vec3 t = HMM_MulV3F(HMM_Cross(q.XYZ, v), 2); HMM_Vec3 r = HMM_AddV3(v, HMM_MulV3F(t, q.W)); r = HMM_AddV3(r, HMM_Cross(q.XYZ, t)); return r; } HMM_Quat HMM_Q(float X, float Y, float Z, float W) { HMM_Quat Result; #ifdef HANDMADE_MATH__USE_SSE Result.SSE = _mm_setr_ps(X, Y, Z, W); #else Result.X = X; Result.Y = Y; Result.Z = Z; Result.W = W; #endif return Result; } HMM_Quat HMM_QV4(HMM_Vec4 Vector) { HMM_Quat Result; #ifdef HANDMADE_MATH__USE_SSE Result.SSE = Vector.SSE; #else Result.X = Vector.X; Result.Y = Vector.Y; Result.Z = Vector.Z; Result.W = Vector.W; #endif return Result; } HMM_Quat HMM_AddQ(HMM_Quat Left, HMM_Quat Right) { HMM_Quat Result; #ifdef HANDMADE_MATH__USE_SSE Result.SSE = _mm_add_ps(Left.SSE, Right.SSE); #else Result.X = Left.X + Right.X; Result.Y = Left.Y + Right.Y; Result.Z = Left.Z + Right.Z; Result.W = Left.W + Right.W; #endif return Result; } HMM_Quat HMM_SubQ(HMM_Quat Left, HMM_Quat Right) { HMM_Quat Result; #ifdef HANDMADE_MATH__USE_SSE Result.SSE = _mm_sub_ps(Left.SSE, Right.SSE); #else Result.X = Left.X - Right.X; Result.Y = Left.Y - Right.Y; Result.Z = Left.Z - Right.Z; Result.W = Left.W - Right.W; #endif return Result; } HMM_Quat HMM_MulQ(HMM_Quat Left, HMM_Quat Right) { HMM_Quat Result; #ifdef HANDMADE_MATH__USE_SSE __m128 SSEResultOne = _mm_xor_ps(_mm_shuffle_ps(Left.SSE, Left.SSE, _MM_SHUFFLE(0, 0, 0, 0)), _mm_setr_ps(0.f, -0.f, 0.f, -0.f)); __m128 SSEResultTwo = _mm_shuffle_ps(Right.SSE, Right.SSE, _MM_SHUFFLE(0, 1, 2, 3)); __m128 SSEResultThree = _mm_mul_ps(SSEResultTwo, SSEResultOne); SSEResultOne = _mm_xor_ps(_mm_shuffle_ps(Left.SSE, Left.SSE, _MM_SHUFFLE(1, 1, 1, 1)), _mm_setr_ps(0.f, 0.f, -0.f, -0.f)); SSEResultTwo = _mm_shuffle_ps(Right.SSE, Right.SSE, _MM_SHUFFLE(1, 0, 3, 2)); SSEResultThree = _mm_add_ps(SSEResultThree, _mm_mul_ps(SSEResultTwo, SSEResultOne)); SSEResultOne = _mm_xor_ps(_mm_shuffle_ps(Left.SSE, Left.SSE, _MM_SHUFFLE(2, 2, 2, 2)), _mm_setr_ps(-0.f, 0.f, 0.f, -0.f)); SSEResultTwo = _mm_shuffle_ps(Right.SSE, Right.SSE, _MM_SHUFFLE(2, 3, 0, 1)); SSEResultThree = _mm_add_ps(SSEResultThree, _mm_mul_ps(SSEResultTwo, SSEResultOne)); SSEResultOne = _mm_shuffle_ps(Left.SSE, Left.SSE, _MM_SHUFFLE(3, 3, 3, 3)); SSEResultTwo = _mm_shuffle_ps(Right.SSE, Right.SSE, _MM_SHUFFLE(3, 2, 1, 0)); Result.SSE = _mm_add_ps(SSEResultThree, _mm_mul_ps(SSEResultTwo, SSEResultOne)); #else Result.X = Right.Elements[3] * +Left.Elements[0]; Result.Y = Right.Elements[2] * -Left.Elements[0]; Result.Z = Right.Elements[1] * +Left.Elements[0]; Result.W = Right.Elements[0] * -Left.Elements[0]; Result.X += Right.Elements[2] * +Left.Elements[1]; Result.Y += Right.Elements[3] * +Left.Elements[1]; Result.Z += Right.Elements[0] * -Left.Elements[1]; Result.W += Right.Elements[1] * -Left.Elements[1]; Result.X += Right.Elements[1] * -Left.Elements[2]; Result.Y += Right.Elements[0] * +Left.Elements[2]; Result.Z += Right.Elements[3] * +Left.Elements[2]; Result.W += Right.Elements[2] * -Left.Elements[2]; Result.X += Right.Elements[0] * +Left.Elements[3]; Result.Y += Right.Elements[1] * +Left.Elements[3]; Result.Z += Right.Elements[2] * +Left.Elements[3]; Result.W += Right.Elements[3] * +Left.Elements[3]; #endif return Result; } HMM_Quat HMM_MulQF(HMM_Quat Left, float Multiplicative) { HMM_Quat Result; #ifdef HANDMADE_MATH__USE_SSE __m128 Scalar = _mm_set1_ps(Multiplicative); Result.SSE = _mm_mul_ps(Left.SSE, Scalar); #else Result.X = Left.X * Multiplicative; Result.Y = Left.Y * Multiplicative; Result.Z = Left.Z * Multiplicative; Result.W = Left.W * Multiplicative; #endif return Result; } HMM_Quat HMM_DivQF(HMM_Quat Left, float Divnd) { HMM_Quat Result; #ifdef HANDMADE_MATH__USE_SSE __m128 Scalar = _mm_set1_ps(Divnd); Result.SSE = _mm_div_ps(Left.SSE, Scalar); #else Result.X = Left.X / Divnd; Result.Y = Left.Y / Divnd; Result.Z = Left.Z / Divnd; Result.W = Left.W / Divnd; #endif return Result; } float HMM_DotQ(HMM_Quat Left, HMM_Quat Right) { float Result; #ifdef HANDMADE_MATH__USE_SSE __m128 SSEResultOne = _mm_mul_ps(Left.SSE, Right.SSE); __m128 SSEResultTwo = _mm_shuffle_ps(SSEResultOne, SSEResultOne, _MM_SHUFFLE(2, 3, 0, 1)); SSEResultOne = _mm_add_ps(SSEResultOne, SSEResultTwo); SSEResultTwo = _mm_shuffle_ps(SSEResultOne, SSEResultOne, _MM_SHUFFLE(0, 1, 2, 3)); SSEResultOne = _mm_add_ps(SSEResultOne, SSEResultTwo); _mm_store_ss(&Result, SSEResultOne); #else Result = ((Left.X * Right.X) + (Left.Z * Right.Z)) + ((Left.Y * Right.Y) + (Left.W * Right.W)); #endif return Result; } HMM_Quat HMM_InvQ(HMM_Quat Left) { HMM_Quat Result; Result.X = -Left.X; Result.Y = -Left.Y; Result.Z = -Left.Z; Result.W = Left.W; return HMM_DivQF(Result, (HMM_DotQ(Left, Left))); } HMM_Quat HMM_NormQ(HMM_Quat Quat) { /* NOTE(lcf): Take advantage of SSE implementation in HMM_NormV4 */ HMM_Vec4 Vec = {Quat.X, Quat.Y, Quat.Z, Quat.W}; Vec = HMM_NormV4(Vec); HMM_Quat Result = {Vec.X, Vec.Y, Vec.Z, Vec.W}; return Result; } HMM_Quat _HMM_MixQ(HMM_Quat Left, float MixLeft, HMM_Quat Right, float MixRight) { HMM_Quat Result; #ifdef HANDMADE_MATH__USE_SSE __m128 ScalarLeft = _mm_set1_ps(MixLeft); __m128 ScalarRight = _mm_set1_ps(MixRight); __m128 SSEResultOne = _mm_mul_ps(Left.SSE, ScalarLeft); __m128 SSEResultTwo = _mm_mul_ps(Right.SSE, ScalarRight); Result.SSE = _mm_add_ps(SSEResultOne, SSEResultTwo); #else Result.X = Left.X * MixLeft + Right.X * MixRight; Result.Y = Left.Y * MixLeft + Right.Y * MixRight; Result.Z = Left.Z * MixLeft + Right.Z * MixRight; Result.W = Left.W * MixLeft + Right.W * MixRight; #endif return Result; } HMM_Quat HMM_NLerp(HMM_Quat Left, float Time, HMM_Quat Right) { HMM_Quat Result = _HMM_MixQ(Left, 1.0f - Time, Right, Time); Result = HMM_NormQ(Result); return Result; } HMM_Quat HMM_SLerp(HMM_Quat Left, float Time, HMM_Quat Right) { HMM_Quat Result; float Cos_Theta = HMM_DotQ(Left, Right); if (Cos_Theta < 0.0f) { /* NOTE(lcf): Take shortest path on Hyper-sphere */ Cos_Theta = -Cos_Theta; Right = HMM_Q(-Right.X, -Right.Y, -Right.Z, -Right.W); } /* NOTE(lcf): Use Normalized Linear interpolation when vectors are roughly not L.I. */ if (Cos_Theta > 0.9995f) { Result = HMM_NLerp(Left, Time, Right); } else { float Angle = HMM_ACosF(Cos_Theta); float MixLeft = HMM_SinF((1.0f - Time) * Angle); float MixRight = HMM_SinF(Time * Angle); Result = _HMM_MixQ(Left, MixLeft, Right, MixRight); Result = HMM_NormQ(Result); } return Result; } HMM_Mat4 HMM_QToM4(HMM_Quat Left) { HMM_Mat4 Result; HMM_Quat NormalizedQ = HMM_NormQ(Left); float XX, YY, ZZ, XY, XZ, YZ, WX, WY, WZ; XX = NormalizedQ.X * NormalizedQ.X; YY = NormalizedQ.Y * NormalizedQ.Y; ZZ = NormalizedQ.Z * NormalizedQ.Z; XY = NormalizedQ.X * NormalizedQ.Y; XZ = NormalizedQ.X * NormalizedQ.Z; YZ = NormalizedQ.Y * NormalizedQ.Z; WX = NormalizedQ.W * NormalizedQ.X; WY = NormalizedQ.W * NormalizedQ.Y; WZ = NormalizedQ.W * NormalizedQ.Z; Result.Elements[0][0] = 1.0f - 2.0f * (YY + ZZ); Result.Elements[0][1] = 2.0f * (XY + WZ); Result.Elements[0][2] = 2.0f * (XZ - WY); Result.Elements[0][3] = 0.0f; Result.Elements[1][0] = 2.0f * (XY - WZ); Result.Elements[1][1] = 1.0f - 2.0f * (XX + ZZ); Result.Elements[1][2] = 2.0f * (YZ + WX); Result.Elements[1][3] = 0.0f; Result.Elements[2][0] = 2.0f * (XZ + WY); Result.Elements[2][1] = 2.0f * (YZ - WX); Result.Elements[2][2] = 1.0f - 2.0f * (XX + YY); Result.Elements[2][3] = 0.0f; Result.Elements[3][0] = 0.0f; Result.Elements[3][1] = 0.0f; Result.Elements[3][2] = 0.0f; Result.Elements[3][3] = 1.0f; return Result; } HMM_Mat4 HMM_M4TRS(HMM_Vec3 t, HMM_Quat q, HMM_Vec3 s) { HMM_Mat4 l; float *lm = (float*)&l; lm[0] = (1 - 2 * q.y*q.y - 2 * q.z*q.z) * s.x; lm[1] = (2 * q.x*q.y + 2 * q.z*q.w) * s.x; lm[2] = (2 * q.x*q.z - 2 * q.y*q.w) * s.x; lm[3] = 0.f; lm[4] = (2 * q.x*q.y - 2 * q.z*q.w) * s.y; lm[5] = (1 - 2 * q.x*q.x - 2 * q.z*q.z) * s.y; lm[6] = (2 * q.y*q.z + 2 * q.x*q.w) * s.y; lm[7] = 0.f; lm[8] = (2 * q.x*q.z + 2 * q.y*q.w) * s.z; lm[9] = (2 * q.y*q.z - 2 * q.x*q.w) * s.z; lm[10] = (1 - 2 * q.x*q.x - 2 * q.y*q.y) * s.z; lm[11] = 0.f; lm[12] = t.x; lm[13] = t.y; lm[14] = t.z; lm[15] = 1.f; return l; } // This method taken from Mike Day at Insomniac Games. // https://d3cw3dd2w32x2b.cloudfront.net/wp-content/uploads/2015/01/matrix-to-quat.pdf // // Note that as mentioned at the top of the paper, the paper assumes the matrix // would be *post*-multiplied to a vector to rotate it, meaning the matrix is // the transpose of what we're dealing with. But, because our matrices are // stored in column-major order, the indices *appear* to match the paper. // // For example, m12 in the paper is row 1, column 2. We need to transpose it to // row 2, column 1. But, because the column comes first when referencing // elements, it looks like M.Elements[1][2]. // // Don't be confused! Or if you must be confused, at least trust this // comment. :) HMM_Quat HMM_M4ToQ_RH(HMM_Mat4 M) { float T; HMM_Quat Q; if (M.Elements[2][2] < 0.0f) { if (M.Elements[0][0] > M.Elements[1][1]) { T = 1 + M.Elements[0][0] - M.Elements[1][1] - M.Elements[2][2]; Q = HMM_Q( T, M.Elements[0][1] + M.Elements[1][0], M.Elements[2][0] + M.Elements[0][2], M.Elements[1][2] - M.Elements[2][1]); } else { T = 1 - M.Elements[0][0] + M.Elements[1][1] - M.Elements[2][2]; Q = HMM_Q( M.Elements[0][1] + M.Elements[1][0], T, M.Elements[1][2] + M.Elements[2][1], M.Elements[2][0] - M.Elements[0][2]); } } else { if (M.Elements[0][0] < -M.Elements[1][1]) { T = 1 - M.Elements[0][0] - M.Elements[1][1] + M.Elements[2][2]; Q = HMM_Q( M.Elements[2][0] + M.Elements[0][2], M.Elements[1][2] + M.Elements[2][1], T, M.Elements[0][1] - M.Elements[1][0]); } else { T = 1 + M.Elements[0][0] + M.Elements[1][1] + M.Elements[2][2]; Q = HMM_Q( M.Elements[1][2] - M.Elements[2][1], M.Elements[2][0] - M.Elements[0][2], M.Elements[0][1] - M.Elements[1][0], T); } } Q = HMM_MulQF(Q, 0.5f / HMM_SqrtF(T)); return Q; } HMM_Quat HMM_M4ToQ_LH(HMM_Mat4 M) { float T; HMM_Quat Q; if (M.Elements[2][2] < 0.0f) { if (M.Elements[0][0] > M.Elements[1][1]) { T = 1 + M.Elements[0][0] - M.Elements[1][1] - M.Elements[2][2]; Q = HMM_Q( T, M.Elements[0][1] + M.Elements[1][0], M.Elements[2][0] + M.Elements[0][2], M.Elements[2][1] - M.Elements[1][2]); } else { T = 1 - M.Elements[0][0] + M.Elements[1][1] - M.Elements[2][2]; Q = HMM_Q( M.Elements[0][1] + M.Elements[1][0], T, M.Elements[1][2] + M.Elements[2][1], M.Elements[0][2] - M.Elements[2][0]); } } else { if (M.Elements[0][0] < -M.Elements[1][1]) { T = 1 - M.Elements[0][0] - M.Elements[1][1] + M.Elements[2][2]; Q = HMM_Q( M.Elements[2][0] + M.Elements[0][2], M.Elements[1][2] + M.Elements[2][1], T, M.Elements[1][0] - M.Elements[0][1]); } else { T = 1 + M.Elements[0][0] + M.Elements[1][1] + M.Elements[2][2]; Q = HMM_Q( M.Elements[2][1] - M.Elements[1][2], M.Elements[0][2] - M.Elements[2][0], M.Elements[1][0] - M.Elements[0][2], T); } } Q = HMM_MulQF(Q, 0.5f / HMM_SqrtF(T)); return Q; } float HMM_Q_Roll(HMM_Quat q) { return atan2(2.0*(q.x*q.y + q.w*q.z), q.w*q.w + q.x*q.x - q.y*q.y - q.z*q.z); } float HMM_Q_Pitch(HMM_Quat q) { return asin(-2.0*(q.x*q.z - q.w*q.y)); } float HMM_Q_Yaw(HMM_Quat q) { return atan2(2.0*(q.y*q.z + q.w*q.x), q.w*q.w - q.x*q.x - q.y*q.y + q.z*q.z); } HMM_Quat HMM_QFromAxisAngle_RH(HMM_Vec3 Axis, float AngleOfRotation) { HMM_Quat Result; HMM_Vec3 AxisNormalized = HMM_NormV3(Axis); float SineOfRotation = HMM_SinF(AngleOfRotation / 2.0f); Result.XYZ = HMM_MulV3F(AxisNormalized, SineOfRotation); Result.W = HMM_CosF(AngleOfRotation / 2.0f); return Result; } HMM_Quat HMM_QFromAxisAngle_LH(HMM_Vec3 Axis, float AngleOfRotation) { return HMM_QFromAxisAngle_RH(Axis, -AngleOfRotation); }