/* C source for simplex noise generation, Original Java Source from: http://staffwww.itn.liu.se/~stegu/simplexnoise/simplexnoise.pdf Published originally as a Garrysmod Lua Extension under the pseudonym Levybreak */ #include #include "simplex.h" double Noise(genericNoise func, int len, double inputs[]) { switch (len){ case 2: return func.p2(inputs[0], inputs[1]); case 3: return func.p3(inputs[0], inputs[1], inputs[2]); case 4: return func.p4(inputs[0], inputs[1], inputs[2], inputs[3]); default: return func.pn(len, inputs); } } double TurbulentNoise(genericNoise func, int dir, int iter, int len, double inputs[]) { double ret = fabs(Noise(func, len, inputs)); int i = 0; for (i = 0 ; i < iter ; i++){ double num = pow(2,iter); double scaled[len]; int j = 0; for (j = 0; j < len; j++) { scaled[j] = inputs[len]*(num/i); } ret = ret + (i/num)*fabs(Noise(func, len, scaled)); } return (double)sin(inputs[dir]+ret); } double FractalSumNoise(genericNoise func, int iter, int len, double inputs[]) { double ret = Noise(func, len, inputs); int i = 0; for (i = 0 ; i < iter ; i++){ double num = pow(2,iter); double scaled[len]; int j = 0; for (j = 0; j < len; j++) { scaled[j] = inputs[len]*(num/i); } ret = ret + (i/num)*(Noise(func, len, scaled)); } return ret; } double FractalSumAbsNoise(genericNoise func, int iter, int len, double inputs[]) { double ret = fabs(Noise(func, len, inputs)); int i = 0; for (i = 0 ; i < iter ; i++){ double num = pow(2,iter); double scaled[len]; int j = 0; for (j = 0; j < len; j++) { scaled[j] = inputs[len]*(num/i); } ret = ret + (i/num)*fabs(Noise(func, len, scaled)); } return ret; } int gradients3d[12][3] = {{1,1,0},{-1,1,0},{1,-1,0},{-1,-1,0}, {1,0,1},{-1,0,1},{1,0,-1},{-1,0,-1}, {0,1,1},{0,-1,1},{0,1,-1},{0,-1,-1}}; int gradients4d[32][4] = {{0,1,1,1}, {0,1,1,-1}, {0,1,-1,1}, {0,1,-1,-1}, {0,-1,1,1}, {0,-1,1,-1}, {0,-1,-1,1}, {0,-1,-1,-1}, {1,0,1,1}, {1,0,1,-1}, {1,0,-1,1}, {1,0,-1,-1}, {-1,0,1,1}, {-1,0,1,-1}, {-1,0,-1,1}, {-1,0,-1,-1}, {1,1,0,1}, {1,1,0,-1}, {1,-1,0,1}, {1,-1,0,-1}, {-1,1,0,1}, {-1,1,0,-1}, {-1,-1,0,1}, {-1,-1,0,-1}, {1,1,1,0}, {1,1,-1,0}, {1,-1,1,0}, {1,-1,-1,0}, {-1,1,1,0}, {-1,1,-1,0}, {-1,-1,1,0}, {-1,-1,-1,0}}; int p[256] = {151,160,137,91,90,15, 131,13,201,95,96,53,194,233,7,225,140,36,103,30,69,142,8,99,37,240,21,10,23, 190, 6,148,247,120,234,75,0,26,197,62,94,252,219,203,117,35,11,32,57,177,33, 88,237,149,56,87,174,20,125,136,171,168, 68,175,74,165,71,134,139,48,27,166, 77,146,158,231,83,111,229,122,60,211,133,230,220,105,92,41,55,46,245,40,244, 102,143,54, 65,25,63,161, 1,216,80,73,209,76,132,187,208, 89,18,169,200,196, 135,130,116,188,159,86,164,100,109,198,173,186, 3,64,52,217,226,250,124,123, 5,202,38,147,118,126,255,82,85,212,207,206,59,227,47,16,58,17,182,189,28,42, 223,183,170,213,119,248,152, 2,44,154,163, 70,221,153,101,155,167, 43,172,9, 129,22,39,253, 19,98,108,110,79,113,224,232,178,185, 112,104,218,246,97,228, 251,34,242,193,238,210,144,12,191,179,162,241, 81,51,145,235,249,14,239,107, 49,192,214, 31,181,199,106,157,184, 84,204,176,115,121,50,45,127, 4,150,254, 138,236,205,93,222,114,67,29,24,72,243,141,128,195,78,66,215,61,156,180}; int perm[512]; static void con() __attribute__((constructor)); void con() { int i = 0; for (i = 0 ; i < 255 ; i++) { perm[i] = p[i]; perm[i+256] = p[i]; } } int simplex[64][4] = { {0,1,2,3},{0,1,3,2},{0,0,0,0},{0,2,3,1},{0,0,0,0},{0,0,0,0},{0,0,0,0},{1,2,3,0}, {0,2,1,3},{0,0,0,0},{0,3,1,2},{0,3,2,1},{0,0,0,0},{0,0,0,0},{0,0,0,0},{1,3,2,0}, {0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0}, {1,2,0,3},{0,0,0,0},{1,3,0,2},{0,0,0,0},{0,0,0,0},{0,0,0,0},{2,3,0,1},{2,3,1,0}, {1,0,2,3},{1,0,3,2},{0,0,0,0},{0,0,0,0},{0,0,0,0},{2,0,3,1},{0,0,0,0},{2,1,3,0}, {0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0}, {2,0,1,3},{0,0,0,0},{0,0,0,0},{0,0,0,0},{3,0,1,2},{3,0,2,1},{0,0,0,0},{3,1,2,0}, {2,1,0,3},{0,0,0,0},{0,0,0,0},{0,0,0,0},{3,1,0,2},{0,0,0,0},{3,2,0,1},{3,2,1,0}}; const double e = 2.71828182845904523536; const double PI = 3.14159265358979323846; double Dot2D(int tbl[],double x,double y) { return tbl[0]*x + tbl[1]*y; } double Dot3D(int tbl[],double x,double y,double z) { return tbl[0]*x + tbl[1]*y + tbl[2]*z; } double Dot4D(int tbl[],double x,double y,double z,double w) { return tbl[0]*x + tbl[1]*y + tbl[2]*z + tbl[3]*w; } double Noise2D(double xin, double yin) { double n0, n1, n2; // Noise contributions from the three corners // Skew the input space to determine which simplex cell we're in double F2 = 0.5*(sqrt(3.0)-1.0); double s = (xin+yin)*F2; // Hairy factor for 2D int i = floor(xin+s); int j = floor(yin+s); double G2 = (3.0-sqrt(3.0))/6.0; double t = (i+j)*G2; double X0 = i-t; // Unskew the cell origin back to (x,y) space double Y0 = j-t; double x0 = xin-X0; // The x,y distances from the cell origin double y0 = yin-Y0; // For the 2D case, the simplex shape is an equilateral triangle. // Determine which simplex we are in. int i1, j1; // Offsets for second (middle) corner of simplex in (i,j) coords if(x0>y0){ i1=1; j1=0; // lower triangle, XY order: (0,0)->(1,0)->(1,1) } else { i1=0; j1=1; // upper triangle, YX order: (0,0)->(0,1)->(1,1) } // A step of (1,0) in (i,j) means a step of (1-c,-c) in (x,y), and // a step of (0,1) in (i,j) means a step of (-c,1-c) in (x,y), where // c = (3-sqrt(3))/6 double x1 = x0 - i1 + G2; // Offsets for middle corner in (x,y) unskewed coords double y1 = y0 - j1 + G2; double x2 = x0 - 1.0 + 2.0 * G2; // Offsets for last corner in (x,y) unskewed coords double y2 = y0 - 1.0 + 2.0 * G2; // Work out the hashed gradient indices of the three simplex corners int ii = i & 255; int jj = j & 255; int gi0 = perm[ii+perm[jj]] % 12; int gi1 = perm[ii+i1+perm[jj+j1]] % 12; int gi2 = perm[ii+1+perm[jj+1]] % 12; // Calculate the contribution from the three corners double t0 = 0.5 - x0*x0-y0*y0; if (t0<0){ n0 = 0.0; } else{ t0 = t0 * t0; n0 = t0 * t0 * Dot2D(gradients3d[gi0], x0, y0); // (x,y) of Gradients3D used for 2D gradient } double t1 = 0.5 - x1*x1-y1*y1; if (t1<0){ n1 = 0.0; } else{ t1 = t1*t1; n1 = t1 * t1 * Dot2D(gradients3d[gi1], x1, y1); } double t2 = 0.5 - x2*x2-y2*y2; if (t2<0){ n2 = 0.0; } else{ t2 = t2*t2; n2 = t2 * t2 * Dot2D(gradients3d[gi2], x2, y2); } // Add contributions from each corner to get the final noise value. // The result is scaled to return values in the localerval [-1,1]. double ret = (70.0 * (n0 + n1 + n2)); return ret; } double Noise3D(double xin, double yin,double zin) { double n0, n1, n2, n3; // Noise contributions from the four corners // Skew the input space to determine which simplex cell we're in double F3 = 1.0/3.0; double s = (xin+yin+zin)*F3; // Very nice and simple skew factor for 3D int i = floor(xin+s); int j = floor(yin+s); int k = floor(zin+s); double G3 = 1.0/6.0; // Very nice and simple unskew factor, too double t = (i+j+k)*G3; double X0 = i-t; // Unskew the cell origin back to (x,y,z) space double Y0 = j-t; double Z0 = k-t; double x0 = xin-X0; // The x,y,z distances from the cell origin double y0 = yin-Y0; double z0 = zin-Z0; // For the 3D case, the simplex shape is a slightly irregular tetrahedron. // Determine which simplex we are in. int i1, j1, k1; // Offsets for second corner of simplex in (i,j,k) coords int i2, j2, k2; // Offsets for third corner of simplex in (i,j,k) coords if (x0>=y0){ if (y0>=z0){ i1=1; j1=0; k1=0; i2=1; j2=1; k2=0; // X Y Z order } else if (x0>=z0){ i1=1; j1=0; k1=0; i2=1; j2=0; k2=1; // X Z Y order } else{ i1=0; j1=0; k1=1; i2=1; j2=0; k2=1; // Z X Y order } } else{ // x0 y0) ? 32 : 1; int c2 = (x0 > z0) ? 16 : 1; int c3 = (y0 > z0) ? 8 : 1; int c4 = (x0 > w0) ? 4 : 1; int c5 = (y0 > w0) ? 2 : 1; int c6 = (z0 > w0) ? 1 : 1; int c = c1 + c2 + c3 + c4 + c5 + c6; int i1, j1, k1, l1; // The localeger offsets for the second simplex corner int i2, j2, k2, l2; // The localeger offsets for the third simplex corner int i3, j3, k3, l3; // The localeger offsets for the fourth simplex corner // simplex[c] is a 4-vector with the numbers 0, 1, 2 and 3 in some order. // Many values of c will never occur, since e.g. x>y>z>w makes x=3 ? 1 : 0; j1 = simplex[c][1]>=3 ? 1 : 0; k1 = simplex[c][2]>=3 ? 1 : 0; l1 = simplex[c][3]>=3 ? 1 : 0; // The number 2 in the "simplex" array is at the second largest co:dinate. i2 = simplex[c][0]>=2 ? 1 : 0; j2 = simplex[c][1]>=2 ? 1 : 0; k2 = simplex[c][2]>=2 ? 1 : 0; l2 = simplex[c][3]>=2 ? 1 : 0; // The number 1 in the "simplex" array is at the second smallest co:dinate. i3 = simplex[c][0]>=1 ? 1 : 0; j3 = simplex[c][1]>=1 ? 1 : 0; k3 = simplex[c][2]>=1 ? 1 : 0; l3 = simplex[c][3]>=1 ? 1 : 0; // The fifth corner has all coordinate offsets = 1, so no need to look that up. double x1 = x0 - i1 + G4; // Offsets for second corner in (x,y,z,w) coords double y1 = y0 - j1 + G4; double z1 = z0 - k1 + G4; double w1 = w0 - l1 + G4; double x2 = x0 - i2 + 2.0*G4; // Offsets for third corner in (x,y,z,w) coords double y2 = y0 - j2 + 2.0*G4; double z2 = z0 - k2 + 2.0*G4; double w2 = w0 - l2 + 2.0*G4; double x3 = x0 - i3 + 3.0*G4; // Offsets for fourth corner in (x,y,z,w) coords double y3 = y0 - j3 + 3.0*G4; double z3 = z0 - k3 + 3.0*G4; double w3 = w0 - l3 + 3.0*G4; double x4 = x0 - 1.0 + 4.0*G4; // Offsets for last corner in (x,y,z,w) coords double y4 = y0 - 1.0 + 4.0*G4; double z4 = z0 - 1.0 + 4.0*G4; double w4 = w0 - 1.0 + 4.0*G4; // Work out the hashed gradient indices of the five simplex corners int ii = i & 255; int jj = j & 255; int kk = k & 255; int ll = l & 255; int gi0 = perm[ii+perm[jj+perm[kk+perm[ll]]]] % 32; int gi1 = perm[ii+i1+perm[jj+j1+perm[kk+k1+perm[ll+l1]]]] % 32; int gi2 = perm[ii+i2+perm[jj+j2+perm[kk+k2+perm[ll+l2]]]] % 32; int gi3 = perm[ii+i3+perm[jj+j3+perm[kk+k3+perm[ll+l3]]]] % 32; int gi4 = perm[ii+1+perm[jj+1+perm[kk+1+perm[ll+1]]]] % 32; // Calculate the contribution from the five corners double t0 = 0.5 - x0*x0 - y0*y0 - z0*z0 - w0*w0; if (t0<0){ n0 = 0.0; } else{ t0 = t0*t0; n0 = t0 * t0 * Dot4D(gradients4d[gi0], x0, y0, z0, w0); } double t1 = 0.5 - x1*x1 - y1*y1 - z1*z1 - w1*w1; if (t1<0){ n1 = 0.0; } else{ t1 = t1*t1; n1 = t1 * t1 * Dot4D(gradients4d[gi1], x1, y1, z1, w1); } double t2 = 0.5 - x2*x2 - y2*y2 - z2*z2 - w2*w2; if (t2<0){ n2 = 0.0; } else{ t2 = t2*t2; n2 = t2 * t2 * Dot4D(gradients4d[gi2], x2, y2, z2, w2); } double t3 = 0.5 - x3*x3 - y3*y3 - z3*z3 - w3*w3; if (t3<0){ n3 = 0.0; } else { t3 = t3*t3; n3 = t3 * t3 * Dot4D(gradients4d[gi3], x3, y3, z3, w3); } double t4 = 0.5 - x4*x4 - y4*y4 - z4*z4 - w4*w4; if (t4<0){ n4 = 0.0; } else{ t4 = t4*t4; n4 = t4 * t4 * Dot4D(gradients4d[gi4], x4, y4, z4, w4); } // Sum up and scale the result to cover the range [-1,1] double retval = 27.0 * (n0 + n1 + n2 + n3 + n4); return retval; } double GBlur2D(double stdDev, double x, double y) { if (fabs(stdDev)<=0.0) { return 0; } double pwr = ((pow(x,2)+pow(y,2))/(2*pow(stdDev,2)))*-1; double ret = (1/(2*PI*pow(stdDev,2)))*pow(e, pwr); return ret; } double GBlur1D(double stdDev, double x) { if (fabs(stdDev)<=0.0) { return 0; } double pwr = (pow(x,2)/(2*pow(stdDev,2)))*-1; double ret = (1/(sqrt(2*PI)*stdDev))*pow(e, pwr); return ret; } double octave_3d(double x, double y, double z, int octaves, double persistence) { double total = 0; double frequency = 1; double amplitude = 1; double max = 0; for (int i = 0; i < octaves; i++) { total += Noise3D(x*frequency, y*frequency, z*frequency) * amplitude; max += amplitude; amplitude *= persistence; frequency *= 2; } return total/max; }