improved texture handling; noise functions

This commit is contained in:
John Alanbrook 2024-10-01 16:50:06 -05:00
parent cbd66e5304
commit 9e6462bff4
3 changed files with 325 additions and 196 deletions

View file

@ -46,6 +46,9 @@
#include "timer.h" #include "timer.h"
#include <sys/resource.h> #include <sys/resource.h>
#define STB_PERLIN_IMPLEMENTATION
#include "stb_perlin.h"
#if (defined(_WIN32) || defined(__WIN32__)) #if (defined(_WIN32) || defined(__WIN32__))
#include <direct.h> #include <direct.h>
#define mkdir(x,y) _mkdir(x) #define mkdir(x,y) _mkdir(x)
@ -2649,7 +2652,8 @@ JSC_SCALL(texture_save, texture_save(js2texture(self), str));
JSC_CCALL(texture_blit, JSC_CCALL(texture_blit,
texture *tex = js2texture(self); texture *tex = js2texture(self);
texture_blit(js2texture(self), js2texture(argv[0]), js2number(argv[1]), js2number(argv[2]), js2number(argv[3]), js2number(argv[4]))) texture_blit(js2texture(self), js2texture(argv[0]), js2rect(argv[1]), js2rect(argv[2]), js2boolean(argv[3]));
)
JSC_CCALL(texture_getid, JSC_CCALL(texture_getid,
texture *tex = js2texture(self); texture *tex = js2texture(self);
@ -3155,7 +3159,7 @@ JSC_SCALL(os_texture_swap,
) )
JSC_CCALL(os_make_tex_data, JSC_CCALL(os_make_tex_data,
ret = texture2js(texture_empty(js2number(argv[0]), js2number(argv[1]), js2number(argv[2]))) ret = texture2js(texture_empty(js2number(argv[0]), js2number(argv[1])))
) )
JSC_CCALL(os_make_font, JSC_CCALL(os_make_font,
@ -3395,7 +3399,32 @@ JSC_CCALL(os_rectpack,
} }
) )
JSC_CCALL(os_perlin,
HMM_Vec3 coord = js2vec3(argv[0]);
HMM_Vec3 wrap = js2vec3(argv[2]);
return number2js(stb_perlin_noise3_seed(coord.x, coord.y, coord.z, wrap.x, wrap.y, wrap.z, js2number(argv[1])));
)
JSC_CCALL(os_ridge,
HMM_Vec3 c = js2vec3(argv[0]);
return number2js(stb_perlin_ridge_noise3(c.x, c.y, c.z, js2number(argv[1]), js2number(argv[2]), js2number(argv[3]), js2number(argv[4])));
)
JSC_CCALL(os_fbm,
HMM_Vec3 c = js2vec3(argv[0]);
return number2js(stb_perlin_fbm_noise3(c.x, c.y, c.z, js2number(argv[1]), js2number(argv[2]), js2number(argv[3])));
)
JSC_CCALL(os_turbulence,
HMM_Vec3 c = js2vec3(argv[0]);
return number2js(stb_perlin_turbulence_noise3(c.x, c.y, c.z, js2number(argv[1]), js2number(argv[2]), js2number(argv[3])));
)
static const JSCFunctionListEntry js_os_funcs[] = { static const JSCFunctionListEntry js_os_funcs[] = {
MIST_FUNC_DEF(os, turbulence, 4),
MIST_FUNC_DEF(os, fbm, 4),
MIST_FUNC_DEF(os, ridge, 5),
MIST_FUNC_DEF(os, perlin, 3),
MIST_FUNC_DEF(os, rectpack, 3), MIST_FUNC_DEF(os, rectpack, 3),
MIST_FUNC_DEF(os, cwd, 0), MIST_FUNC_DEF(os, cwd, 0),
MIST_FUNC_DEF(os, rusage, 0), MIST_FUNC_DEF(os, rusage, 0),

View file

@ -21,6 +21,103 @@
struct rect ST_UNIT = {0.f, 0.f, 1.f, 1.f}; struct rect ST_UNIT = {0.f, 0.f, 1.f, 1.f};
static inline void write_pixel(unsigned char *data, int idx, rgba color)
{
data[idx] = color.r;
data[idx+1] = color.g;
data[idx+2] = color.b;
data[idx+3] = color.a;
}
static inline rgba get_pixel(unsigned char *data, int idx)
{
rgba color;
color.r = data[idx];
color.g = data[idx+1];
color.b = data[idx+2];
color.a = data[idx+3];
return color;
}
static inline unsigned char c_clamp(float value) { return (unsigned char) fmaxf(0.0f, fminf(255.0f, roundf(value))); }
static inline rgba blend_colors(rgba a, rgba b)
{
float a_a = a.a / 255.0f;
float b_a = b.a / 255.0f;
float out_a = a_a + b_a * (1.0f - a_a);
rgba result;
if (out_a == 0.0f) {
result.r = result.g = result.b = result.a = 0;
return result;
}
// Use the c_clamp function to safely clamp the values within the range [0, 255]
result.r = c_clamp(((a.r * a_a) + (b.r * b_a * (1.0f - a_a))) / out_a);
result.g = c_clamp(((a.g * a_a) + (b.g * b_a * (1.0f - a_a))) / out_a);
result.b = c_clamp(((a.b * a_a) + (b.b * b_a * (1.0f - a_a))) / out_a);
result.a = c_clamp(out_a * 255.0f);
return result;
}
static inline rgba additive_blend(rgba a, rgba b) {
rgba result;
result.r = c_clamp(a.r + b.r);
result.g = c_clamp(a.g + b.g);
result.b = c_clamp(a.b + b.b);
result.a = c_clamp((a.a + b.a) * 0.5f); // Blend alpha channels evenly
return result;
}
static inline rgba subtractive_blend(rgba a, rgba b) {
rgba result;
result.r = c_clamp(a.r - b.r);
result.g = c_clamp(a.g - b.g);
result.b = c_clamp(a.b - b.b);
result.a = c_clamp((a.a + b.a) * 0.5f); // Blend alpha channels evenly
return result;
}
static inline rgba multiplicative_blend(rgba a, rgba b) {
rgba result;
result.r = c_clamp((a.r * b.r) / 255.0f);
result.g = c_clamp((a.g * b.g) / 255.0f);
result.b = c_clamp((a.b * b.b) / 255.0f);
result.a = c_clamp((a.a + b.a) * 0.5f); // Blend alpha channels evenly
return result;
}
static inline rgba dodge_blend(rgba a, rgba b) {
rgba result;
result.r = c_clamp(a.r == 255 ? 255 : (b.r * 255) / (255 - a.r));
result.g = c_clamp(a.g == 255 ? 255 : (b.g * 255) / (255 - a.g));
result.b = c_clamp(a.b == 255 ? 255 : (b.b * 255) / (255 - a.b));
result.a = c_clamp((a.a + b.a) * 0.5f); // Blend alpha channels evenly
return result;
}
static inline rgba burn_blend(rgba a, rgba b) {
rgba result;
result.r = c_clamp(a.r == 0 ? 0 : 255 - ((255 - b.r) * 255) / a.r);
result.g = c_clamp(a.g == 0 ? 0 : 255 - ((255 - b.g) * 255) / a.g);
result.b = c_clamp(a.b == 0 ? 0 : 255 - ((255 - b.b) * 255) / a.b);
result.a = c_clamp((a.a + b.a) * 0.5f); // Blend alpha channels evenly
return result;
}
unsigned int next_pow2(unsigned int v) unsigned int next_pow2(unsigned int v)
{ {
v--; v--;
@ -60,6 +157,14 @@ int mip_wh(int w, int h, int *mw, int *mh, int lvl)
return 0; return 0;
} }
void texture_offload(texture *tex)
{
if (tex->data) {
free(tex->data);
tex->data = NULL;
}
}
/* If an empty string or null is put for path, loads default texture */ /* If an empty string or null is put for path, loads default texture */
struct texture *texture_from_file(const char *path) { struct texture *texture_from_file(const char *path) {
if (!path) return NULL; if (!path) return NULL;
@ -113,56 +218,14 @@ struct texture *texture_from_file(const char *path) {
} }
free(raw); free(raw);
if (data == NULL) if (data == NULL) {
free(tex);
return NULL; return NULL;
tex->data = data;
tex->vram = tex->width*tex->height*4;
unsigned int nw = next_pow2(tex->width);
unsigned int nh = next_pow2(tex->height);
sg_image_data sg_img_data;
sg_img_data.subimage[0][0] = (sg_range){.ptr = data, .size=tex->width*tex->height*4};
int mips = mip_levels(tex->width, tex->height)+1;
int mipw, miph;
mipw = tex->width;
miph = tex->height;
sg_img_data.subimage[0][0] = (sg_range){ .ptr = data, .size = mipw*miph*4 };
unsigned char *mipdata[mips];
mipdata[0] = data;
for (int i = 1; i < mips; i++) {
int w, h, mipw, miph;
mip_wh(tex->width, tex->height, &mipw, &miph, i-1); // mipw miph are previous iteration
mip_wh(tex->width, tex->height, &w, &h, i);
mipdata[i] = malloc(w * h * 4);
stbir_resize_uint8_linear(mipdata[i-1], mipw, miph, 0, mipdata[i], w, h, 0, 4);
sg_img_data.subimage[0][i] = (sg_range){ .ptr = mipdata[i], .size = w*h*4 };
tex->vram += w*h*4;
mipw = w;
miph = h;
} }
tex->id = sg_make_image(&(sg_image_desc){ tex->data = data;
.type = SG_IMAGETYPE_2D,
.width = tex->width,
.height = tex->height,
.usage = SG_USAGE_IMMUTABLE,
.num_mipmaps = mips,
.data = sg_img_data
});
for (int i = 1; i < mips; i++) texture_load_gpu(tex);
free(mipdata[i]);
free(tex->data);
tex->data = NULL;
return tex; return tex;
} }
@ -179,23 +242,14 @@ void texture_free(texture *tex)
free(tex); free(tex);
} }
struct texture *texture_empty(int w, int h, int n) struct texture *texture_empty(int w, int h)
{ {
int n = 4;
texture *tex = calloc(1,sizeof(*tex)); texture *tex = calloc(1,sizeof(*tex));
tex->data = calloc(w*h*n, sizeof(unsigned char)); tex->data = calloc(w*h*n, sizeof(unsigned char));
tex->width = w; tex->width = w;
tex->height = h; tex->height = h;
sg_image_data sgdata; texture_load_gpu(tex);
sgdata.subimage[0][0] = (sg_range){.ptr = tex->data, .size = w*h*4};
tex->id = sg_make_image(&(sg_image_desc){
.type = SG_IMAGETYPE_2D,
.width = tex->width,
.height = tex->height,
.usage = SG_USAGE_IMMUTABLE,
.num_mipmaps = 1,
.data = sgdata,
});
return tex; return tex;
} }
@ -206,52 +260,14 @@ struct texture *texture_fromdata(void *raw, long size)
int n; int n;
void *data = stbi_load_from_memory(raw, size, &tex->width, &tex->height, &n, 4); void *data = stbi_load_from_memory(raw, size, &tex->width, &tex->height, &n, 4);
if (data == NULL) if (data == NULL) {
NULL; free(tex);
return NULL;
unsigned int nw = next_pow2(tex->width); }
unsigned int nh = next_pow2(tex->height);
tex->data = data; tex->data = data;
sg_image_data sg_img_data; texture_load_gpu(tex);
int mips = mip_levels(tex->width, tex->height)+1;
YughInfo("Has %d mip levels, from wxh %dx%d, pow2 is %ux%u.", mips, tex->width, tex->height,nw,nh);
int mipw, miph;
mipw = tex->width;
miph = tex->height;
sg_img_data.subimage[0][0] = (sg_range){ .ptr = data, .size = mipw*miph*4 };
unsigned char *mipdata[mips];
mipdata[0] = data;
for (int i = 1; i < mips; i++) {
int w, h, mipw, miph;
mip_wh(tex->width, tex->height, &mipw, &miph, i-1); /* mipw miph are previous iteration */
mip_wh(tex->width, tex->height, &w, &h, i);
mipdata[i] = malloc(w * h * 4);
stbir_resize_uint8_linear(mipdata[i-1], mipw, miph, 0, mipdata[i], w, h, 0, 4);
sg_img_data.subimage[0][i] = (sg_range){ .ptr = mipdata[i], .size = w*h*4 };
mipw = w;
miph = h;
}
tex->id = sg_make_image(&(sg_image_desc){
.type = SG_IMAGETYPE_2D,
.width = tex->width,
.height = tex->height,
.usage = SG_USAGE_IMMUTABLE,
.num_mipmaps = mips,
.data = sg_img_data
});
for (int i = 1; i < mips; i++)
free(mipdata[i]);
return tex; return tex;
} }
@ -301,105 +317,182 @@ void texture_save(texture *tex, const char *file)
stbi_write_jpg(file, tex->width, tex->height, 4, tex->data, 5); stbi_write_jpg(file, tex->width, tex->height, 4, tex->data, 5);
} }
// all coordinates start at bottom left // copy texture src to dest
// src and dest, width, height are pixel buffers and their widths and heights // sx and sy are the destination coordinates to copy to
// sx the x coordinate of the destination to copy to
// sy the y coordinate of the destination to copy to
// sw the width of the destination to take in pixels // sw the width of the destination to take in pixels
// sh the height of the destination to take in pixels // sh the height of the destination to take in pixels
void blit_image(uint8_t* src, uint8_t* dest, int src_width, int src_height, int dest_width, int dest_height, int sx, int sy, int sw, int sh) { int texture_blit(texture *src, texture *dst, rect srcrect, rect dstrect, int tile) {
// if (sx + sw > dest_width) return; if (!src || !dst || !src->data || !dst->data) return 0;
// if (sy + sh > dest_height) return;
for (int x = 0; x < sw; x++) { float scaleX = srcrect.w / dstrect.w;
for (int y = 0; y < sh; y++) { float scaleY = srcrect.h / dstrect.h;
int src_index = ((y * src_width) + x ) * 4;
int dest_index = ((y + sy) * dest_width) + (x + sx);
dest_index *= 4;
// Calculate the alpha value for the source pixel if (srcrect.x < 0 || srcrect.y < 0 || srcrect.x + srcrect.w > src->width ||
uint8_t src_alpha = src[src_index + 3]; dstrect.x < 0 || dstrect.y < 0 || dstrect.x + dstrect.w > dst->width ||
srcrect.y + srcrect.h > src->height || dstrect.y + dstrect.h > dst->height) {
return false; // Rectangles exceed texture bounds
}
// Calculate the alpha value for the destination pixel for (int dstY = 0; dstY < dstrect.h; ++dstY) {
uint8_t dest_alpha = dest[dest_index + 3]; for (int dstX = 0; dstX < dstrect.w; ++dstX) {
int srcX;
int srcY;
// Calculate the resulting alpha value if (tile) {
uint8_t result_alpha = src_alpha + (255 - src_alpha) * dest_alpha / 255; srcX = srcrect.x + (dstX % (int)srcrect.w);
srcY = srcrect.y + (dstY % (int)srcrect.h);
} else {
srcX = srcrect.x + (int)(dstX * scaleX);
srcY = srcrect.y + (int)(dstY * scaleY);
}
// Calculate the resulting RGB values int srcIndex = (srcY * src->width + srcX) * 4;
uint8_t result_red = (src[src_index + 0] * src_alpha + dest[dest_index + 0] * (255 - src_alpha) * dest_alpha / 255) / result_alpha; int dstIndex = ((dstrect.y + dstY) * dst->width + (dstrect.x + dstX)) * 4;
uint8_t result_green = (src[src_index + 1] * src_alpha + dest[dest_index + 1] * (255 - src_alpha) * dest_alpha / 255) / result_alpha;
uint8_t result_blue = (src[src_index + 2] * src_alpha + dest[dest_index + 2] * (255 - src_alpha) * dest_alpha / 255) / result_alpha;
// Set the resulting pixel values rgba srccolor = get_pixel(src->data, srcIndex);
dest[dest_index + 0] = result_red; rgba dstcolor = get_pixel(dst->data, dstIndex);
dest[dest_index + 1] = result_green; write_pixel(dst->data, dstIndex, blend_colors(srccolor, dstcolor));
dest[dest_index + 2] = result_blue;
dest[dest_index + 3] = result_alpha;
} }
} }
return 1;
}
int texture_fill_rect(texture *tex, int x, int y, int w, int h, struct rgba color)
{
if (!tex || !tex->data) return 0;
int x_end = x+w;
int y_end = y+h;
if (x < 0 || y < 0 || x_end > tex->width || y_end > tex->height) return 0;
for (int j = y; j < y_end; ++j)
for (int i = x; i < x_end; ++i)
write_pixel(tex->data, index, color);
return 1;
}
void swap_pixels(unsigned char *p1, unsigned char *p2) {
for (int i = 0; i < 4; ++i) {
unsigned char tmp = p1[i];
p1[i] = p2[i];
p2[i] = tmp;
}
} }
// Function to draw source image pixels on top of a destination image texture *texture_scale(texture *tex, int width, int height)
// x,y are the pixel coordinates in the destination image, w,h are the amount of pixels to take from the src image.
void texture_blit(texture *dest, texture *src, int x, int y, int w, int h) {
if (!dest->data || !src->data) return;
blit_image(src->data, dest->data, src->width, src->height, dest->width, dest->height, x, y, w, h);
}
void texture_flip(texture *tex, int y)
{ {
texture *new = calloc(1, sizeof(*new));
new->width = width;
new->height = height;
new->data = malloc(4*width*height);
stbir_resize_uint8_linear(tex->data, tex->width, tex->height, 0, new->data, width, height, 0, 4);
return new;
} }
static int p[512] = {151,160,137,91,90,15, int texture_flip(texture *tex, int y)
131,13,201,95,96,53,194,233,7,225,140,36,103,30,69,142,8,99,37,240,21,10,23,
190, 6,148,247,120,234,75,0,26,197,62,94,252,219,203,117,35,11,32,57,177,33,
88,237,149,56,87,174,20,125,136,171,168, 68,175,74,165,71,134,139,48,27,166,
77,146,158,231,83,111,229,122,60,211,133,230,220,105,92,41,55,46,245,40,244,
102,143,54, 65,25,63,161, 1,216,80,73,209,76,132,187,208, 89,18,169,200,196,
135,130,116,188,159,86,164,100,109,198,173,186, 3,64,52,217,226,250,124,123,
5,202,38,147,118,126,255,82,85,212,207,206,59,227,47,16,58,17,182,189,28,42,
223,183,170,213,119,248,152, 2,44,154,163, 70,221,153,101,155,167, 43,172,9,
129,22,39,253, 19,98,108,110,79,113,224,232,178,185, 112,104,218,246,97,228,
251,34,242,193,238,210,144,12,191,179,162,241, 81,51,145,235,249,14,239,107,
49,192,214, 31,181,199,106,157,184, 84,204,176,115,121,50,45,127, 4,150,254,
138,236,205,93,222,114,67,29,24,72,243,141,128,195,78,66,215,61,156,180,
151,160,137,91,90,15,
131,13,201,95,96,53,194,233,7,225,140,36,103,30,69,142,8,99,37,240,21,10,23,
190, 6,148,247,120,234,75,0,26,197,62,94,252,219,203,117,35,11,32,57,177,33,
88,237,149,56,87,174,20,125,136,171,168, 68,175,74,165,71,134,139,48,27,166,
77,146,158,231,83,111,229,122,60,211,133,230,220,105,92,41,55,46,245,40,244,
102,143,54, 65,25,63,161, 1,216,80,73,209,76,132,187,208, 89,18,169,200,196,
135,130,116,188,159,86,164,100,109,198,173,186, 3,64,52,217,226,250,124,123,
5,202,38,147,118,126,255,82,85,212,207,206,59,227,47,16,58,17,182,189,28,42,
223,183,170,213,119,248,152, 2,44,154,163, 70,221,153,101,155,167, 43,172,9,
129,22,39,253, 19,98,108,110,79,113,224,232,178,185, 112,104,218,246,97,228,
251,34,242,193,238,210,144,12,191,179,162,241, 81,51,145,235,249,14,239,107,
49,192,214, 31,181,199,106,157,184, 84,204,176,115,121,50,45,127, 4,150,254,
138,236,205,93,222,114,67,29,24,72,243,141,128,195,78,66,215,61,156,180
};
double perlin(double x, double y, double z)
{ {
int X = (int)floor(x)&255; if (!tex || !tex->data) return -1;
int Y = (int)floor(y)&255;
int Z = (int)floor(z)&255;
x -= floor(x);
y -= floor(y);
z -= floor(z);
double u = fade(x),
v = fade(y),
w = fade(z);
int A = p[X ]+Y, AA = p[A]+Z, AB = p[A+1]+Z,
B = p[X+1]+Y, BA = p[B]+Z, BB = p[B+1]+Z;
return lerp(w, lerp(v, lerp(u, grad(p[AA ], x , y , z ), int width = tex->width;
grad(p[BA ], x-1, y , z )), int height = tex->height;
lerp(u, grad(p[AB ], x , y-1, z ),
grad(p[BB ], x-1, y-1, z ))), if (y) {
lerp(v, lerp(u, grad(p[AA+1], x , y , z-1 ), for (int row = 0; row < height / 2; ++row) {
grad(p[BA+1], x-1, y , z-1 )), for (int col = 0; col < width; ++col) {
lerp(u, grad(p[AB+1], x , y-1, z-1 ), unsigned char *top = &tex->data[(row*width+col)*4];
grad(p[BB+1], x-1, y-1, z-1 )))); unsigned char *bottom = &tex->data[((height-row-1)*width+col)*4];
swap_pixels(top,bottom);
}
}
} else {
for (int row = 0; row < height; ++row) {
for (int col = 0; col < width / 2; ++col) {
unsigned char *left = &tex->data[(row*width+col)*4];
unsigned char *right = &tex->data[(row*width+(width-col-1))*4];
swap_pixels(left,right);
}
}
}
return 0;
}
int texture_write_pixel(texture *tex, int x, int y, rgba color)
{
if (x < 0 || x >= tex->width || y < 0 || y >= tex->height) return 0;
int i = (y * tex->width + x) * 4;
write_pixel(tex->data, i, color);
return 1;
}
texture *texture_dup(texture *tex)
{
texture *new = calloc(1, sizeof(*new));
*new = *tex;
new->data = malloc(new->width*new->height*4);
memcpy(new->data, tex->data, new->width*new->height*4*sizeof(new->data));
return new;
}
sg_image_data tex_img_data(texture *tex, int mipmaps)
{
if (!mipmaps) {
sg_image_data sg_img_data = {0};
sg_img_data.subimage[0][0] = (sg_range) {.ptr = tex->data, .size = tex->width*tex->height*4};
return sg_img_data;
}
sg_image_data sg_img_data = {0};
int mips = mip_levels(tex->width, tex->height)+1;
int mipw, miph;
mipw = tex->width;
miph = tex->height;
sg_img_data.subimage[0][0] = (sg_range){ .ptr = tex->data, .size = mipw*miph*4 };
unsigned char *mipdata[mips];
mipdata[0] = tex->data;
for (int i = 1; i < mips; i++) {
int w, h, mipw, miph;
mip_wh(tex->width, tex->height, &mipw, &miph, i-1); // mipw miph are previous iteration
mip_wh(tex->width, tex->height, &w, &h, i);
mipdata[i] = malloc(w * h * 4);
stbir_resize_uint8_linear(mipdata[i-1], mipw, miph, 0, mipdata[i], w, h, 0, 4);
sg_img_data.subimage[0][i] = (sg_range){ .ptr = mipdata[i], .size = w*h*4 };
tex->vram += w*h*4;
mipw = w;
miph = h;
}
}
void texture_load_gpu(texture *tex)
{
if (!tex->data) return;
if (tex->id.id == 0) {
// Doesn't exist, so make a new one
sg_image_data img_data = tex_img_data(tex, 0);
tex->id = sg_make_image(&(sg_image_desc){
.type = SG_IMAGETYPE_2D,
.width = tex->width,
.height = tex->height,
.usage = SG_USAGE_IMMUTABLE,
.num_mipmaps = 1,
.data = img_data
});
} else {
// Simple update
sg_image_data img_data = tex_img_data(tex,0);
sg_update_image(tex->id, &img_data);
}
} }

View file

@ -43,13 +43,20 @@ typedef struct img_sampler{
} img_sampler; } img_sampler;
texture *texture_from_file(const char *path); texture *texture_from_file(const char *path);
texture *texture_fromdata(void *raw, long size);
texture *texture_empty(int width, int height); // Make an empty texture
texture *texture_dup(texture *tex); // return an identical texture
texture *texture_scale(texture *tex, int width, int height); // dup and scale the texture
void texture_free(texture *tex); void texture_free(texture *tex);
struct texture *texture_fromdata(void *raw, long size); void texture_offload(texture *tex); // Remove the data from this texture
texture *texture_empty(int width, int height, int n); void texture_load_gpu(texture *tex); // Upload this data to the GPU if it isn't already there. Replace it if it is.
void texture_blit(texture *dest, texture *src, int x, int y, int w, int h);
void texture_flip(texture *tex, int y); int texture_write_pixel(texture *tex, int x, int y, struct rgba color);
int texture_fill_rect(texture *tex, int x, int y, int w, int h, struct rgba color);
int texture_blit(texture *dst, texture *src, struct rect dstrect, struct rect srcrect, int tile); // copies src into dst, using their respective squares, scaling if necessary
int texture_flip(texture *tex, int y);
void texture_save(texture *tex, const char *file); // save the texture data to the given file void texture_save(texture *tex, const char *file); // save the texture data to the given file
double perlin(double x, double y, double z);
#endif #endif