prosperon/source/engine/thirdparty/s7/s7.html

10552 lines
383 KiB
HTML
Raw Normal View History

2022-01-19 16:43:21 -06:00
<!DOCTYPE html>
<html lang="en"><!-- documentation for s7 --><head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>s7</title>
<style type="text/css">
EM.red {color:red; font-style:normal}
EM.normal {font-style:normal}
EM.redb {color:red; font-weight: bold; font-style: normal}
EM.error {color:chocolate; font-style:normal}
EM.emdef {font-weight: bold; font-style: normal}
EM.green {color:green; font-style:normal}
EM.gray {color:#505050; font-style:normal}
EM.big {font-size: 20px; font-style: normal;}
EM.bigger {font-size: 30px; font-style: normal;}
EM.def {font-style: normal}
H1 {text-align: center}
UL {list-style-type: none}
A {text-decoration:none}
A:hover {text-decoration:underline}
A.def {font-weight: bold;
font-style: normal;
text-decoration:none;
text-color:black;
}
PRE.indented {padding-left: 1.0cm;}
DIV.indented {background-color: #F8F8F0;
padding-left: 0.5cm;
padding-right: 0.5cm;
padding-top: 0.5cm;
padding-bottom: 0.5cm;
margin-bottom: 0.5cm;
border: 1px solid gray;
border-radius: 20px;
-moz-border-radius: 20px;
-webkit-border-radius: 20px;
}
DIV.small {font-size: small;
padding-left: 0.5cm;
padding-right: 0.5cm;
padding-bottom: 0.5cm;
}
DIV.header {margin-top: 60px;
margin-bottom: 30px;
border: 4px solid #00ff00; /* green */
background-color: #eefdee; /* lightgreen */
padding-left: 30px;
}
DIV.shortheader {margin-top: 30px;
margin-bottom: 10px;
border: 4px solid #00ff00; /* green */
background-color: #f5f5dc;
padding-left: 30px;
padding-top: 5px;
padding-bottom: 5px;
width: 20%;
}
DIV.topheader {margin-top: 10px;
margin-bottom: 40px;
border: 4px solid #00ff00; /* green */
background-color: #f5f5dc; /* beige */
font-family: 'Helvetica';
font-size: 30px;
text-align: center;
padding-top: 10px;
padding-bottom: 10px;
}
DIV.separator {margin-top: 30px;
margin-bottom: 10px;
border: 2px solid #00ff00; /* green */
background-color: #f5f5dc; /* beige */
padding-top: 4px;
width: 30%;
border-radius: 4px;
-moz-border-radius: 4px;
-webkit-border-radius: 4px;
}
BODY.body {background-color: #ffffff; /* white */
margin-right: 20px;
margin-left: 20px;
}
DIV.listener {background-color: #f0f8ff;
font-family: 'Monospace';
padding-left: 6px;
padding-right: 6px;
padding-bottom: 4px;
margin-left: 1.0cm;
margin-right: 4.0cm;
border: 2px solid #a0a0a0;
}
LI.li_header {padding-top: 20px;}
</style>
</head>
<body class="body">
<!-- INDEX s7doc:s7 scheme -->
<div class="topheader" id="s7doc">s7
</div>
<p>s7 is a Scheme implementation intended as an extension language
for other applications, primarily Snd, Radium, Common Music, and Max/MSP through the Scheme For Max external.
It exists as just two files, s7.c and
s7.h, that want only to disappear into someone else's source tree. There are no libraries,
no run-time init files, and no configuration scripts.
It can be built as a stand-alone
interpreter (see <a href="#repl">below</a>). s7test.scm is a regression test for s7.
A tarball is available: <a href="https://ccrma.stanford.edu/software/s7/s7.tar.gz">s7 tarball</a>.
There is an svn repository at sourceforge (the Snd project): <a href="https://sourceforge.net/p/snd/svn1/">Snd</a>,
and a git repository (just s7): git@cm-gitlab.stanford.edu:bil/s7.git <a href="https://cm-gitlab.stanford.edu/bil/s7.git">s7.git</a>.
Please ignore all other "s7" github sites. Christos Vagias created a web-assembly site with
a repl: https://github.com/actonDev/s7-playground/.
</p>
<p>
s7 is the default extension language of Snd and sndlib (<a href="http://ccrma.stanford.edu/software/snd/index.html">snd</a>),
Rick Taube's Common Music (commonmusic at sourceforge), and Kjetil Matheussen's Radium music editor.
There are X, Motif, and openGL bindings
in libxm in the Snd tarball, or at ftp://ccrma-ftp.stanford.edu/pub/Lisp/libxm.tar.gz.
If you're running s7 in a context
that has getenv, file-exists?, and system, you can use s7-slib-init.scm
to gain easy access to slib. This init file is named "s7.init" in the slib distribution.
</p>
<p>Although it is a descendant of tinyScheme, s7 is closest as a Scheme dialect to Guile 1.8.
I believe it is compatible with <a href="#s7vsr5rs">r5rs</a> and <a href="#r7rs">r7rs</a>: you can just ignore all the additions discussed in this file.
It has continuations,
ratios, complex numbers,
macros, keywords, hash-tables,
multiprecision arithmetic,
generalized set!, unicode, and so on.
It does not have syntax-rules or any of
its friends, and it does not think there is any such thing
as an inexact integer.
</p>
<p>This file assumes you know about Scheme and all its problems,
and want a quick tour of where s7 is different. (Well, it was quick once upon a time).
The main difference: if it's in s7, it's a first-class citizen of s7, and that includes
macros, environments, and syntactic values.
</p>
<br>
<blockquote>
<div class="indented">
<p>I originally used a small font for scholia, but now I have to squint
to read that tiny text, so less-than-vital commentaries are shown in the normal font, but
indented and on a sort of brownish background.
</p>
</div>
</blockquote>
<br>
<ul>
<li><a href="#multiprecision">arbitrary precision arithmetic</a>
</li><li><a href="#math">math functions</a>
</li><li><a href="#define*">define*, named let*</a>
</li><li><a href="#macros">define-macro</a>
</li><li><a href="#pws">setter</a>
</li><li><a href="#generalizedset">generic functions, generalized set!</a>
</li><li><a href="#multidimensionalvectors">multidimensional vectors</a>
</li><li><a href="#hashtables">hash tables</a>
</li><li><a href="#environments">environments</a>
</li><li><a href="#multiplevalues">multiple-values</a>
</li><li><a href="#callwithexit1">call-with-exit</a>
</li><li><a href="#format1">format</a>
</li><li><a href="#hooks">hooks</a>
</li><li><a href="#variableinfo">variable info</a>
</li><li><a href="#evalstring">eval</a>
</li><li><a href="#IO">IO and other OS functions</a>
</li><li><a href="#errors">errors</a>
</li><li><a href="#autoload">autoload</a>
</li><li><a href="#constants">define-constant</a>
</li><li><a href="#miscellanea">marvels and curiousities:</a>
<ul>
<li><a href="#loadpath">*load-path*</a>, <a href="#featureslist">*features*</a>, <a href="#sharpreaders">*#readers*</a>,
</li><li><a href="#makelist">make-list</a>, <a href="#charposition">char-position</a>, <a href="#keywords">keywords</a>
</li><li><a href="#symboltable">symbol-table</a>, <a href="#s7help">help</a>, <a href="#s7gc">gc</a>, <a href="#equivalentp">equivalent?</a>
</li><li><a href="#expansion">define-expansion</a>, <a href="#s7env">*s7*</a>, <a href="#s7vsr5rs">r5rs</a>, <a href="#r7rs">r7rs</a>,
</li><li><a href="#profiling">profiling</a>, <a href="#legolambda">legolambda</a>, etc...
</li></ul>
</li><li class="li_header"><a href="#FFIexamples">FFI examples</a>
<ul>
<li><a href="#repl">read-eval-print loop (and emacs)</a>
</li><li><a href="#defun">define a function with arguments and a returned value, and define a variable </a>
</li><li><a href="#defvar">call a Scheme function from C, and get/set Scheme variable values in C</a>
</li><li><a href="#juce">C++ and Juce</a>
</li><li><a href="#sndlib">load sndlib using the Xen functions and macros</a>
</li><li><a href="#pwstype">add a new Scheme type and a procedure with a setter</a>
</li><li><a href="#functionportexample">redirect display output to a C procedure</a>
</li><li><a href="#extendop">extend a built-in operator ("+" in this case)</a>
</li><li><a href="#definestar1">C-side define* (s7_define_function_star)</a>
</li><li><a href="#definemacro1">C-side define-macro (s7_define_macro)</a>
</li><li><a href="#definegeneric">define a generic function in C</a>
</li><li><a href="#signal">signal handling (C-C to break out of an infinite loop)</a>
</li><li><a href="#notify">notification in C that a Scheme variable has been set!</a>
</li><li><a href="#namespace">Load C defined stuff into a separate namespace</a>
</li><li><a href="#Cerrors">Error handling in C</a>
</li><li><a href="#testhook">Hooks in C and Scheme</a>
</li><li><a href="#dload">Load a C module dynamically</a>
</li><li><a href="#gmpex">gmp and friends</a>
</li><li><a href="#gdb">gdb</a>
</li><li><a href="#ffinotes">FFI notes</a>
</li></ul>
</li><li class="li_header"><a href="#s7examples">s7 examples</a>
<ul>
<li><a href="#cload">cload.scm</a>
<ul>
<li><a href="#libc">libc</a>
</li><li><a href="#libgsl">libgsl</a>
</li><li><a href="#libgdbm">libgdbm</a>
</li></ul>
</li><li><a href="#case">case.scm</a>
</li><li><a href="#debug">debug.scm</a>
</li><li><a href="#lint">lint.scm</a>
</li><li><a href="#schemerepl">repl.scm and nrepl.scm</a>
</li></ul>
</li></ul>
<div class="header" id="multiprecision"><h4>multiprecision arithmetic</h4></div>
<p>All numeric types, integers, ratios, reals, and complex numbers are supported.
The basic integer and real
types are defined in s7.h, defaulting to int64_t and double.
A ratio consists of two integers, a complex number two reals.
pi is predefined.
s7 can be built with multiprecision support
for all types, using the gmp, mpfr, and mpc libraries (set WITH_GMP to 1 in s7.c).
If multiprecision arithmetic is
enabled, the following functions are included: bignum, and bignum?, and the variable (*s7* 'bignum-precision).
(*s7* 'bignum-precision) defaults to 128; it sets the number of bits each float takes.
pi automatically reflects the current (*s7* 'bignum-precision):
</p>
<pre class="indented">&gt; pi
<em class="gray">3.141592653589793238462643383279502884195E0</em>
&gt; (*s7* 'bignum-precision)
<em class="gray">128</em>
&gt; (set! (*s7* 'bignum-precision) 256)
<em class="gray">256</em>
&gt; pi
<em class="gray">3.141592653589793238462643383279502884197169399375105820974944592307816406286198E0</em>
</pre>
<p>
<em class="def" id="bignump">bignum?</em> returns #t if its argument is a big number of some type; I use "bignum"
for any big number, not just integers. To create a big number,
either include enough digits to overflow the default types, or use the <em class="def" id="bignum">bignum</em> function.
Its argument is either a number which it casts to a bignum, or a string representing the desired number:
</p>
<pre class="indented">&gt; (bignum "123456789123456789")
<em class="gray">123456789123456789</em>
&gt; (bignum "1.123123123123123123123123123")
<em class="gray">1.12312312312312312312312312300000000009E0</em>
</pre>
<p>For read-time bignums:
</p>
<pre class="indented">(set! *#readers*
(cons (cons #\B (lambda (str)
(bignum (string-&gt;number (substring str 1)))))
*#readers*))
</pre>
<p>and now #B123 is the reader equivalent of (bignum 123).
</p>
<blockquote>
<div class="indented">
<p>In the non-gmp case, if s7 is built using doubles (s7_double in s7.h), the float "epsilon" is
around (expt 2 -53), or about 1e-16. In the gmp case, it is around (expt 2 (- (*s7* 'bignum-precision))).
So in the default case (precision = 128), using gmp:
</p>
<pre class="indented">&gt; (= 1.0 (+ 1.0 (expt 2.0 -128)))
<em class="gray">#t</em>
&gt; (= 1.0 (+ 1.0 (expt 2.0 -127)))
<em class="gray">#f</em>
</pre>
<p>and in the non-gmp case:
</p>
<pre class="indented">&gt; (= 1.0 (+ 1.0 (expt 2 -53)))
<em class="gray">#t</em>
&gt; (= 1.0 (+ 1.0 (expt 2 -52)))
<em class="gray">#f</em>
</pre>
<p>In the gmp case, integers and ratios are limited only by the size of memory,
but reals are limited by (*s7* 'bignum-precision). This means, for example, that
</p>
<pre class="indented">&gt; (floor 1e56) ; (*s7* 'bignum-precision) is 128
<em class="gray">99999999999999999999999999999999999999927942405962072064</em>
&gt; (set! (*s7* 'bignum-precision) 256)
<em class="gray">256</em>
&gt; (floor 1e56)
<em class="gray">100000000000000000000000000000000000000000000000000000000</em>
</pre>
<p>The non-gmp case is similar, but it's easy to find the edge cases:
</p>
<pre class="indented">&gt; (floor (+ 0.9999999995 (expt 2.0 23)))
<em class="gray">8388609</em>
</pre>
</div>
</blockquote>
<div class="header" id="math"><h4>math functions</h4></div>
<p>
s7 includes:
</p>
<ul>
<li>sinh, cosh, tanh, asinh, acosh, atanh
</li><li>logior, logxor, logand, lognot, logbit?, ash, integer-decode-float
</li><li>random
</li><li>nan?, infinite?
</li></ul>
<p>
The random function can take any numeric argument, including 0.
Other math-related differences between s7 and r5rs:
</p>
<ul style="list-style-type:disc;">
<li>rational? and exact mean integer or ratio (i.e. not floating point), inexact means not exact.
</li><li>floor, ceiling, truncate, and round return (exact) integer results.
</li><li>"#" does not stand for an unknown digit.
</li><li>the "@" complex number notation is not supported ("@" is an exponent marker in s7).
</li><li>"+i" is not considered a number; include the real part.
</li><li>modulo, remainder, and quotient take integer, ratio, or real arguments.
</li><li>lcm and gcd can take integer or ratio arguments.
</li><li>log takes an optional second argument, the base.
</li><li>'.' and an exponent can occur in a number in any base.
</li><li>rationalize returns a ratio!
</li><li>case is significant in numbers, as elsewhere: #b0 is 0, but #B0 is an error.
</li></ul>
<pre class="indented">&gt; (exact? 1.0)
<em class="gray">#f</em>
&gt; (rational? 1.5)
<em class="gray">#f</em>
&gt; (floor 1.4)
<em class="gray">1</em>
&gt; (remainder 2.4 1)
<em class="gray">0.4</em>
&gt; (modulo 1.4 1.0)
<em class="gray">0.4</em>
&gt; (lcm 3/4 1/6)
<em class="gray">3/2</em>
&gt; (log 8 2)
<em class="gray">3</em>
&gt; (number-&gt;string 0.5 2)
<em class="gray">"0.1"</em>
&gt; (string-&gt;number "0.1" 2)
<em class="gray">0.5</em>
&gt; (rationalize 1.5)
<em class="gray">3/2</em>
&gt; (complex 1/2 0)
<em class="gray">1/2</em>
&gt; (logbit? 6 1) ; argument order, (logbit? int index), follows gmp, not CL
<em class="gray">#t</em>
</pre>
<p>See <a href="#libgsl">cload and libgsl.scm</a> for easy access to GSL,
and similarly libm.scm for the C math library.
</p>
<blockquote>
<div class="indented">
<p>The exponent itself is always in base 10; this follows gmp usage.
Scheme normally uses "@" for its useless polar notation, but that
means <code>(string-&gt;number "1e1" 16)</code> is ambiguous — is the "e" a digit or an exponent marker?
In s7, "@" is an exponent marker.
</p>
<pre class="indented">&gt; (string-&gt;number "1e9" 2) ; (expt 2 9)
<em class="gray">512.0</em>
&gt; (string-&gt;number "1e1" 12) ; "e" is not a digit in base 12
<em class="gray">#f</em>
&gt; (string-&gt;number "1e1" 16) ; (+ (* 1 16 16) (* 14 16) 1)
<em class="gray">481</em>
&gt; (string-&gt;number "1.2e1" 3); (* 3 (+ 1 2/3))
<em class="gray">5.0</em>
</pre>
</div>
<div class="indented">
<p>
What is <code>(/ 1.0 0.0)</code>? s7 gives a "division by zero" error here, and also in <code>(/ 1 0)</code>.
Guile returns +inf.0 in the first case, which seems reasonable, but a "numerical overflow" error in the second.
Slightly weirder is <code>(expt 0.0 0+i)</code>. Currently s7 returns 0.0, Guile returns +nan.0+nan.0i,
Clisp and sbcl throw an error. Everybody agrees that <code>(expt 0 0)</code> is 1, and Guile thinks
that <code>(expt 0.0 0.0)</code> is 1.0. But <code>(expt 0 0.0)</code> and <code>(expt 0.0 0)</code> return different
results in Guile (1 and 1.0), both are 0.0 in s7, the first is an error in Clisp, but the second returns 1,
and so on — what a mess! This mess was made a lot worse than it needs to be when the IEEE decreed that
0.0 equals -0.0, so we can't tell them apart, but that they produce different results in nearly every use!
</p>
<pre class="indented">scheme@(guile-user)&gt; (= -0.0 0.0)
<em class="gray">#t</em>
scheme@(guile-user)&gt; (negative? -0.0)
<em class="gray">#f</em>
scheme@(guile-user)&gt; (= (/ 1.0 0.0) (/ 1.0 -0.0))
<em class="gray">#f</em>
scheme@(guile-user)&gt; (&lt; (/ 1.0 -0.0) -1e100 1e100 (/ 1.0 0.0))
<em class="gray">#t</em>
</pre>
<p>
How can they be equal? In s7, the sign
of -0.0 is ignored, and they really are equal.
One other oddity: two floats can satisfy eq? and yet not be eqv?:
<code>(eq? +nan.0 +nan.0)</code> might be #t (it is unspecified), but <code>(eqv? +nan.0 +nan.0)</code> is #f.
The same problem afflicts memq and assq.
</p>
</div>
<div class="indented">
<p>The <em class="def" id="random">random</em> function takes a range and an optional state, and returns a number
between zero and the range, of the same type as the range. It is perfectly reasonable
to use a range of 0, in which case random returns 0.
<em class="def" id="randomstate">random-state</em> creates a new random state from a seed. If no state is passed,
random uses some default state initialized from the current time. <em class="def" id="randomstatep">random-state?</em> returns #t if passed a random state object.
</p>
<pre class="indented">&gt; (random 0)
<em class="gray">0</em>
&gt; (random 1.0)
<em class="gray">0.86331198514245</em>
&gt; (random 3/4)
<em class="gray">654/1129</em>
&gt; (random 1+i)
<em class="gray">0.86300308872748+0.83601002730848i</em>
&gt; (random -1.0)
<em class="gray">-0.037691127513267</em>
&gt; (define r0 (random-state 1234))
<em class="gray">r0</em>
&gt; (random 100 r0)
<em class="gray">94</em>
&gt; (random 100 r0)
<em class="gray">19</em>
&gt; (define r1 (random-state 1234))
<em class="gray">r1</em>
&gt; (random 100 r1)
<em class="gray">94</em>
&gt; (random 100 r1)
<em class="gray">19</em>
</pre>
<p>copy the random-state to save a spot in a random number sequence, or save the random-state as a list via
random-state-&gt;list, then to restart from that point, apply random-state to that list.
</p>
</div>
<div class="indented">
<p>I can't find the right tone for this section; this is the 400-th revision; I wish I were a better writer!
</p>
<p>In some Schemes,
"rational" means "could possibly be
expressed equally well as a ratio: floats are approximations". In s7
it's: "is actually expressed (at the scheme level) as a ratio (or an
integer of course)";
otherwise "rational?" is the same as "real?":
</p>
<pre class="indented">(not-s7)&gt; (rational? (sqrt 2))
<em class="gray">#t</em>
</pre>
<p>That 1.0 is represented at the IEEE-float level as a sort of
ratio does not mean it has to be a scheme ratio; the two notions are independent.
</p>
<p>But that confusion is trivial compared to the completely nutty "inexact integer".
As I understand it, "inexact" originally meant "floating point", and "exact" meant integer or ratio of integers.
But words have a life of their own.
0.0 somehow became an "inexact" integer (although it can be represented exactly in floating
point).
+inf.0 must be an integer —
its fractional part is explicitly zero! But +nan.0...
And then there's:
</p>
<pre class="indented">(not-s7)&gt; (integer? 9007199254740993.1)
<em class="gray">#t</em>
</pre>
<p>
When does this matter? I often need to index into a vector, but the index is a float (a "real" in Scheme-speak: its
fractional part can be non-zero).
In one Scheme:
</p>
<pre class="indented">(not-s7)&gt; (vector-ref #(0) (floor 0.1))
<em class="gray">ERROR: Wrong type (expecting exact integer): 0.0 </em>; [why? "it's probably a programmer mistake"!]
</pre>
<p>Not to worry, I'll use inexact-&gt;exact:
</p>
<pre class="indented">(not-s7)&gt; (inexact-&gt;exact 0.1)
<em class="gray">3602879701896397/36028797018963968 </em>; [why? "floats are ratios"!]
</pre>
<p>So I end up using the verbose <code>(floor (inexact-&gt;exact ...))</code> everywhere, and even
then I have no guarantee that I'll get a legal vector index.
I have never seen any use made of the exact/inexact distinction — just
wild flailing to try get around it.
I think the whole idea is confused and useless, and leads
to verbose and buggy code.
If we discard it,
we can maintain backwards compatibility via:
</p>
<pre class="indented">(define exact? rational?)
(define (inexact? x) (not (rational? x)))
(define inexact-&gt;exact rationalize) ; or floor
(define (exact-&gt;inexact x) (* x 1.0))
</pre>
<p>Standard Scheme's #i and #e are also useless because you can
have any number after, for example, #b:
</p>
<pre class="indented">&gt; #b1.1
<em class="gray">1.5</em>
&gt; #b1e2
<em class="gray">4.0</em>
&gt; #o17.5+i
<em class="gray">15.625+1i</em>
</pre>
<p>(But s7 uses #i for int-vector and does not implement #e).
Speaking of #b and friends, what should <code>(string-&gt;number "#xffff" 2)</code> return?
</p>
</div>
</blockquote>
<div class="header" id="define*"><h4>define*, lambda*</h4></div>
<p><em class="def" id="definestar">define*</em> and
<em class="def" id="lambdastar">lambda*</em>
are extensions of define and lambda that make it easier
to deal with optional, keyword, and rest arguments.
The syntax is very simple: every argument to define* has a default value
and is automatically available as a keyword argument. The default value
is either #f if unspecified, or given in a list whose first member is
the argument name.
The last argument
can be preceded by :rest or a dot to indicate that all other trailing arguments
should be packaged as a list under that argument's name. A trailing or rest
argument's default value is () and can't be specified in the declaration.
The rest argument is not available as a keyword argument.
</p>
<pre class="indented">(<em class="red">define*</em> (hi a (b 32) (c "hi")) (list a b c))
</pre>
<p>Here the argument "a" defaults to #f, "b" to 32, etc.
When the function is called,
the argument names are set from the values passed the function,
then any unset arguments are bound to their default values, evaluated in left-to-right order.
As the current argument list is scanned, any name that occurs as a keyword, :arg for example where the parameter name is arg,
sets that argument's new value. Otherwise, as values occur, they
are plugged into the actual argument list based on their position, counting a keyword/value pair as one argument.
This is called an optional-key list in CLM. So, taking the function
above as an example:
</p>
<pre class="indented">&gt; (hi 1)
<em class="gray">(1 32 "hi")</em>
&gt; (hi :b 2 :a 3)
<em class="gray">(3 2 "hi")</em>
&gt; (hi 3 2 1)
<em class="gray">(3 2 1)</em>
</pre>
<p>See s7test.scm for many examples. (s7's define* is very close to srfi-89's define*).
To mark an argument as required, set its default value to a call on the error function:
</p>
<pre class="indented">&gt; (define* (f a (b (error 'unset-arg "f's b parameter not set"))) (list a b))
<em class="gray">f</em>
&gt; (f 1 2)
(1 2)
&gt; (f 1)
<em class="red">error</em><em class="gray">: f's b parameter not set</em>
</pre>
<blockquote>
<div class="indented">
<p>The combination of optional and keyword arguments is viewed with
disfavor in the Lisp
community, but the problem is in CL's implementation of the idea, not
the idea itself.
I've used the s7 style since around 1976, and have never found it
confusing. The mistake
in CL is to require the optional arguments if a keyword argument occurs,
and to consider them as distinct from the
keyword arguments. So everyone forgets and puts a keyword where CL
expects a required-optional
argument. CL then does something ridiculous, and the programmer stomps
around shouting about keywords, but the fault lies with CL.
If s7's way is considered too loose, one way to tighten it might be to
insist that once a keyword
is used, only keyword argument pairs can follow.
</p>
</div>
<div class="indented">
<p>A natural companion of lambda* is named let*. In named let, the implicit function's
arguments have initial values, but thereafter, each call requires the full set of arguments.
Why not treat the initial values as default values?
</p>
<pre class="indented">&gt; (let* func ((i 1) (j 2))
(+ i j (if (&gt; i 0) (func (- i 1)) 0)))
<em class="gray">5</em>
&gt; (letrec ((func (lambda* ((i 1) (j 2))
(+ i j (if (&gt; i 0) (func (- i 1)) 0)))))
(func))
<em class="gray">5</em>
</pre>
<p>This is consistent with the lambda* arguments because their defaults are
already set in left-to-right order, and as each parameter is set to its default value,
the binding is added to the default value expression environment (just as if it were a let*).
The let* name itself (the implicit function) is not defined until after the bindings
have been evaluated (as in named let).
</p>
<p>In CL, keyword default values are handled in the same way:
</p>
<pre class="indented">&gt; (defun foo (&amp;key (a 0) (b (+ a 4)) (c (+ a 7))) (list a b c))
<em class="gray">FOO </em>
&gt; (foo :b 2 :a 60)
<em class="gray">(60 2 67) </em>
</pre>
<p>In s7, we'd use:
</p>
<pre class="indented">(define* (foo (a 0) (b (+ a 4)) (c (+ a 7))) (list a b c))
</pre>
<p>Also CL and s7 handle keywords as values in the same way:
</p>
<pre class="indented">&gt; (defun foo (&amp;key a) a)
<em class="gray">FOO</em>
&gt; (defvar x :a)
<em class="gray">X</em>
&gt; (foo x 1)
<em class="gray">1</em>
</pre>
<pre class="indented">&gt; (define* (foo a) a)
<em class="gray">foo</em>
&gt; (define x :a)
<em class="gray">:a</em>
&gt; (foo x 1)
<em class="gray">1</em>
</pre>
</div>
<div class="indented">
<p>To try to catch what I believe are usually mistakes, I added two
error checks. One is triggered if you set the same parameter twice
in the same call, and the other if an unknown keyword is encountered
in the key position. To turn off these errors, add :allow-other-keys
at the end of the parameter list.
These problems arise in a case such as
</p>
<pre class="indented">(define* (f (a 1) (b 2)) (list a b))
</pre>
<p>You could do any of the following by accident:
</p>
<pre class="indented">(f 1 :a 2) ; what is a?
(f :b 1 2) ; what is b?
(f :c 3) ; did you really want a to be :c and b to be 3?
</pre>
<p>In the last case, to pass a keyword deliberately, either include the
argument keyword: <code>(f :a :c)</code>, or make the default value a keyword:
<code>(define* (f (a :c) ...))</code>, or set <code>(*s7* 'accept-all-keyword-arguments)</code>
to some true value.
See s7test.scm for many examples.
</p>
<p>What if two functions share a keyword argument,
and one wants to call the other, passing both arguments to the wrapper?
</p>
<pre class="indented">(define* (f1 a) a) ; the wrappee
(define* (f2 a :rest b <em class="red">:allow-other-keys</em>) ; the wrapper
(+ a (apply f1 b)))
(f2 :a 3 :a 4) ; 7, b='(:a 4)
(let ((c :a))
(f2 c 3 c 4)) ; also 7
</pre>
<p>Since named let* is a form of lambda*, the prohibition of repeated variable names makes it different
from let*: <code>(let* ((a 1) (a 2)) a)</code> is 2, but <code>(let* loop ((a 1) (a 2)) a)</code> is an error.
If let* and named let* agreed in this, we'd have an inconsistency with lambda*. If all three allowed repeated
variables, the decision as to which parameter is intended becomes messy: <code>((lambda* (a a) a) 2 :a 3)</code>,
or <code>(let* loop ((a 1) (a 2)) (loop 2 :a 3))</code>.
CL and standard scheme accept repeated variables in let*, so I think the current
choice is the least surprising.
</p>
</div>
<div class="indented">
<p>s7's lambda* arglist handling is not the same as CL's lambda-list. First,
you can have more than one :rest parameter:
</p>
<pre class="indented">&gt; ((lambda* (:rest a :rest b) (map + a b)) 1 2 3 4 5)
<em class="gray">'(3 5 7 9)</em>
</pre>
<p>and second, the rest parameter, if any, takes up an argument slot just like any other
argument:
</p>
<pre class="indented">&gt; ((lambda* ((b 3) :rest x (c 1)) (list b c x)) 32)
<em class="gray">(32 1 ())</em>
&gt; ((lambda* ((b 3) :rest x (c 1)) (list b c x)) 1 2 3 4 5)
<em class="gray">(1 3 (2 3 4 5))</em>
</pre>
<p>CL would agree with the first case if we used &amp;key for 'c', but would give an error in the second.
Of course, the major difference is that s7 keyword arguments don't insist that the key be present.
The :rest argument is needed in cases like these because we can't use an expression
such as:
</p>
<pre class="indented">&gt; ((lambda* ((a 3) . b c) (list a b c)) 1 2 3 4 5)
<em class="red">error</em><em class="gray">: stray dot?</em>
&gt; ((lambda* (a . (b 1)) b) 1 2) ; the reader turns the arglist into (a b 1)
<em class="red">error</em><em class="gray">: lambda* parameter '1 is a constant</em>
</pre>
<p>Yet another nit: the :rest argument is not considered a keyword argument, so
</p>
<pre class="indented">&gt; (define* (f :rest a) a)
<em class="gray">f</em>
&gt; (f :a 1)
<em class="gray">(:a 1)</em>
</pre>
</div>
<!--
unknown key handling is not good, :allow-key-values?
(define* (f1 a) (list a))
(f1 :hi) -> (:hi)
(f1 ':hi) -> (:hi)
(f1 :a :hi) -> (:hi)
(define* (f2 a :allow-other-keys) (list a))
(f2 :hi) -> (:hi)
(define* (f3 a b :allow-other-keys) (list a b))
(f3 :hi 0) -> (#f #f)
(f3 :hi) => (:hi #f)
(define* (f4 a) (list (symbol->keyword a))) ; or string->keyword
(f4 'hi) -> (:hi)
(define* (f5 a)
((lambda* (hi) (list hi)) (symbol->keyword a) 32))
(f5 'hi) -> (32)
(define* (f6 a b)
((lambda* (hi) (list hi)) a b))
(f6 :hi 1) -> unknown key :hi
(define* (f7 a b) (list a b))
(f7 :hi) -> (:hi #f)
(f7 0 :hi) -> (0 :hi)
(f7 :hi 0) -> unknown key
(f7 :a :hi) -> (:hi #f)
(f7 :a :hi 32) -> (:hi 32)
(define* (f8 a b)
((lambda* (hi ho) (list hi ho)) (symbol->keyword a) b))
(f8 'hi 32) -> (32 #f)
(f8 'ho 32) -> (#f 32)
another amusing lambda* case:
(call/cc
(lambda* (a (b (call/cc (lambda (c) c)))) ; even with-baffle still a loop (legit)
(b (call/cc (lambda (d) d)))))
;; equivalent to:
(let ((c (call/cc (lambda (c) c))))
(call/cc (lambda (a)
(c (call/cc (lambda (d) d))))))
-->
</blockquote>
<div class="header" id="macros"><h4>macros</h4></div>
<p>
<em class="def" id="definemacro">define-macro</em>,
<em class="def" id="definemacrostar">define-macro*</em>,
<em class="def" id="definebacro">define-bacro</em>,
<em class="def" id="definebacrostar">define-nacro*</em>,
<em class="def" id="macroexpand">macroexpand</em>,
<em class="def" id="gensym">gensym</em>,
<em class="def" id="gensym?">gensym?</em>, and
<em class="def" id="macrop">macro?</em>
implement the standard old-time macros.
The anonymous versions (analogous to lambda and lambda*) are
macro, macro*, bacro, and bacro*.
See s7test.scm for many examples of macros including such perennial favorites as
loop, dotimes, do*, enum, pushnew, and defstruct.
</p>
<pre class="indented">&gt; (define-macro (and-let* vars . body)
`(let ()
(and ,@(map (lambda (v)
`(define ,@v))
vars)
(begin ,@body))))
</pre>
<p>macroexpand can help debug a macro. I always forget that it
wants an expression:
</p>
<pre class="indented">&gt; (define-macro (add-1 arg) `(+ 1 ,arg))
<em class="gray">add-1</em>
&gt; (macroexpand (add-1 32))
<em class="gray">(+ 1 32)</em>
</pre>
<p>gensym returns a symbol that is guaranteed to be unused. It takes an optional string argument
giving the new symbol name's prefix. gensym? returns #t if its argument is a symbol created by gensym.
</p>
<pre class="indented">(define-macro (pop! sym)
(let ((v (<em class="red">gensym</em>)))
`(let ((,v (car ,sym)))
(set! ,sym (cdr ,sym))
,v)))
</pre>
<p>As in define*, the starred forms give optional and keyword arguments:
</p>
<pre class="indented">&gt; (define-macro* (add-2 a (b 2)) `(+ ,a ,b))
<em class="gray">add-2</em>
&gt; (add-2 1 3)
<em class="gray">4</em>
&gt; (add-2 1)
<em class="gray">3</em>
&gt; (add-2 :b 3 :a 1)
<em class="gray">4</em>
</pre>
<blockquote>
<div class="indented">
<p>A macro is a first-class citizen of s7. You can
pass it as a function argument, apply it to a list, return it from a function,
call it recursively,
and assign it to a variable. You can even set its setter!
</p>
<pre class="indented">&gt; (define-macro (hi a) `(+ ,a 1))
<em class="gray">hi</em>
&gt; (apply hi '(4))
<em class="gray">5</em>
&gt; (define (fmac mac) (apply mac '(4)))
<em class="gray">fmac</em>
&gt; (fmac hi)
<em class="gray">5</em>
&gt; (define (fmac mac) (mac 4))
<em class="gray">fmac</em>
&gt; (fmac hi)
<em class="gray">5</em>
&gt; (define (make-mac)
(define-macro (hi a) `(+ ,a 1)))
<em class="gray">make-mac</em>
&gt; (let ((x (make-mac)))
(x 2))
<em class="gray">3</em>
&gt; (define-macro (ref v i) `(vector-ref ,v ,i))
<em class="gray">ref</em>
&gt; (define-macro (set v i x) `(vector-set! ,v ,i ,x))
<em class="gray">set</em>
&gt; (set! (setter ref) set)
<em class="gray">set</em>
&gt; (let ((v (vector 1 2 3))) (set! (ref v 0) 32) v)
<em class="gray">#(32 2 3)</em>
</pre>
<p>To expand all the macros in a piece of code:
</p>
<pre class="indented">(define-macro (fully-macroexpand form)
(list 'quote
(let expand ((form form))
(cond ((not (pair? form)) form)
((and (symbol? (car form))
(macro? (symbol-&gt;value (car form))))
(expand (apply macroexpand (list form))))
((and (eq? (car form) 'set!) ; look for (set! (mac ...) ...) and use mac's setter
(pair? (cdr form))
(pair? (cadr form))
(macro? (symbol-&gt;value (caadr form))))
(expand (apply macroexpand (list (cons (setter (symbol-&gt;value (caadr form)))
(append (cdadr form) (copy (cddr form))))))))
(else (cons (expand (car form)) (expand (cdr form))))))))
</pre>
<p>This does not always handle bacros correctly because their expansion can depend on the run-time
state.
</p>
</div>
<div class="indented">
<p>A bacro is a macro that expands its body and evaluates
the result in the calling environment.
</p>
<pre class="indented">(define setf
(let ((args (gensym))
(name (gensym)))
(apply <em class="red">define-bacro</em> `((,name . ,args)
(unless (null? ,args)
(apply set! (car ,args) (cadr ,args) ())
(apply setf (cddr ,args)))))))
</pre>
<p>
The setf argument is a gensym (created when setf is defined) so that its name does not shadow any existing
variable. Bacros expand in the calling environment, and a normal argument name
might shadow something in that environment while the bacro is being expanded.
Similarly, if you introduce bindings in the bacro expansion code, you need to
keep track of which environment you want things to happen in. Use with-let
and gensym liberally.
stuff.scm has bacro-shaker which can find inadvertent name collisions,
but it is flighty and easily confused.
The calling environment itself is (outlet (curlet)) from within a bacro, so
</p>
<pre class="indented">(define-bacro (holler)
`(format *stderr* "(~S~{ ~S ~S~^~})~%"
(let ((f (*function*)))
(if (pair? f) (car f) f))
(map (lambda (slot)
(values (symbol-&gt;keyword (car slot)) (cdr slot)))
(reverse (map values ,(outlet (curlet)))))))
(define (f1 a b)
(holler)
(+ a b))
(f1 2 3) ; prints out "(f1 :a 2 :b 3)" and returns 5
</pre>
<p>
Since a bacro (normally) sheds its define-time environment:
</p>
<pre class="indented">(define call-bac
(let ((<em class="red">x</em> 2))
(define-bacro (m a) `(+ ,a ,<em class="red">x</em>))))
&gt; (call-bac 1)
<em class="red">error</em><em class="gray">: x: unbound variable</em>
</pre>
<p>
A macro here returns 3. But don't be hasty! The bacro can get its define-time environment (its closure)
via funclet, so in fact, define-macro is a special case of define-bacro! We can define
macros that work in all four ways: the expansion can happen in either the definition or calling environment,
as can the evaluation of that expansion. In a bacro, both happen in the calling environment
if we take no other action, and in a normal macro (define-macro), the expansion happens in the definition
environment, and the evaluation in the calling environment.
Here's a brief example of all four:
</p>
<pre class="indented">(let ((x 1) (y 2))
(define-bacro (bac1 a)
`(+ ,x y ,a)) ; expand and eval in calling env
(let ((x 32) (y 64))
(bac1 3))) ; (with-let (inlet 'x 32 'y 64) (+ 32 y 3))
-&gt; 99 ; with-let and inlet refer to <a href="#environments">environments</a>
(let ((x 1) (y 2)) ; this is like define-macro
(define-bacro (bac2 a)
(with-let (sublet (funclet bac2) :a a)
`(+ ,x y ,a))) ; expand in definition env, eval in calling env
(let ((x 32) (y 64))
(bac2 3))) ; (with-let (inlet 'x 32 'y 64) (+ 1 y 3))
-&gt; 68
(let ((x 1) (y 2))
(define-bacro (bac3 a)
(let ((e (with-let (sublet (funclet bac3) :a a)
`(+ ,x y ,a))))
`(with-let ,(sublet (funclet bac3) :a a)
,e))) ; expand and eval in definition env
(let ((x 32) (y 64))
(bac3 3))) ; (with-let (inlet 'x 1 'y 2) (+ 1 y 3))
-&gt; 6
(let ((x 1) (y 2))
(define-bacro (bac4 a)
(let ((e `(+ ,x y ,a)))
`(with-let ,(sublet (funclet bac4) :a a)
,e))) ; expand in calling env, eval in definition env
(let ((x 32) (y 64))
(bac4 3))) ; (with-let (inlet 'x 1 'y 2) (+ 32 y 3))
-&gt; 37
</pre>
</div>
<div class="indented">
<p>Backquote (quasiquote) in s7 is almost trivial. Constants are unchanged, symbols are quoted,
",arg" becomes "arg", and ",@arg" becomes "(apply values arg)" — hooray for real multiple values!
It's almost as easy to write the actual macro body as the backquoted version of it.
</p>
<pre class="indented">&gt; (define-macro (hi a) `(+ 1 ,a))
<em class="gray">hi</em>
&gt; (procedure-source hi)
<em class="gray">(lambda (a) (list-values '+ 1 a))</em>
&gt; (define-macro (hi a) `(+ 1 ,@a))
<em class="gray">hi</em>
&gt; (procedure-source hi)
<em class="gray">(lambda (a) (list-values '+ 1 (apply-values a)))</em>
</pre>
<p>list-values and apply-values are quasiquote helper functions described <a href="#listvalues">below</a>.
There is no unquote-splicing
macro in s7; ",@(...)" becomes "(unquote (apply-values ...))" at read-time. There shouldn't be any unquote
either. In Scheme the reader turns ,x into (unquote x), so:
</p>
<pre>&gt; (let (,'a) unquote)
<em class="gray">a</em>
&gt; (let (, (lambda (x) (+ x 1))) ,,,,'3)
<em class="gray">7</em>
</pre>
<p>comma becomes a sort of symbol macro! I think I'll remove unquote; ,x
and ,@x will still work
as expected, but there will not be any "unquote" or "unquote-splicing"
in the resultant source code. Just to make life difficult:
</p>
<pre>&gt; (let (' 1) quote)
<em class="gray">1</em>
</pre>
<p>but that translation is so ingrained in lisp
that I'm reluctant to change it. The two unquote names, on the
other hand, seem unnecessary.
</p>
</div>
</blockquote>
<p>s7 macros are not hygienic. For example,
</p>
<pre class="indented">&gt; (define-macro (mac b)
`(let ((a 12))
(+ a ,b)))
<em class="gray">mac</em>
&gt; (let ((a 1) (+ *)) (mac a))
<em class="gray">144</em>
</pre>
<p>This returns 144 because '+' has turned into '*', and 'a' is the internal 'a',
not the argument 'a'. We get <code>(* 12 12)</code> where we might have expected
<code>(+ 12 1)</code>.
Starting with the '+' problem,
as long as the redefinition of '+' is local (that is, it happens after the macro definition), we can unquote the +:
</p>
<pre class="indented">&gt; (define-macro (mac b)
`(let ((a 12))
(,+ a ,b))) ; ,+ picks up the definition-time +
<em class="gray">mac</em>
&gt; (let ((a 1) (+ *)) (mac a))
<em class="gray">24 ; (+ a a) where a is 12</em>
</pre>
<p>But the unquote trick won't work if we have previously loaded some file that redefined '+'
at the top-level (so at macro definition time, + is *, but we want the built-in +).
Although this example is silly, the problem is real in Scheme
because Scheme has no reserved words and only one name space.
</p>
<pre class="indented">&gt; (define + *)
<em class="gray">+</em>
&gt; (define (add a b) (+ a b))
<em class="gray">add</em>
&gt; (add 2 3)
<em class="gray">6</em>
&gt; (define (divide a b) (/ a b))
<em class="gray">divide</em>
&gt; (divide 2 3)
<em class="gray">2/3</em>
&gt; (set! / -) ; a bad idea — this turns off s7's optimizer
<em class="gray">-</em>
&gt; (divide 2 3)
<em class="gray">-1</em>
</pre>
<p>Obviously macros are not the problem here. Since
we might be loading
code written by others, it's sometimes hard to tell what names
that code depends on or redefines.
We need a way to get the pristine (start-up, built-in) value of '+'.
One long-winded way in s7 uses <a href="#unlet">unlet</a>:
</p>
<pre class="indented">&gt; (define + *)
<em class="gray">+</em>
&gt; (define (add a b) (with-let (unlet) (+ a b)))
<em class="gray">add</em>
&gt; (add 2 3)
<em class="gray">5</em>
</pre>
<p>But this is hard to read, and we might want all three
values of a symbol, the start-up value, the definition-time value, and the
current value. The latter can be accessed with the bare symbol, the definition-time
value with unquote (','), and the start-up value with either unlet
or #_&lt;name&gt;. That is, #_+ is a reader macro for <code>(with-let (unlet) +)</code>.
</p>
<pre class="indented">&gt; (define-macro (mac b)
`(<em class="red">#_let</em> ((a 12))
(<em class="red">#_+</em> a ,b))) ; #_+ and #_let are start-up values
<em class="gray">mac</em>
&gt; (let ((a 1) (+ *)) (mac a))
<em class="gray">24 ; (+ a a) where a is 12 and + is the start-up +</em>
;;; make + generic (there's a similar C-based example below)
&gt; (define (+ . args)
(if (null? args) 0
(apply (if (number? (car args)) <em class="red">#_+ #_string-append</em>) args)))
<em class="gray">+</em>
&gt; (+ 1 2)
<em class="gray">3</em>
&gt; (+ "hi" "ho")
<em class="gray">"hiho"</em>
</pre>
<blockquote>
<div class="indented">
<p>Conceptually, #_&lt;name&gt; could be implemented via *#readers*:
</p>
<pre class="indented">(set! *#readers*
(cons (cons #\_ (lambda (str)
(with-let (unlet)
(string-&gt;symbol (substring str 1)))))
*#readers*))
</pre>
<p>but s7 doesn't let you change the meaning of #\_; otherwise:
</p>
<pre class="indented">(set! *#readers* (list (cons #\_ (lambda (str) (string-&gt;symbol (substring str 1))))))
</pre>
<p>and now #_ provides no protection:
</p>
<pre>&gt; (let ((+ -)) (#_+ 1 2))
<em class="gray">-1</em>
</pre>
<p>#t and #f (along with their stupid r7rs cousins #true and #false) are also not settable.
</p>
</div>
</blockquote>
<p>
So, now we have only the variable capture problem ('a' has been captured in the preceding examples).
This is the only thing that the gigantic "hygienic macro" systems actually deal with:
a microscopic problem that you'd think, from the hype, was up there with malaria and the
national debt. gensym is the standard approach:
</p>
<pre class="indented">&gt; (define-macro (mac b)
(let ((var (<em class="red">gensym</em>)))
`(#_let ((,var 12))
(#_+ ,var ,b))))
<em class="gray">mac</em>
&gt; (let ((a 1) (+ *)) (mac a))
<em class="gray">13</em>
;; or use lambda:
&gt; (define-macro (mac b)
`((lambda (b) (let ((a 12)) (#_+ a b))) ,b))
<em class="gray">mac</em>
&gt; (let ((a 1) (+ *)) (mac a))
<em class="gray">13</em>
</pre>
<p>I think syntax-rules and its friends try to conjure up gensyms automatically, but
the real problem is not name collisions, but unspecified environments.
In s7 we have first-class environments, so you have complete
control over the environment at any point:
</p>
<pre>(define-macro (mac b)
`(with-let (inlet 'b ,b)
(let ((a 12))
(+ a b))))
&gt; (let ((a 1) (+ *)) (mac a))
<em class="gray">13</em>
(define-macro (mac1 . b) ; originally `(let ((a 12)) (+ a ,@b ,@b))
`(with-let (inlet 'e (curlet)) ; this 'e will not collide with the calling env
(let ((a 12)) ; nor will 'a (so no gensyms are needed etc)
(+ a (with-let e ,@b) (with-let e ,@b)))))
&gt; (let ((a 1) (e 2)) (mac1 (display a) (+ a e)))
<em class="gray">18</em> ; (and it displays "11")
(define-macro (mac2 x) ; this will use mac2's definition environment for its body
`(with-let (sublet (funclet mac2) :x ,x)
(let ((a 12))
(+ a b x)))) ; a is always 12, b is whatever b happens to be in mac2's env
&gt; (define b 10) ; this is mac2's b
<em class="gray">10</em>
&gt; (let ((+ *) (a 1) (b 15)) (mac2 (+ a b)))
<em class="gray">37</em> ; mac2 uses its own a (12), b (10), and + (+)
; but (+ a b) is 15 because at that point + is *: (* 1 15)
</pre>
<p>Hygienic macros are trivial! Who needs syntax-rules?
To avoid the variable capture, avoid local variables in the generated code, or
protect them via with-let; to avoid shadowing of functions and syntax, make the
environment explicit (via #_ for example).
s7's lint.scm will warn you about a problematic macro expansion, so I'd
say just write macros as simply as possible, then let lint tell you
that it's time to do the with-let shuffle. When that happens, wrap the macro body in
a with-let that captures the current environment, and at each use of a macro argument
wrap it in a with-let that re-establishes that environment.
</p>
<blockquote>
<div class="indented">
<pre>(define-macro (swap a b) ; assume a and b are symbols
`(with-let (inlet 'e (curlet) 'tmp ,a)
(set! (e ',a) (e ',b))
(set! (e ',b) tmp)))
&gt; (let ((b 1) (tmp 2)) (swap b tmp) (list b tmp))
<em class="gray">(2 1)</em>
(define-macro (swap a b) ; here a and b can be any settable expressions
`(set! ,b (with-let (inlet 'e (curlet) 'tmp ,a)
(with-let e (set! ,a ,b))
tmp)))
&gt; (let ((v (vector 1 2))) (swap (v 0) (v 1)) v)
<em class="gray">#(2 1)</em>
&gt; (let ((tmp (cons 1 2))) (swap (car tmp) (cdr tmp)) tmp)
<em class="gray">(2 . 1)</em>
(set! (setter swap) (define-macro (set-swap a b c) `(set! ,b ,c)))
&gt; (let ((a 1) (b 2) (c 3) (d 4)) (swap a (swap b (swap c d))) (list a b c d))
<em class="gray">(2 3 4 1)</em>
;;; but this is simpler:
(define-macro (rotate! . args)
`(set! ,(args (- (length args) 1))
(with-let (inlet 'e (curlet) 'tmp ,(car args))
(with-let e
,@(map (lambda (a b) `(set! ,a ,b)) args (cdr args)))
tmp)))
&gt; (let ((a 1) (b 2) (c 3)) (rotate! a b c) (list a b c))
<em class="gray">(2 3 1)</em>
</pre>
</div>
</blockquote>
<p>
If you want the macro's expanded result
to be evaluated in its definition environment:
</p>
<pre>(let ((a 3))
(define-macro (mac b)
`(with-let (inlet 'b ,b (funclet mac))
(+ a b))) ; definition-time "a", call-time "b"
(define-macro (mac-1 b)
`(+ a ,b)) ; call-time "a" and "b"
(let ((a 32))
(list (mac 1)
(mac-1 1))))
</pre>
<blockquote>
<div class="indented">
<p>Here are some variations on "unless", inspired by the wikipedia hygienic macro page:
</p>
<pre>(define-macro (my-unless condition . body)
`(with-let (inlet (unlet) :condition ,condition) ; here unlet protects body (format below)
(if (not condition) (begin ,@body))))
(let ((not (lambda (x) x))
(begin 32)
(if +)
(format abs))
(my-unless #t (format #t "This should not be printed!\n"))
(my-unless #f (format #t "This should be printed!\n")))
(set! format abs)
(let ((not (lambda (x) x)))
(my-unless #t (format #t "This should not be printed!\n"))
(my-unless #f (format #t "This should be printed!\n")))
(define (user-defined-operator x) (not x))
(define-macro (my-unless-1 condition . body)
`(with-let (inlet (unlet) :condition ,condition)
(if (user-defined-operator condition) (begin ,@body))))
(let ((user-defined-operator (lambda (x) x)))
(my-unless-1 #t (format #t "This should not be printed!\n"))
(my-unless-1 #f (format #t "This should be printed!\n")))
(define my-unless-2
(let ((op1 (lambda (x) (not x))))
(define-macro (_ condition . body)
`(with-let (inlet (unlet) (funclet my-unless-2) :condition ,condition)
;; funclet above to get my-unless-2's version of op1
(if (op1 condition) (begin ,@body))))))
(let ((op1 (lambda (x) x)))
(my-unless-2 #t (format #t "This should not be printed!\n"))
(my-unless-2 #f (format #t "This should be printed!\n")))
(define my-unless-3
(let ((op1 (lambda (x) x)))
(define-macro (_ condition . body)
`(with-let (inlet (unlet) :condition ,condition :local-env (curlet))
;; curlet to get run-time local version of op1
(if ((with-let local-env op1) condition) (begin ,@body))))))
(let ((op1 (lambda (x) (not x))))
(my-unless-3 #t (format #t "This should not be printed!\n"))
(my-unless-3 #f (format #t "This should be printed!\n")))
</pre>
</div>
</blockquote>
<!--
(define (tree-quote tree args)
(if (pair? tree)
(if (eq? (car tree) 'quote)
tree
(cons (tree-quote (car tree) args)
(tree-quote (cdr tree) args)))
(if (memq tree args)
(list 'quote tree)
tree)))
(define-macro (define-hacro name-and-args . body)
(let ((name (car name-and-args))
(args (cdr name-and-args)))
`(define-macro ,name-and-args
(list 'with-let
(list 'inlet ,@(map (lambda (arg)
(values (symbol-&gt;keyword arg) arg))
args))
,@(tree-quote body args)))))
; (define-hacro (mac a b) `(+ ,a ,b))
; (macroexpand (mac 2 3))
; (with-let (inlet :a 2 :b 3) (+ a b))
; (procedure-source mac)
; (lambda (a b) (list 'with-let (list 'inlet :a a :b b) (list-values '+ 'a 'b)))
-->
<blockquote>
<div class="indented">
<p>On the subject of *#readers*, say we have:
</p>
<pre>(set! *#readers* (list (cons #\o (lambda (str) 42)) ; #o... -&gt; 42
(cons #\x (lambda (str) 3)))) ; #x... -&gt; 3
</pre>
<p>Now we load a file with:
</p>
<pre>(define (oct) #o123)
(let-temporarily ((*#readers* ()))
(eval (with-input-from-string "(define (hex) #x123)" read)))
(define-constant old-readers *#readers*)
(set! *#readers* ())
(define (oct1) #o123)
(define (hex1) #x123)
(set! *#readers* old-readers)
(define (oct2) #o123)
(define (hex2) #x123)
</pre>
<p>Now we evaluate these functions, and get:
</p>
<pre>(oct): 42 ; oct is not read-time hygienic so #o123 -&gt; 42
(oct1): 83 ; oct1 is protected by the top-level set, #o123 -&gt; 83
(oct2): 42 ; same as oct
(hex): 291 ; hex is protected by let-temporarily + read
(hex1): 291 ; hex1 is like oct1
(hex2): 3 ; hex2 is like oct
</pre>
</div>
</blockquote>
<blockquote>
<div class="indented">
<p>Here is Peter Seibel's wonderful once-only macro:
</p>
<pre class="indented">(define-macro (once-only names . body)
(let ((gensyms (map (lambda (n) (gensym)) names)))
`(let (,@(map (lambda (g) (list g '(gensym))) gensyms))
`(let (,,@(map (lambda (g n) (list list g n)) gensyms names))
,(let (,@(map list names gensyms))
,@body)))))
</pre>
<!-- this was:
(define-macro (once-only names . body)
(let ((gensyms (map (lambda (n) (gensym)) names)))
`(let (,@(map (lambda (g) `(,g (gensym))) gensyms))
`(let (,,@(map (lambda (g n) ``(,,g ,,n)) gensyms names))
,(let (,@(map (lambda (n g) `(,n ,g)) names gensyms))
,@body)))))
-->
<p>From the land of sparkling bacros:
</p>
<pre class="indented">(define once-only
(let ((names (gensym))
(body (gensym)))
(apply define-bacro `((,(gensym) ,names . ,body)
`(let (,@(map (lambda (name) `(,name ,(eval name))) ,names))
,@,body)))))
</pre>
<p>Sadly, with-let is simpler.
</p>
</div>
</blockquote>
<!--
when is (define-macro (f a) `(+ ,a 1)) not the same as (define (f a) (+ a 1))?
(f (values 2 3))
(f most-positive-fixnum) but only because the optimizer messes this up
-->
<div class="header" id="pws"><h4>setter</h4></div>
<pre class="indented">(<em class="def">setter</em> proc)
(<em class="def" id="dilambda">dilambda</em> proc setter)
</pre>
<p>There are several kinds of setters, reflecting the many ways that set! can be called.
First are the symbol setters:
</p>
<pre class="indented">&gt; (let ((x 1))
(set! (setter 'x) (lambda (name new-value) (* new-value 2)))
(set! x 2)
x)
<em class="gray">4</em>
</pre>
<p>Here the setter is a function that is called before the variable is set.
It can take two or three arguments. In the two argument case shown above,
the first is the variable name (a symbol), and the second is the new-value.
The variable is set to the value returned by the setter function.
When s7 sees <code>(set! x 2)</code> above, it calls the setter which returns 4.
So x is set to 4.
</p>
<p>In some cases you need the environment that the variable lives in (to get its
current value for example), so you can include that in the setter function parameter list:
</p>
<pre class="indented">&gt; (let ((x 1))
(set! (setter 'x) (lambda (name new-value enviroment) (* new-value 2)))
(set! x 2)
x)
<em class="gray">4</em>
(define-macro (watch var) ; notification if 'var is set!
`(set! (setter ',var)
(lambda (s v e)
(format *stderr* "~S set! to ~S~A~%" s v
(let ((func (with-let e (*function*))))
(if (eq? func #&lt;undefined&gt;) "" (format #f ", ~S" func))))
v)))
</pre>
<p>Since symbol setters are often implementing type restrictions, you can use
the built-in type checking functions such as integer? as a short-hand
for a setter that insists the new value be an integer:
</p>
<pre class="indented">&gt; (let ((x 1))
(set! (setter 'x) integer?)
(set! x 3.14))
<em class="red">error</em><em class="gray">: set! x: 3.14, is a real but should be an integer</em>
;;; use typed-let from stuff.scm to do the same thing:
&gt; (typed-let ((x 3 integer?))
(set! x 3.14))
<em class="red">error</em><em class="gray">: set! x: 3.14, is a real but should be an integer</em>
</pre>
<p>C-side symbol setters go through s7_set_setter. There is an example <a href="#notify">below</a>.
</p>
<p>The second case is a function setter. Almost any function or macro can
have an associated setter that is invoked when the function is the target of set!.
In this case, the setter function does the set! itself (unlike a symbol setter):
</p>
<pre class="indented">&gt; (setter cadr)
<em class="gray">#f</em> ; by default cadr has no setter so (set! (cadr p) x) is an error
&gt; (set! (setter cadr) ; add a setter to cadr
(lambda (lst val)
(set! (car (cdr lst)) val)))
<em class="gray">#&lt;lambda (lst val)&gt;</em>
&gt; (procedure-source (setter cadr))
<em class="gray">(lambda (lst val) (set! (car (cdr lst)) val))</em>
&gt; (let ((lst (list 1 2 3)))
(set! (cadr lst) 4)
lst)
<em class="gray">(1 4 3)</em>
</pre>
<p>In some cases, the setter needs to be a macro:
</p>
<pre class="indented">&gt; (set! (setter logbit?)
(define-macro (m var index on) ; here we want to set "var", so we need a macro
`(if ,on
(set! ,var (logior ,var (ash 1 ,index)))
(set! ,var (logand ,var (lognot (ash 1 ,index)))))))
<em class="gray">m</em>
&gt; (define (mingle a b)
(let ((r 0))
(do ((i 0 (+ i 1)))
((= i 31) r)
(set! (logbit? r (* 2 i)) (logbit? a i))
(set! (logbit? r (+ (* 2 i) 1)) (logbit? b i)))))
<em class="gray">mingle</em>
&gt; (mingle 6 3) ; the INTERCAL mingle operator?
<em class="gray">30</em>
</pre>
<p>dilambda defines a function (or macro) and its setter without having to set! the setter by hand:
</p>
<pre class="indented">&gt; (define f (let ((x 123))
(dilambda (lambda ()
x)
(lambda (new-value)
(set! x new-value)))))
<em class="gray">f</em>
&gt; (f)
<em class="gray">123</em> ; x = 123
&gt; (set! (f) 32)
<em class="gray">32</em> ; now x = 32
&gt; (f)
<em class="gray">32</em>
</pre>
<div class="indented">
<p>Here is a pretty example of dilambda:
</p>
<pre class="indented">(define-macro (c?r path)
;; "path" is a list and "X" marks the spot in it that we are trying to access
;; (a (b ((c X)))) — anything after the X is ignored, other symbols are just placeholders
;; c?r returns a dilambda that gets/sets X
(define (X-marks-the-spot accessor tree)
(if (eq? tree 'X)
accessor
(and (pair? tree)
(or (X-marks-the-spot (cons 'car accessor) (car tree))
(X-marks-the-spot (cons 'cdr accessor) (cdr tree))))))
(let ((body 'lst))
(for-each
(lambda (f)
(set! body (list f body)))
(reverse (X-marks-the-spot () path)))
`(<em class="red">dilambda</em>
(lambda (lst)
,body)
(lambda (lst val)
(set! ,body val)))))
&gt; ((c?r (a b (X))) '(1 2 (3 4) 5))
<em class="gray">3</em>
&gt; (let ((lst (list 1 2 (list 3 4) 5)))
(set! ((c?r (a b (X))) lst) 32)
lst)
<em class="gray">(1 2 (32 4) 5)</em>
&gt; (procedure-source (c?r (a b (X))))
<em class="gray">(lambda (lst) (car (car (cdr (cdr lst)))))</em>
&gt; ((c?r (a b . X)) '(1 2 (3 4) 5))
<em class="gray">((3 4) 5)</em>
&gt; (let ((lst (list 1 2 (list 3 4) 5)))
(set! ((c?r (a b . X)) lst) '(32))
lst)
<em class="gray">(1 2 32)</em>
&gt; (procedure-source (c?r (a b . X)))
<em class="gray">(lambda (lst) (cdr (cdr lst)))</em>
&gt; ((c?r (((((a (b (c (d (e X)))))))))) '(((((1 (2 (3 (4 (5 6))))))))))
<em class="gray">6</em>
&gt; (let ((lst '(((((1 (2 (3 (4 (5 6)))))))))))
(set! ((c?r (((((a (b (c (d (e X)))))))))) lst) 32)
lst)
<em class="gray">(((((1 (2 (3 (4 (5 32)))))))))</em>
&gt; (procedure-source (c?r (((((a (b (c (d (e X)))))))))))
<em class="gray">(lambda (lst) (car (cdr (car (cdr (car (cdr (car (cdr (car (cdr (car (car (car (car lst)))))))))))))))</em>
</pre>
</div>
<p>I may remove dilambda and dilambda? someday; they are trivial:
</p>
<pre class="indented">(define (dilambda get set) (set! (setter get) set) get)
(define dilambda? setter)
</pre>
<p>When a function setter is called, <code>(set! (func ...) val)</code> is
evaluated by s7 as <code>((setter func) ... val)</code>, so the setter function
needs to handle both the inner arguments to the function and the new value.
</p>
<pre class="indented">(let ((x 123))
(define (f a b) (+ x a b))
(set! (setter f) (lambda (a b val) (set! x val)))
(display (f 1 2)) (newline) ; "126"
(set! (f 1 2) 32)
(display (f 1 2)) (newline)) ; "35"
</pre>
<p>A third type of setter handles vector element type and hash-table key and value types.
These are described under <a href="#typedvectors">typed vectors</a> and
<a href="#typedhash">typed hash-tables</a>.
</p>
<br>
<blockquote>
<div class="indented">
<p>Speaking of INTERCAL, COME-FROM:
</p>
<pre class="indented">(define-macro (define-with-goto-and-come-from name-and-args . body)
(let ((labels ())
(gotos ())
(come-froms ()))
(let collect-jumps ((tree body))
(when (pair? tree)
(when (pair? (car tree))
(case (caar tree)
((label) (set! labels (cons tree labels)))
((goto) (set! gotos (cons tree gotos)))
((come-from) (set! come-froms (cons tree come-froms)))
(else (collect-jumps (car tree)))))
(collect-jumps (cdr tree))))
(for-each
(lambda (goto)
(let* ((name (cadr (cadar goto)))
(label (member name labels (lambda (a b) (eq? a (cadr (cadar b)))))))
(if label
(set-cdr! goto (car label))
(error 'bad-goto "can't find label: ~S" name))))
gotos)
(for-each
(lambda (from)
(let* ((name (cadr (cadar from)))
(label (member name labels (lambda (a b) (eq? a (cadr (cadar b)))))))
(if label
(set-cdr! (car label) from)
(error 'bad-come-from "can't find label: ~S" name))))
come-froms)
`(define ,name-and-args
(let ((label (lambda (name) #f))
(goto (lambda (name) #f))
(come-from (lambda (name) #f)))
,@body))))
</pre>
</div>
</blockquote>
<!-- (define-macro (please . args) args) -->
<div class="header" id="generalizedset"><h4>applicable objects, generalized set!, generic functions</h4></div>
<p>A procedure with a setter can be viewed as one generalization of set!. Another
treats objects as having predefined get and set functions. In s7
lists, strings, vectors, hash-tables, environments, and any cooperating C or Scheme-defined objects
are both applicable and settable. newLisp calls this implicit indexing, Kawa has it, Gauche implements it
via object-apply, Guile via procedure-with-setter; CL's funcallable instance might be the same idea.
</p>
<p>
In <code>(vector-ref #(1 2) 0)</code>, for example, vector-ref is just a type
declaration. But in Scheme, type declarations are unnecessary, so we get exactly
the same result from <code>(#(1 2) 0)</code>. Similarly, <code>(lst 1)</code> is the
same as <code>(list-ref lst 1)</code>, and <code>(set! (lst 1) 2)</code> is the same
as <code>(list-set! lst 1 2)</code>.
I like this syntax: the less noise, the better!
</p>
<blockquote>
<div class="indented">
<p>Well, maybe applicable strings look weird: <code>("hi" 1)</code> is #\i, but worse,
so is <code>(cond (1 =&gt; "hi"))</code>! Even though a string, list, or vector is "applicable", it is
not currently considered to be a procedure, so <code>(procedure? "hi")</code> is #f. map and for-each, however,
accept anything that apply can handle, so
<code>(map #(0 1) '(1 0))</code> is '(1 0). (On the first call to map in this case, you get the result of
<code>(#(0 1) 1)</code> and so on).
string-&gt;list, vector-&gt;list, and let-&gt;list are <code>(map values object)</code>.
Their inverses are (and always have been) equally trivial.
</p>
<p>The applicable object syntax makes it easy to write generic functions.
For example, s7test.scm has implementations of Common Lisp's sequence functions.
length, copy, reverse, fill!, iterate, map and for-each are generic in this sense (map always returns a list).
</p>
<pre class="indented">&gt; (map (lambda (a b) (- a b)) (list 1 2) (vector 3 4))
<em class="gray">(5 -3 9)</em>
&gt; (length "hi")
<em class="gray">2</em>
</pre>
<p>
Here's a generic FFT:
</p>
<pre class="indented">(define* (cfft data n (dir 1)) ; complex data
(unless n (set! n (length data)))
(do ((i 0 (+ i 1))
(j 0))
((= i n))
(if (&gt; j i)
(let ((temp (data j)))
(set! (data j) (data i))
(set! (data i) temp)))
(do ((m (/ n 2) (/ m 2)))
((not (&lt;= 2 m j))
(set! j (+ j m)))
(set! j (- j m))))
(do ((ipow (floor (log n 2)))
(prev 1)
(lg 0 (+ lg 1))
(mmax 2 (* mmax 2))
(pow (/ n 2) (/ pow 2))
(theta (complex 0.0 (* pi dir)) (* theta 0.5)))
((= lg ipow))
(do ((wpc (exp theta))
(wc 1.0)
(ii 0 (+ ii 1)))
((= ii prev)
(set! prev mmax))
(do ((jj 0 (+ jj 1))
(i ii (+ i mmax))
(j (+ ii prev) (+ j mmax)))
((&gt;= jj pow)
(set! wc (* wc wpc)))
(let ((tc (* wc (data j))))
(set! (data j) (- (data i) tc))
(set! (data i) (+ (data i) tc))))))
data)
&gt; (cfft (list 0.0 1+i 0.0 0.0))
<em class="gray">(1+1i -1+1i -1-1i 1-1i)</em>
&gt; (cfft (vector 0.0 1+i 0.0 0.0))
<em class="gray">#(1+1i -1+1i -1-1i 1-1i)</em>
</pre>
<p>And a generic function that copies one sequence's elements into another sequence:
</p>
<pre class="indented">(define (copy-into source dest) ; this is equivalent to (copy source dest)
(do ((i 0 (+ i 1)))
((= i (min (length source) (length dest)))
dest)
(set! (dest i) (source i))))
</pre>
<p>but that is already built-in as the two-argument version of the copy function.
</p>
</div>
<div class="indented">
<p>There is one place where list-set! and friends are not the same as set!: the former
evaluate their first argument, but set! does not (with a quibble; see below):
</p>
<pre class="indented">&gt; (let ((str "hi")) (string-set! (let () str) 1 #\a) str)
<em class="gray">"ha"</em>
&gt; (let ((str "hi")) (set! (let () str) 1 #\a) str)
<em class="gray">;((let () str) 1 #\a): too many arguments to set!</em>
&gt; (let ((str "hi")) (set! ((let () str) 1) #\a) str)
<em class="gray">"ha"</em>
&gt; (let ((str "hi")) (set! (str 1) #\a) str)
<em class="gray">"ha"</em>
</pre>
<p>set! looks at its first argument to decide what to set.
If it's a symbol, no problem. If it's a pair, set! looks at its car to see if it is
some object that has a setter. If the car is itself a list, set! evaluates the internal
expression, and tries again. So the second case above is the only one that won't work.
And of course:
</p>
<pre class="indented">&gt; (let ((x (list 1 2)))
(set! ((((lambda () (list x))) 0) 0) 3)
x)
<em class="gray">(3 2)</em>
</pre>
</div>
<div class="indented">
<p>By my count, around 20 of the Scheme built-in functions are already
generic in the sense
that they accept arguments of many types (leaving aside the numeric and
type checking functions, take for example equal?, display,
member, assoc, apply, eval, quasiquote, and values). s7 extends that
list with map, for-each, reverse,
and length, and adds a few others such as copy, fill!, sort!,
object-&gt;string, object-&gt;let, and append.
newLisp takes a more radical approach than s7: it extends operators such
as '&gt;'
to compare strings and lists, as well as numbers. In map and for-each,
however, you can mix the argument
types, so I'm not as attracted to making '&gt;' generic; you can't, for
example, <code>(&gt; "hi" 32.1)</code>,
or even <code>(&gt; 1 0+i)</code>.
</p>
</div>
</blockquote>
<div class="separator"></div>
<p>The somewhat non-standard generic sequence functions in s7 are:
</p>
<pre class="indented">(<em class="def" id="sortb">sort!</em> sequence less?)
(<em class="def" id="reverseb">reverse!</em> sequence) and (reverse sequence)
(<em class="def" id="fillb">fill!</em> sequence value (start 0) end)
(<em class="def" id="s7copy">copy</em> obj) and (copy source destination (start 0) end)
(<em class="def" id="objecttostring">object-&gt;string</em> obj)
(object-&gt;let obj)
(length obj)
(append . sequences)
(map func . sequences) and (for-each func . sequences)
(<a href="#equivalentp">equivalent?</a> obj1 obj2)
</pre>
<p><b>copy</b> returns a (shallow) copy of its argument. If a destination is provided,
it need not match the source in size or type. The start and end indices refer to the source.
</p>
<pre class="indented">&gt; (copy '(1 2 3 4) (make-list 2))
<em class="gray">(1 2)</em>
&gt; (copy #(1 2 3 4) (make-list 5) 1) ; start at 1 in the source
<em class="gray">(2 3 4 #f #f)</em>
&gt; (copy "1234" (make-vector 2))
<em class="gray">#(#\1 #\2)</em>
&gt; (define lst (list 1 2 3 4 5))
<em class="gray">(1 2 3 4 5)</em>
&gt; (copy #(8 9) (cddr lst))
<em class="gray">(8 9 5)</em>
&gt; lst
<em class="gray">(1 2 8 9 5)</em>
</pre>
<p><b>reverse!</b> is an in-place version of reverse. That is,
it modifies the sequence passed to it in the process of reversing its contents.
If the sequence is a list, remember to use set!:
<code>(set! p (reverse! p))</code>. This is somewhat inconsistent with other cases,
but historically, lisp programmers have treated the in-place reverse as the fast
version, so s7 follows suit.
</p>
<pre class="indented">&gt; (define lst (list 1 2 3))
<em class="gray">(1 2 3)</em>
&gt; (reverse! lst)
<em class="gray">(3 2 1)</em>
&gt; lst
<em class="gray">(1)</em>
</pre>
<p>Leaving aside the weird list case,
<b>append</b> returns a sequence of the same type as its first argument.
</p>
<pre class="indented">&gt; (append #(1 2) '(3 4))
<em class="gray">#(1 2 3 4)</em>
&gt; (append (float-vector) '(1 2) (byte-vector 3 4))
<em class="gray">(float-vector 1.0 2.0 3.0 4.0)</em>
</pre>
<p>
<b>sort!</b> sorts a sequence using the
function passed as its second argument:
</p>
<pre class="indented">&gt; (sort! (list 3 4 8 2 0 1 5 9 7 6) &lt;)
<em class="gray">(0 1 2 3 4 5 6 7 8 9)</em>
</pre>
<p>Underlying some of these functions are generic iterators, also built-into s7:
</p>
<pre class="indented">(<em class="def" id="makeiterator">make-iterator</em> sequence)
(<em class="def" id="iteratorp">iterator?</em> obj)
(<em class="def" id="iterate">iterate</em> iterator)
(<em class="def" id="iteratorsequence">iterator-sequence</em> iterator)
(<em class="def" id="iteratoratend">iterator-at-end?</em> iterator)
</pre>
<p><b>make-iterator</b> takes a sequence argument and returns an iterator object that traverses
that sequence as it is called. The iterator itself can be treated as a function of no arguments,
or (for code clarity) it can be the argument to <b>iterate</b>, which does the same thing.
That is <code>(iter)</code> is the same as <code>(iterate iter)</code>. The sequence that an iterator is traversing
is <b>iterator-sequence</b>.
</p>
<p>
If the sequence is a hash-table or let, the iterator normally returns a cons of the key and value.
There are many cases where this overhead is objectionable, so make-iterator takes a third optional
argument, the cons to use (changing its car and cdr directly on each call).
</p>
<p>When an iterator reaches the end of its sequence, it returns #&lt;eof&gt;. It used to
return nil; I can't decide whether this change is an improvement. If an iterator over a
list notices that its list is circular, it returns #&lt;eof&gt;. map and for-each use
iterators, so if you pass a circular list to either, it will stop eventually. (An
arcane consequence for method writers: specialize make-iterator, not map or for-each).
</p>
<pre class="indented">(define (find-if f sequence)
(let ((iter (make-iterator sequence)))
(do ((x (iter) (iter)))
((or (eof-object? x) (f x))
(and (not (eof-object? x)) x)))))
</pre>
<p>But of course a sequence might contain #&lt;eof&gt;! So to be really safe, use iterator-at-end?
instead of eof-object?.
</p>
<p>The argument to make-iterator can also be a function or macro.
There should be a variable named '+iterator+ with a non-#f
value in the closure's environment:
</p>
<pre class="indented">(define (make-circular-iterator obj)
(let ((iter (make-iterator obj)))
(make-iterator
(let ((+iterator+ #t))
(lambda ()
(case (iter)
((#&lt;eof&gt;) ((set! iter (make-iterator obj))))
(else)))))))
</pre>
<p>The 'iterator? variable is similar to the '+documentation+ variable used by documentation.
It gives make-iterator some hope of catching inadvertent bogus function arguments that would
otherwise cause an infinite loop.
</p>
<div class="header" id="multidimensionalvectors"><h4>multidimensional vectors</h4></div>
<p>
s7 supports
vectors with any number of dimensions. It is here, in particular, that generalized
set! shines. make-vector's second argument can be a list of dimensions, rather than
an integer as in the one dimensional case:
</p>
<pre class="indented">(make-vector (list 2 3 4))
(make-vector '(2 3) 1.0)
(vector-dimensions (make-vector '(2 3 4))) -&gt; (2 3 4)
</pre>
<p>The second example includes the optional initial element.
<code>(vect i ...)</code> or <code>(vector-ref vect i ...)</code> return the given
element, and <code>(set! (vect i ...) value)</code> and <code>(vector-set! vect i ... value)</code>
set it. vector-length (or just length) returns the total number of elements.
vector-dimensions returns a list of the dimensions; vector-rank returns the length of this list,
and vector-dimension returns the nth member of the list (the size of the nth dimension).
</p>
<pre class="indented">&gt; (define v (make-vector '(2 3) 1.0))
<em class="gray">#2d((1.0 1.0 1.0) (1.0 1.0 1.0))</em>
&gt; (set! (v 0 1) 2.0)
<em class="gray">#2d((1.0 2.0 1.0) (1.0 1.0 1.0))</em>
&gt; (v 0 1)
<em class="gray">2.0</em>
&gt; (vector-length v)
<em class="gray">6</em>
</pre>
<p>This function initializes each element of a multidimensional vector:
</p>
<pre class="indented">(define (make-array dims . inits)
(subvector (apply vector (flatten inits)) 0 (apply * dims) dims))
&gt; (make-array '(3 3) '(1 1 1) '(2 2 2) '(3 3 3))
<em class="gray">#2d((1 1 1) (2 2 2) (3 3 3))</em>
</pre>
<p>make-int-vector, make-float-vector, and make-byte-vector produce homogeneous vectors holding
s7_ints, s7_doubles, or unsigned bytes.
</p>
<pre class="indented">(<em class="def" id="makevector">make-vector</em> length-or-list-of-dimensions initial-value element-type-function)
(<em class="def" id="vectordimensions">vector-dimensions</em> vect)
(<em class="def" id="vectordimension">vector-dimension</em> vect n)
(<em class="def" id="vectorrank">vector-rank</em> obj)
(<em class="def">float-vector?</em> obj)
(<em class="def">float-vector</em> . args)
(<em class="def">make-float-vector</em> len (init 0.0))
(<em class="def">float-vector-ref</em> obj . indices)
(<em class="def">float-vector-set!</em> obj indices[...] value)
(<em class="def" id="intvectorp">int-vector?</em> obj)
(<em class="def" id="intvector">int-vector</em> . args)
(<em class="def" id="makeintvector">make-int-vector</em> len (init 0))
(<em class="def" id="intvectorref">int-vector-ref</em> obj . indices)
(<em class="def" id="intvectorset">int-vector-set!</em> obj indices[...] value)
(<em class="def" id="bytevectorp">byte-vector?</em> obj)
(<em class="def" id="bytevector">byte-vector</em> . args)
(<em class="def" id="makebytevector">make-byte-vector</em> len (init 0))
(<em class="def" id="bytevectorref">byte-vector-ref</em> obj . indices)
(<em class="def" id="bytevectorset">byte-vector-set!</em> obj indices[...] byte)
(<em class="def" id="bytep">byte?</em> obj)
(<em class="def" id="stringtobytevector">string-&gt;byte-vector</em> str)
(<em class="def" id="bytevectortostring">byte-vector-&gt;string</em> str)
(<em class="def" id="subvector">subvector</em> vector start end dimensions)
(<em class="def" id="subvectorp">subvector?</em> obj)
(<em class="def" id="subvectorvector">subvector-vector</em> obj)
(<em class="def" id="subvectorposition">subvector-position</em> obj)
</pre>
<p id="typedvectors">In addition to the dimension list mentioned above, make-vector accepts
optional arguments giving the initial element and the element type. If the
type is given, every attempt to set an element of the vector first calls
the type function on the new value.
If the type function is omitted (or set to #t),
no type checking is performed.
If the type function is a closure (rather than a C-defined or built-in function),
its name must be accessible; it can't be an anonymous lambda (the signature and
error handlers need this name).
</p>
<pre class="indented">&gt; (define v (make-vector 3 'x symbol?)) ; initial element: 'x, elements must be symbols
<em class="gray">#(x x x)</em>
&gt; (vector-set! v 0 123)
<em class="red">error</em><em class="gray">: vector-set! argument 3, 123, is an integer but should be a symbol?</em>
&gt; (define (10|12? val) (memv val '(10 12)))
<em class="gray">10|12?</em>
&gt; (define v1 (make-vector 3 10 10|12?)) ; only allow values 10 or 12 (initially 10)
<em class="gray">#(10 10 10)</em>
&gt; (set! (v1 0) 12)
<em class="gray">12</em>
&gt; v1
<em class="gray">#(12 10 10)</em>
&gt; (set! (v1 1) 32)
<em class="red">error</em><em class="gray">: vector-set! argument 3, 32, is an integer but should be a 10|12?</em>
</pre>
<p>To access a vector's elements with different dimensions than the original had, use
<code>(subvector original-vector 0 (length original-vector) new-dimensions)</code>:
</p>
<pre class="indented">&gt; (let ((v1 #2d((1 2 3) (4 5 6))))
(let ((v2 (subvector v1))) ; flatten the original (1D is the default)
v2))
<em class="gray">#(1 2 3 4 5 6)</em>
&gt; (let ((v1 #(1 2 3 4 5 6)))
(let ((v2 (subvector v1 0 6 '(3 2))))
v2))
<em class="gray">#2d((1 2) (3 4) (5 6))</em>
</pre>
<p>A subvector is a window onto some other vector's data. The data is not copied, just accessed differently.
The new-dimensions parameter is a list giving the lengths of the dimensions. The start and
end parameters refer to positions in the original vector.
subvector-vector returns
the underlying vector, and subvector-position returns the starting point of the subvector
in the underlying data.
</p>
<div class="small">
<p>subvector's parameter list changed 8-Jul-2020. It was <code>(subvector vect new-length-or-dimension-list start)</code>,
but that conflicts with substring, and is confusing (the start position follows the length). To translate from
the old subvector to the new:
</p>
<pre class="indented">(define* (old-subvector vect len (offset 0))
(if (pair? len)
(subvector vect offset (+ offset (apply * len)) len)
(if (not len)
(subvector vect offset (length vect))
(subvector vect offset (+ offset len)))))
</pre>
</div>
<blockquote>
<div class="indented">
<p>matrix multiplication:
</p>
<pre>(define (matrix-multiply A B)
;; assume square matrices and so on for simplicity
(let ((size (car (vector-dimensions A))))
(do ((C (make-vector (list size size) 0))
(i 0 (+ i 1)))
((= i size) C)
(do ((j 0 (+ j 1)))
((= j size))
(do ((sum 0)
(k 0 (+ k 1)))
((= k size)
(set! (C i j) sum))
(set! sum (+ sum (* (A i k) (B k j)))))))))
</pre>
</div>
<div class="indented">
<p>Conway's game of Life:
</p>
<pre>(define* (life (width 40) (height 40))
(let ((state0 (make-vector (list width height) 0))
(state1 (make-vector (list width height) 0)))
;; initialize with some random pattern
(do ((x 0 (+ x 1)))
((= x width))
(do ((y 0 (+ y 1)))
((= y height))
(set! (state0 x y) (if (&lt; (random 100) 15) 1 0))))
(do () ()
;; show current state (using terminal escape sequences, borrowed from the Rosetta C code)
(format *stderr* "~C[H" #\escape) ; ESC H = tab set
(do ((y 0 (+ y 1)))
((= y height))
(do ((x 0 (+ x 1)))
((= x width))
(format *stderr*
(if (zero? (state0 x y))
" " ; ESC 07m below = inverse
(values "~C[07m ~C[m" #\escape #\escape))))
(format *stderr* "~C[E" #\escape)) ; ESC E = next line
;; get the next state
(do ((x 1 (+ x 1)))
((= x (- width 1)))
(do ((y 1 (+ y 1)))
((= y (- height 1)))
(let ((n (+ (state0 (- x 1) (- y 1))
(state0 x (- y 1))
(state0 (+ x 1) (- y 1))
(state0 (- x 1) y)
(state0 (+ x 1) y)
(state0 (- x 1) (+ y 1))
(state0 x (+ y 1))
(state0 (+ x 1) (+ y 1)))))
(set! (state1 x y)
(if (or (= n 3)
(and (= n 2)
(not (zero? (state0 x y)))))
1 0)))))
(copy state1 state0))))
</pre>
</div>
<div class="indented">
<p>Multidimensional vector constant syntax is modelled after CL: #nd(...)
signals that the lists specify the elements of an 'n' dimensional vector: <code>#2d((1 2 3) (4 5 6))</code>
int-vector constants use #i, float-vectors use #r. I wanted to use #f, but that is already taken.
Append the "nd" business after the type indication: <code>#i2d((1 2) (3 4))</code>. This syntax
collides with the r7rs byte-vector notation "#u8"; s7 uses "#u" for byte-vectors. "#u2d(...)" is a two-dimensional byte-vector.
For backwards compatibility, you can use "#u8" for one-dimensional byte-vectors.
</p>
<pre class="indented">&gt; (vector-ref #2d((1 2 3) (4 5 6)) 1 2)
<em class="gray">6</em>
&gt; (matrix-multiply #2d((-1 0) (0 -1)) #2d((2 0) (-2 2)))
<em class="gray">#2d((-2 0) (2 -2))</em>
&gt; (int-vector 1 2 3)
<em class="gray">#i(1 2 3)</em>
&gt; (make-float-vector '(2 3) 1.0)
<em class="gray">#r2d((1.0 1.0 1.0) (1.0 1.0 1.0))</em>
&gt; (vector (vector 1 2) (int-vector 1 2) (float-vector 1 2))
<em class="gray">#(#(1 2) #i(1 2) #r(1.0 2.0))</em>
</pre>
<p>If any dimension has 0 length, you get an n-dimensional empty vector. It is not
equal to a 1-dimensional empty vector.
</p>
<pre class="indented">&gt; (make-vector '(10 0 3))
<em class="gray">#3d()</em>
&gt; (equal? #() #3d())
<em class="gray">#f</em>
</pre>
</div>
<div class="indented">
<p>To save on costly parentheses, and make it easier to write generic multidimensional sequence functions,
you can use this same syntax with lists.
</p>
<pre class="indented">&gt; (let ((L '((1 2 3) (4 5 6))))
(L 1 0)) ; same as (list-ref (list-ref L 1) 0) or ((L 1) 0)
<em class="gray">4</em>
&gt; (let ((L '(((1 2 3) (4 5 6)) ((7 8 9) (10 11 12)))))
(set! (L 1 0 2) 32) ; same as (list-set! (list-ref (list-ref L 1) 0) 2 32) which is unreadable!
L)
<em class="gray">(((1 2 3) (4 5 6)) ((7 8 32) (10 11 12)))</em>
</pre>
<p>Or with vectors of vectors, of course:
</p>
<pre class="indented">&gt; (let ((V #(#(1 2 3) #(4 5 6))))
(V 1 2)) ; same as (vector-ref (vector-ref V 1) 2) or ((V 1) 2)
<em class="gray">6</em>
&gt; (let ((V #2d((1 2 3) (4 5 6))))
(V 0))
<em class="gray">#(1 2 3)</em>
</pre>
<p>There's one difference between a vector-of-vectors and a multidimensional vector:
in the latter case, you can't clobber one of the inner vectors.
</p>
<pre class="indented">&gt; (let ((V #(#(1 2 3) #(4 5 6)))) (set! (V 1) 32) V)
<em class="gray">#(#(1 2 3) 32)</em>
&gt; (let ((V #2d((1 2 3) (4 5 6)))) (set! (V 1) 32) V)
<em class="gray">;not enough arguments for vector-set!: (#2d((1 2 3) (4 5 6)) 1 32)</em>
</pre>
</div>
<div class="indented">
<p>Using lists to display the inner vectors may not be optimal, especially when the elements are also lists:
</p>
<pre class="indented">#2d(((0) (0) ((0))) ((0) 0 ((0))))
</pre>
<p>The "#()" notation is no better (the elements can be vectors), and I'm not a fan of "[]" parentheses.
Perhaps we could use different colors? Or different size parentheses?
</p>
<pre class="indented">#2D<em class="green">(</em><em class="red">(</em>(0) (0) ((0))<em class="red">)</em> <em class="red">(</em>(0) 0 ((0))<em class="red">)</em><em class="green">)</em>
#2D<em class="bigger">(</em><em class="big">(</em>(0) (0) ((0))<em class="big">)</em> <em class="big">(</em>(0) 0 ((0))<em class="big">)</em><em class="bigger">)</em>
</pre>
</div>
<div class="indented">
<p>I'm not sure how to handle vector-&gt;list and list-&gt;vector in the multidimensional case.
Currently, vector-&gt;list flattens the vector, and list-&gt;vector always returns a
one dimensional vector, so the two are not inverses.
</p>
<pre class="indented">&gt; (vector-&gt;list #2d((1 2) (3 4)))
<em class="gray">(1 2 3 4)</em> ; should this be '((1 2) (3 4)) or '(#(1 2) #(3 4))?
&gt; (list-&gt;vector '(#(1 2) #(3 4))) ; what about '((1 2) (3 4))?
<em class="gray">#(#(1 2) #(3 4)) </em>
</pre>
<p>
This also affects format and sort!:
</p>
<pre class="indented">&gt; (format #f "~{~A~^ ~}" #2d((1 2) (3 4)))
<em class="gray">"1 2 3 4"</em>
&gt; (sort! #2d((1 4) (3 2)) &gt;)
<em class="gray">#2d((4 3) (2 1))</em>
</pre>
<p>Perhaps subvector can help:
</p>
<pre class="indented">&gt;(subvector (list-&gt;vector '(1 2 3 4)) 0 4 '(2 2))
<em class="gray">#2d((1 2) (3 4))</em>
&gt; (let ((a #2d((1 2) (3 4)))
(b #2d((5 6) (7 8))))
(list (subvector (append a b) 0 8 '(2 4))
(subvector (append a b) 0 8 '(4 2))
(subvector (append (a 0) (b 0) (a 1) (b 1)) 0 8 '(2 4))
(subvector (append (a 0) (b 0) (a 1) (b 1)) 0 8 '(4 2))))
<em class="gray">(#2d((1 2 3 4) (5 6 7 8))
#2d((1 2) (3 4) (5 6) (7 8))
#2d((1 2 5 6) (3 4 7 8))
#2d((1 2) (5 6) (3 4) (7 8)))</em>
</pre>
</div>
<div class="indented">
<p>Another question: should we accept the multi-index syntax in a case such as <code>
(#("abc" "def") 0 2)</code>?
My first thought was that the indices should all refer to the same
type of object, so s7 would complain in a mixed case like that.
If we can nest any applicable objects and apply the whole thing to
an arbitrary list of indices, ambiguities arise:
</p>
<pre class="indented">((lambda (x) x) "hi" 0)
((lambda (x) (lambda (y) (+ x y))) 1 2)
</pre>
<p>I think these should complain that the function got too many arguments,
but from the implicit indexing point of view, they could be interpreted
as:
</p>
<pre class="indented">(string-ref ((lambda (x) x) "hi") 0) ; i.e. (((lambda (x) x) "hi") 0)
(((lambda (x) (lambda (y) (+ x y))) 1) 2)
</pre>
<p>Add optional and rest arguments, and you can't tell who is supposed to
take which arguments.
Currently, you can mix types with implicit indices,
but a function grabs all remaining indices.
To insist that all objects are of the same type, use an explicit getter:
</p>
<pre class="indented">&gt; (list-ref (list 1 (list 2 3)) 1 0) ; same as ((list 1 (list 2 3)) 1 0)
<em class="gray">2</em>
&gt; ((list 1 (vector 2 3)) 1 0)
<em class="gray">2</em>
&gt; (list-ref (list 1 (vector 2 3)) 1 0)
<em class="red">error</em><em class="gray">: list-ref argument 1, #(2 3), is a vector but should be a proper list</em>
</pre>
</div>
</blockquote>
<div class="header" id="hashtables"><h4>hash-tables</h4></div>
<ul>
<li>(<em class="def" id="makehashtable">make-hash-table</em> (size 8) eq-func typers)
</li><li>(<em class="def" id="makeweakhashtable">make-weak-hash-table</em> (size 8) eq-func typers)
</li><li>(<em class="def" id="hashtable">hash-table</em> ...)
</li><li>(<em class="def" id="weakhashtable">weak-hash-table</em> ...)
</li><li>(<em class="def" id="hashtablep">hash-table?</em> obj)
</li><li>(<em class="def" id="weakhashtablep">weak-hash-table?</em> obj)
</li><li>(<em class="def" id="hashtableref">hash-table-ref</em> ht key)
</li><li>(<em class="def" id="hashtableset">hash-table-set!</em> ht key value)
</li><li>(<em class="def" id="hashtableentries">hash-table-entries</em> ht)
</li><li>(<em class="def" id="hashcode">hash-code</em> obj eqfunc)
</li></ul>
<p>
Each hash-table keeps track of the keys it contains, optimizing the search wherever possible.
Any s7 object can be the key or the key's value.
If you pass a table size that is not a power of 2, make-hash-table rounds it up to the next power of 2.
The table grows as needed. length returns the current size.
If a key is not in the table, hash-table-ref returns #f. To remove a key,
set its value to #f; to remove all keys, <code>(fill! table #f)</code>.
</p>
<pre class="indented">&gt; (let ((ht (make-hash-table)))
(set! (ht "hi") 123)
(ht "hi"))
<em class="gray">123</em>
</pre>
<p>hash-table (the function) parallels the functions vector, list, and string.
Its arguments are
the keys and values: <code>(hash-table 'a 1 'b 2)</code>.
Implicit indexing gives multilevel hashes:
</p>
<pre class="indented">&gt; (let ((h (hash-table 'a (hash-table 'b 2 'c 3)))) (h 'a 'b))
<em class="gray">2</em>
&gt; (let ((h (hash-table 'a (hash-table 'b 2 'c 3)))) (set! (h 'a 'b) 4) (h 'a 'b))
<em class="gray">4</em>
</pre>
<p>hash-code is like Common Lisp's sxhash. It returns an integer that can be associated with
an s7 object when implementing your own hash-tables. s7test.scm has an example using vectors.
The eqfunc argument is currently ignored (hash-code assumes equal? is in use).
</p>
<blockquote>
<div class="indented">
<p>Since hash-tables accept the same applicable-object syntax that vectors use, we can
treat a hash-table as, for example, a sparse array:
</p>
<pre class="indented">&gt; (define make-sparse-array make-hash-table)
<em class="gray">make-sparse-array</em>
&gt; (let ((arr (make-sparse-array)))
(set! (arr 1032) "1032")
(set! (arr -23) "-23")
(list (arr 1032) (arr -23)))
<em class="gray">("1032" "-23")</em>
</pre>
</div>
<div class="indented">
<p>map and for-each accept hash-table arguments. On each iteration, the map or for-each function is passed
an entry, <code>'(key . value)</code>, in whatever order the entries are encountered in the table.
</p>
<pre class="indented">(define (hash-table-&gt;alist table)
(map values table))
</pre>
<p>reverse of a hash-table returns a new table with the keys and values reversed.
fill! sets all the values.
Two hash-tables are equal if they have the same keys with the same values. This is independent
of the table sizes, or the order in which the key/value pairs were added.
</p>
</div>
<div class="indented">
<p>The second argument to make-hash-table (eq-func) is slightly complicated. If it is omitted,
s7 chooses the hashing equality and mapping functions based on the keys in the hash-table.
There are times when you know
in advance what equality function you want. If it's one of the built-in s7 equality
functions, eq?, eqv?, equal?, equivalent?, =, string=?, string-ci=?, char=?, or char-ci=?,
you can pass that function as the second argument. In any other case, you need to
give s7 both the equality function and the mapping function. The latter takes any object
and returns the hash-table location for it (an integer). The problem here is that
for the arbitrary equality function to work, objects that are equal according to that
function have to be mapped to the same hash-table location. There's no way for s7 to intuit
what this mapping should be except in the built-in cases. So to specify some arbitrary function, the second
argument is a cons: '(equality-checker mapper).
</p>
<p>Here's a brief example. In CLM, we have c-objects of type mus-generator (from s7's point of view),
and we want to hash them using equal? (which will call the generator-specific equality function).
But s7 doesn't realize that the mus-generator type covers 40 or 50 internal types, so as the mapper we pass mus-type:
<code>(make-hash-table 64 (cons equal? mus-type))</code>.
</p>
</div>
<div class="indented">
<p>If the hash key is a float (a non-rational number), hash-table-ref uses <a href="#equivalentp">equivalent?</a>.
Otherwise, for example, you could use NaN as a key, but then never be able to access it!
</p>
</div>
<div class="indented">
<p>To implement read-time hash-tables using #h(...):
</p>
<pre>(set! *#readers*
(cons (cons #\h (lambda (str)
(and (string=? str "h") ; #h(...)
(apply hash-table (read)))))
*#readers*))
(display #h(:a 1)) (newline)
(display #h(:a 1 :b "str")) (newline)
</pre>
<p>These can be made immutable by <code>(immutable! (apply...))</code>, or even better,
</p>
<pre>(let ((h (apply hash-table (read))))
(if (&gt; (*s7* 'safety) 1) (immutable! h) h))
</pre>
</div>
<div class="indented">
<pre>(define-macro (define-memoized name&amp;arg . body)
(let ((arg (cadr name&amp;arg))
(memo (gensym "memo")))
`(define ,(car name&amp;arg)
(let ((,memo (<em class="red">make-hash-table</em>)))
(lambda (,arg)
(or (,memo ,arg) ; check for saved value
(set! (,memo ,arg) (begin ,@body)))))))) ; set! returns the new value
&gt; (define (fib n)
(if (&lt; n 2) n (+ (fib (- n 1)) (fib (- n 2)))))
<em class="gray">fib</em>
&gt; (define-memoized
(memo-fib n)
(if (&lt; n 2) n (+ (memo-fib (- n 1)) (memo-fib (- n 2)))))
<em class="gray">memo-fib</em>
&gt; (time (fib 34)) ; un-memoized time
<em class="gray">1.168</em> ; 0.70 on ccrma's i7-3930 machines
&gt; (time (memo-fib 34)) ; memoized time
<em class="gray">3.200e-05</em>
&gt; (outlet (funclet memo-fib))
<em class="gray">(inlet '{memo}-18 (hash-table
'(0 . 0) '(1 . 1) '(2 . 1) '(3 . 2) '(4 . 3) '(5 . 5)
'(6 . 8) '(7 . 13) '(8 . 21) '(9 . 34) '(10 . 55) '(11 . 89)
'(12 . 144) '(13 . 233) '(14 . 377) '(15 . 610) '(16 . 987)
'(17 . 1597) '(18 . 2584) '(19 . 4181) '(20 . 6765) '(21 . 10946)
'(22 . 17711) '(23 . 28657) '(24 . 46368) '(25 . 75025) '(26 . 121393)
'(27 . 196418) '(28 . 317811) '(29 . 514229) '(30 . 832040) '(31 . 1346269)
'(32 . 2178309) '(33 . 3524578) '(34 . 5702887)))</em>
</pre>
<p>but the tail recursive version of fib is simpler and almost as fast as the memoized version,
and the iterative version beats both.
</p>
</div>
<p id="typedhash">The third argument, typers, sets type checkers for the keys and values in the table,
much like the third argument to make-vector.
It is a cons of the type functions,
<code>(cons symbol? integer?)</code> for example. This says that all the keys must
be symbols and all the values integers.
</p>
<pre class="indented">&gt; (define (10|12? val) (memv val '(10 12)))
<em class="gray">10|12?</em>
&gt; (define hash (make-hash-table 8 #f (cons #t 10|12?))) ; any key is ok, but all values must be 10 or 12
<em class="gray">(hash-table)</em>
&gt; (set! (hash 'a) 10)
<em class="gray">10</em>
&gt; hash
<em class="gray">(hash-table 'a 10)</em>
&gt; (set! (hash 'b) 32)
<em class="red">error</em><em class="gray">: hash-table-set! value argument 3, 32, is an integer but should be a 10|12?</em>
</pre>
</blockquote>
<div class="header" id="environments"><h4>environments</h4></div>
<p>An environment holds symbols and their values. The global environment, for example,
holds all the variables that are defined at the top level.
Environments are first class (and applicable) objects in s7.
</p>
<pre class="indented">(<em class="def" id="rootlet">rootlet</em>) the top-level (global) environment
(<em class="def" id="curlet">curlet</em>) the current (innermost) environment
(<em class="def" id="funclet">funclet</em> proc) the environment at the time when proc was defined
(<em class="def" id="isfunclet">funclet?</em> env) #t if env is a funclet
(owlet) the environment at the point of the last error
(<em class="def" id="unlet">unlet</em>) a let with any built-in functions that do not have their original value
(<em class="def" id="letref">let-ref</em> env sym) get value of sym in env, same as (env sym)
(<em class="def" id="letset">let-set!</em> env sym val) set value of sym in env to val, same as (set! (env sym) val)
(<em class="def" id="inlet">inlet</em> . bindings) make a new environment with the given bindings
(<em class="def" id="sublet">sublet</em> env . bindings) same as inlet, but the new environment is local to env
(<em class="def" id="varlet">varlet</em> env . bindings) add new bindings directly to env
(<em class="def" id="cutlet">cutlet</em> env . fields) remove bindings from env
(<em class="def" id="letp">let?</em> obj) #t if obj is an environment
(<em class="def" id="with-let">with-let</em> env . body) evaluate body in the environment env
(<em class="def" id="outlet">outlet</em> env) the environment that encloses the environment env (settable)
(<em class="def" id="lettolist">let-&gt;list</em> env) return the environment bindings as a list of (symbol . value) cons's
(<em class="def" id="openlet">openlet</em> env) mark env as open (see below)
(<em class="def" id="openletp">openlet?</em> env) #t is env is open
(<em class="def" id="coverlet">coverlet</em> env) mark env as closed (undo an earlier openlet)
(<em class="def" id="objecttolet">object-&gt;let</em> obj) return an environment containing information about obj
(<em class="def" id="lettemporarily">let-temporarily</em> vars . body)
</pre>
<blockquote>
<pre class="indented">&gt; (inlet 'a 1 'b 2)
<em class="gray">(inlet 'a 1 'b 2)</em>
&gt; (let ((a 1) (b 2)) (curlet))
<em class="gray">(inlet 'a 1 'b 2)</em>
&gt; (let ((x (inlet :a 1 :b 2))) (x 'a))
<em class="gray">1</em>
&gt; (with-let (inlet 'a 1 'b 2) (+ a b))
<em class="gray">3</em>
&gt; (let ((x (inlet :a 1 :b 2))) (set! (x 'a) 4) x)
<em class="gray">(inlet 'a 4 'b 2)</em>
&gt; (let ((x (inlet))) (varlet x 'a 1) x)
<em class="gray">(inlet 'a 1)</em>
&gt; (let ((a 1)) (let ((b 2)) (outlet (curlet))))
<em class="gray">(inlet 'a 1)</em>
&gt; (let ((e (inlet 'a (inlet 'b 1 'c 2)))) (e 'a 'b)) ; in C terms, e-&gt;a-&gt;b
<em class="gray">1</em>
&gt; (let ((e (inlet 'a (inlet 'b 1 'c 2)))) (set! (e 'a 'b) 3) (e 'a 'b))
<em class="gray">3</em>
&gt; (define* (make-let (a 1) (b 2)) (sublet (rootlet) (curlet)))
<em class="gray">make-let</em>
&gt; (make-let :b 32)
<em class="gray">(inlet 'a 1 'b 32)</em>
</pre>
</blockquote>
<p>As the names suggest, in s7 an environment is viewed as a disembodied let. Environments are equal if they
contain the same symbols with the same values leaving aside shadowing, and taking into account the environment
chain up to the rootlet. That is, two environments are equal if any local variable of either has the same value in both.
</p>
<p><b>let-ref</b> and <b>let-set!</b> return #&lt;undefined&gt; if the first argument is not
defined in the environment or its parents. To search just the given environment (ignoring its outlet chain),
use defined? with the third argument #t before calling let-ref or let-set!:
</p>
<pre class="indented">&gt; (defined? 'car (inlet 'a 1) #t)
<em class="gray">#f</em>
&gt; (defined? 'car (inlet 'a 1))
<em class="gray">#t</em>
</pre>
<p>This matters in let-set!: <code>(let-set! (inlet 'a 1) 'car #f)</code>
is the same as <code>(set! car #f)</code>!
</p>
<p>
<b>with-let</b> evaluates its body in the given environment, so
<code>(with-let e . body)</code> is equivalent to
<code>(eval `(begin ,@body) e)</code>, but probably faster.
Similarly, <code>(let bindings . body)</code> is equivalent to
<code>(eval `(begin ,@body) (apply inlet (flatten bindings)))</code>,
ignoring the outer (enclosing) environment (the default outer environment
of inlet is rootlet).
Or better,
</p>
<pre class="indented">(define-macro (with-environs e . body)
`(apply let (map (lambda (a) (list (car a) (cdr a))) ,e) '(,@body)))
</pre>
<p>Or turning it around,</p>
<pre>(define-macro (Let vars . body)
`(with-let (sublet (curlet)
,@(map (lambda (var)
(values (symbol-&gt;keyword (car var)) (cadr var)))
vars))
,@body))
(Let ((c 4))
(Let ((a 2)
(b (+ c 2)))
(+ a b c)))
</pre>
<p>It is faster to use <code>(biglet 'a-function)</code> than <code>(with-let biglet a-function)</code>.
</p>
<p><b>let-temporarily</b> (now built-into s7) is somewhat similar to fluid-let in other Schemes.
Its syntax looks like
let, but it first saves the current value, then sets the
variable to the new value (via set!), calls the body, and finally restores the
original value. It can handle anything settable:
</p>
<pre class="indented">(let-temporarily (((*s7* 'print-length) 8)) (display x))
</pre>
<p>This sets s7's print-length variable to 8 while displaying x, then
puts it back to its original value.
</p>
<pre class="indented">&gt; (define ourlet
(let ((x 1))
(define (a-func) x)
(define b-func (let ((y 1))
(lambda ()
(+ x y))))
(curlet)))
<em class="gray">(inlet 'x 1 'a-func a-func 'b-func b-func)</em>
&gt; (ourlet 'x)
<em class="gray">1</em>
&gt; (let-temporarily (((ourlet 'x) 2))
((ourlet 'a-func)))
<em class="gray">2</em>
&gt; ((funclet (ourlet 'b-func)) 'y)
<em class="gray">1</em>
&gt; (let-temporarily ((((funclet (ourlet 'b-func)) 'y) 3))
((ourlet 'b-func)))
<em class="gray">4</em>
</pre>
<p>Despite the name, no new environment is created by let-temporarily:
<code>(let () (let-temporarily () (define x 2)) (+ x 1))</code> is 3.
</p>
<p>
<b>sublet</b> adds bindings (symbols with associated values) to an environment.
It does not change the environment passed to it, but
just prepends the new bindings, shadowing any old ones,
as if you had called "let".
To add the bindings directly to the environment,
use <b>varlet</b>. Both of these functions accept nil as the
'env' argument as shorthand for <code>(rootlet)</code>.
Both also accept other environments as well as individual bindings,
adding all the argument's bindings to the new environment.
<b>inlet</b> is very similar, but normally omits the environment argument.
The arguments to sublet and inlet can be passed as
symbol/value pairs, as a cons, or using keywords as if in define*.
inlet can also be used to copy an environment without accidentally invoking
that environment's copy method.
</p>
<p>Here's an example: we want to define two functions that share a
local variable:
</p>
<pre class="indented">(varlet (curlet) ; import f1 and f2 into the current environment
(let ((x 1)) ; x is our local variable
(define (f1 a) (+ a x))
(define (f2 b) (* b x))
(inlet 'f1 f1 'f2 f2))) ; export f1 and f2
</pre>
<p>One way to add reader and writer functions to an individual environment slot is:
</p>
<pre class="indented">(define e (inlet
'x (let ((local-x 3)) ; x's initial value
(dilambda
(lambda () local-x)
(lambda (val) (set! local-x (max 0 (min val 100))))))))
&gt; ((e 'x))
<em class="gray">3</em>
&gt; (set! ((e 'x)) 123)
<em class="gray">100</em>
</pre>
<p><b>funclet</b> returns a function's local environment. Here's an example that
keeps a circular buffer of the calls to that function:
</p>
<pre class="indented">(define func (let ((history (let ((lst (make-list 8 #f)))
(set-cdr! (list-tail lst 7) lst))))
(lambda (x y)
(let ((result (+ x y)))
(set-car! history (list result x y))
(set! history (cdr history))
result))))
&gt; (func 1 2)
<em class="gray">3</em>
&gt; (func 3 4)
<em class="gray">7</em>
&gt; ((funclet func) 'history)
<em class="gray">#1=(#f #f #f #f #f #f (3 1 2) (7 3 4) . #1#)</em>
</pre>
<p>It is possible in Scheme to redefine built-in functions such as car.
To ensure that some code sees the original built-in function definitions,
wrap it in <code>(with-let (unlet) ...)</code>:
</p>
<pre class="indented">&gt; (let ((caar 123))
(+ caar (with-let (unlet)
(caar '((2) 3)))))
<em class="gray">125</em>
</pre>
<p>Or perhaps better, to keep the current environment intact except for the
changed built-ins:
</p>
<pre class="indented">&gt; (let ((x 1)
(display 3))
(with-let (sublet (curlet) (unlet)) ; (curlet) picks up 'x, (unlet) the original 'display
(display x)))
<em class="gray">1</em>
</pre>
<blockquote>
<p>
with-let and unlet are constants, so you can
use them in any context without worrying about whether they've been redefined.
As mentioned in the macro section, #_&lt;name&gt; is a built-in reader macro
for <code>(with-let (unlet) &lt;name&gt;)</code>,
so for example, #_+ is the built-in + function, no matter what.
(The environment of built-in functions
that unlet accesses is not accessible from scheme code, so there's no way
that those values can be clobbered).
</p>
<div class="indented">
<p>
I think these functions can implement the notions of libraries,
separate namespaces, or modules.
Here's one way: first the library writer just writes his library.
The normal user simply loads it. The abnormal user worries about everything,
so first he loads the library in a local let to make sure no bindings escape
to pollute his code, and then he
uses unlet to
make sure that none of his bindings pollute the library code:
</p>
<pre class="indented">(let ()
(with-let (unlet)
(load "any-library.scm" (curlet))
;; by default load puts stuff in the global environment
...))
</pre>
<p>Now Abnormal User can do what he wants with the library entities.
Say he wants to use "lognor" under the name "bitwise-not-or", and
all the other functions are of no interest:
</p>
<pre class="indented">(varlet (curlet)
'bitwise-not-or (with-let (unlet)
(load "any-library.scm" (curlet))
lognor)) ; lognor is presumably defined in "any-library.scm"
</pre>
<p>Say he wants to make sure the library is cleanly loaded, but all
its top-level bindings are imported into the current environment:
</p>
<pre class="indented">(varlet (curlet)
(with-let (unlet)
(let ()
(load "any-library.scm" (curlet))
(curlet)))) ; these are the bindings introduced by loading the library
</pre>
<p>To do the same thing, but prepend "library:" to each name:
</p>
<pre class="indented">(apply varlet (curlet)
(with-let (unlet)
(let ()
(load "any-library.scm" (curlet))
(map (lambda (binding)
(cons (symbol "library:" (symbol-&gt;string (car binding)))
(cdr binding)))
(curlet)))))
</pre>
<p>That's all there is to it! Here is the same idea as a macro:
</p>
<pre>(define-macro (let! init end . body)
;; syntax mimics 'do: (let! (vars&amp;values) ((exported-names) result) body)
;; (let! ((a 1)) ((hiho)) (define (hiho x) (+ a x)))
`(let ,init
,@body
(varlet (outlet (curlet))
,@(map (lambda (export)
`(cons ',export ,export))
(car end)))
,@(cdr end)))
</pre>
<!--
(define-macro (safe-let! init end . body)
`(with-let (#_inlet (unlet)
,@(#_map (#_lambda (b)
`(#_cons ',(#_car b) ,(#_cadr b)))
init))
,@body
(#_varlet (#_outlet (#_curlet))
,@(#_map (#_lambda (export)
`(#_cons ',export ,export))
(#_car end)))
,@(#_cdr end)))
-->
</div>
<div class="indented">
<p>Well, almost, darn it. If the loaded library file sets (via set!) a global value
such as abs, we need to put it back to its original form:
</p>
<pre>(define (safe-load file)
(let ((e (with-let (unlet) ; save the environment before loading
(let-&gt;list (curlet)))))
(<em class="red">load</em> file (curlet))
(let ((new-e (with-let (unlet) ; get the environment after loading
(let-&gt;list (curlet)))))
(for-each ; see if any built-in functions were stepped on
(lambda (sym)
(unless (assoc (car sym) e)
(format () "~S clobbered ~A~%" file (car sym))
(apply set! (car sym) (list (cdr sym)))))
new-e))))
;; say libtest.scm has the line (set! abs odd?)
&gt; (safe-load "libtest.scm")
<em class="gray">"libtest.scm" clobbered abs</em>
&gt; (abs -2)
<em class="gray">2</em>
</pre>
</div>
</blockquote>
<p><b>openlet</b> marks its argument, either an environment, a closure, a c-object, or a c-pointer
as open; <b>coverlet</b> as closed. I need better terminology here! An open object is one that the
built-in s7 functions handle specially. If they encounter one in their
argument list, they look in the object for their own name, and call that
function if it exists. A bare-bones example:
</p>
<pre class="indented">&gt; (abs (openlet (inlet 'abs (lambda (x) 47))))
<em class="gray">47</em>
&gt; (define* (f1 (a 1)) (if (real? a) (abs a) ((a 'f1) a)))
<em class="gray">f1</em>
&gt; (f1 :a (openlet (inlet 'f1 (lambda (e) 47))))
<em class="gray">47</em>
</pre>
<p>In CLOS, we'd declare a class and a method, and call make-instance,
and then discover that it wouldn't work anyway.
Here we have, in effect, an anonymous instance of an anonymous class.
I think this is called a "prototype system"; javascript is apparently similar.
A slightly more complex example:
</p>
<pre class="indented">(let* ((e1 (openlet
(inlet
'x 3
'* (lambda args
(apply * (if (number? (car args))
(values (car args) ((cadr args) 'x) (cddr args))
(values ((car args) 'x) (cdr args))))))))
(e2 (copy e1)))
(set! (e2 'x) 4)
(* 2 e1 e2)) ; (* 2 3 4) =&gt; 24
</pre>
<p>Perhaps these names would be better: openlet -&gt; with-methods, coverlet -&gt; without-methods,
and openlet? -&gt; methods?.
</p>
<blockquote>
<div class="indented">
<p>let-ref and let-set! are problematic as methods. It is very easy to get into an infinite
loop, especially with let-ref since any reference to the let within the method body probably
calls let-ref, which calls the let-ref method. We used to recommend coverlet here, but
even that is not enough, so not let-ref and let-set! are immutable; they can't be used
as methods.
Use let-ref-fallback and let-set-fallback instead, if possible.
</p>
</div>
</blockquote>
<p><b>object-&gt;let</b> returns an environment (more of a dictionary really) that
contains details about its argument. It
is intended as a debugging aid, underlying a debugger's "inspect" for example.
</p>
<pre class="indented">&gt; (let ((iter (make-iterator "1234")))
(iter)
(iter)
(object-&gt;let iter))
<em class="gray">(inlet 'value #&lt;iterator: string&gt; 'type iterator? 'at-end #f 'sequence "1234" 'length 4 'position 2)</em>
</pre>
<p>A c-object (in the sense of s7_make_c_type), can add its own info to this namespace via an object-&gt;let
method in its local environment. snd-marks.c has a simple example using a class-wide environment (g_mark_methods),
holding as the value of its 'object-&gt;let field the function s7_mark_to_let. The latter uses s7_varlet to
add information to the namespace created by <code>(object-&gt;let mark)</code>.
</p>
<div class="indented">
<pre>(define-macro (value-&gt;symbol expr)
`(let ((val ,expr)
(e1 (curlet)))
(call-with-exit
(lambda (return)
(do ((e e1 (outlet e))) ()
(for-each
(lambda (slot)
(if (equal? val (cdr slot))
(return (car slot))))
e)
(if (eq? e (rootlet))
(return #f)))))))
&gt; (let ((a 1) (b "hi"))
(value-&gt;symbol "hi"))
<em class="gray">b</em>
</pre>
</div>
<div class="indented">
<p>openlet alerts the rest of s7 that the environment has methods.
</p>
<pre>(begin
(define fvector? #f)
(define make-fvector #f)
(let ((type (gensym))
(-&gt;float (lambda (x)
(if (real? x)
(* x 1.0)
(error 'wrong-type-arg "fvector new value is not a real: ~A" x)))))
(set! make-fvector
(lambda* (len (init 0.0))
(<em class="red">openlet</em>
(inlet :v (make-vector len (-&gt;float init))
:type type
:length (lambda (f) len)
:object-&gt;string (lambda (f . args) "#&lt;fvector&gt;")
:let-set! (lambda (fv i val) (#_vector-set! (fv 'v) i (-&gt;float val)))
:let-ref-fallback (lambda (fv i) (#_vector-ref (fv 'v) i))))))
(set! fvector? (lambda (p)
(and (let? p)
(eq? (p 'type) type))))))
&gt; (define fv (make-fvector 32))
<em class="gray">fv</em>
&gt; fv
<em class="gray">#&lt;fvector&gt;</em>
&gt; (length fv)
<em class="gray">32</em>
&gt; (set! (fv 0) 123)
<em class="gray">123.0</em>
&gt; (fv 0)
<em class="gray">123.0</em>
</pre>
</div>
<div class="indented">
<p>If an s7 function ignores the type of an argument, as in cons or vector for example,
then that argument won't be treated as having any methods.
</p>
<p>
Since outlet is settable, there are two ways an environment can
become circular. One is to include the current environment as the value of one of its variables.
The other is: <code>(let () (set! (outlet (curlet)) (curlet)))</code>.
</p>
<p>If you want to hide an environment's fields from any part of s7 that does not
know the field names in advance,
</p>
<pre class="indented">(openlet ; make it appear to be empty to the rest of s7
(inlet 'object-&gt;string (lambda args "#&lt;let&gt;")
'map (lambda args ())
'for-each (lambda args #&lt;unspecified&gt;)
'let-&gt;list (lambda args ())
'length (lambda args 0)
'copy (lambda args (inlet))
'open #t
'coverlet (lambda (e) (set! (e 'open) #f) e)
'openlet (lambda (e) (set! (e 'open) #t) e)
'openlet? (lambda (e) (e 'open))
;; your secret data here
))
</pre>
<p>(There are still at least two ways to tell that something is fishy).
</p>
<!-- add a field and it disappears, or sublet and read back -->
</div>
<div class="indented">
<p>Here's one way to add a method to a closure:
</p>
<pre class="indented">(define sf (let ((object-&gt;string (lambda (obj . arg)
"#&lt;secret function!&gt;")))
(openlet (lambda (x)
(+ x 1)))))
&gt; sf
<em class="gray">#&lt;secret function!&gt;</em>
</pre>
</div>
<div class="header" id="multiplevalues"><h4>multiple-values</h4></div>
<p>
In s7, multiple values are spliced directly into the caller's argument list.
</p>
<pre class="indented">&gt; (+ (values 1 2 3) 4)
<em class="gray">10</em>
&gt; (string-ref ((lambda () (values "abcd" 2))))
<em class="gray">#\c</em>
&gt; ((lambda (a b) (+ a b)) ((lambda () (values 1 2))))
<em class="gray">3</em>
&gt; (+ (call/cc (lambda (ret) (ret 1 2 3))) 4) ; call/cc has an implicit "values"
<em class="gray">10</em>
&gt; ((lambda* ((a 1) (b 2)) (list a b)) (values :a 3))
<em class="gray">(3 2)</em>
(define-macro (call-with-values producer consumer)
`(,consumer (,producer)))
(define-macro (multiple-value-bind vars expr . body)
`((lambda ,vars ,@body) ,expr))
(define-macro (define-values vars expression)
`(if (not (null? ',vars))
(varlet (curlet) ((lambda ,vars (curlet)) ,expression))))
(define (curry function . args)
(if (null? args)
function
(lambda more-args
(if (null? more-args)
(apply function args)
(function (apply values args) (apply values more-args))))))
</pre>
<blockquote>
<div class="indented">
<p>multiple-values are useful in a several situations. For example,
<code>(if test (+ a b c) (+ a b d e))</code> can be written
<code>(+ a b (if test c (values d e)))</code>.
There are a few special uses of multiple-values.
First, you can use the values function to return any number of values, including 0,
from map's function application:
</p>
<pre class="indented">&gt; (map (lambda (x) (if (odd? x) (values x (* x 20)) (values))) (list 1 2 3))
<em class="gray">(1 20 3 60)</em>
&gt; (map values (list 1 2 3) (list 4 5 6))
<em class="gray">(1 4 2 5 3 6)</em>
(define (remove-if func lst)
(map (lambda (x) (if (func x) (values) x)) lst))
(define (pick-mappings func lst)
(map (lambda (x) (or (func x) (values))) lst))
(define (shuffle . args)
(apply map values args))
&gt; (shuffle '(1 2 3) #(4 5 6) '(7 8 9))
<em class="gray">(1 4 7 2 5 8 3 6 9)</em>
(define (concatenate . args)
(apply append (map (lambda (arg) (map values arg)) args)))
</pre>
<p>Second, a macro can return multiple values; these are evaluated and spliced,
exactly like a normal macro,
so you can use <code>(values '(define a 1) '(define b 2))</code> to
splice multiple definitions at the macro invocation point.
If an expansion returns (values), nothing is spliced in. This is
mostly useful in <a href="#readercond">reader-cond</a> and the #; reader.
</p>
<pre class="indented">&gt; (define-expansion (comment str) (values))
<em class="gray">comment</em>
&gt; (+ 1 (comment "one") 2 (comment "two"))
<em class="gray">3</em>
</pre>
<p>At the top-level (in the REPL), since there's nothing to splice into, you simply get your values back:
</p>
<pre class="indented">&gt; (values 1 (list 1 2) (+ 3 4 5))
<em class="gray">(values 1 (1 2) 12)</em>
</pre>
<p>But this printout is just trying to be informative. There is no multiple-values object
in s7. You can't <code>(set! x (values 1 2))</code>, for example. The values function
tells s7 that its arguments should be handled in a special way, and the multiple-value indication goes away
as soon as the arguments are spliced into some caller's arguments.
</p>
<p id="listvalues">There are two helper functions for multiple values, apply-values and list-values,
both intended primarily for quasiquote where (apply-values ...) implements what other schemes call unquote-splicing (",@...").
(apply-values lst) is like (apply values lst),
and (list-values ...) is like (list ...) except in one special case. It is common in writing macros
to create some piece of code to be spliced into the output, but if that code is nil, the resulting
macro code should contain nothing (not nil). apply-values and list-values cooperate with quasiquote to implement
this. As an example:
</p>
<pre class="indented">&gt; (list-values 1 2 (apply-values) 3)
<em class="gray">(1 2 3)</em>
&gt; (define (supply . args) (apply-values args))
<em class="gray">supply</em>
&gt; (define (consume f . args) (apply f (apply list-values args)))
<em class="gray">consume</em>
&gt; (consume + (supply 1 2) (supply 3 4 5) (supply))
<em class="gray">15</em>
&gt; (consume + (supply))
<em class="gray">0</em>
</pre>
<p>It might seem simpler to return "nothing" from (values), rather than #&lt;unspecified&gt;,
but that has drawbacks. First, <code>(abs -1 (values))</code>, or worse <code>(abs (f x) (f y))</code>
is no longer an error at the level of the program text; you lose the ability to see at a glance that
a normal function has the right number of arguments. Second, a lot of code currently assumes that
(values) returns #&lt;unspecified&gt;, and that implies that <code>(apply values ())</code> does as well.
But it would be nice if <code>((lambda* ((x 1)) x) (values))</code> returned 1!
<!--
Is <code>(apply apply func arglist)</code> the same as <code>(apply func (apply values arglist))</code>,
or (leaving aside <code>'(()))</code>, <code>(func (apply values (apply values arglist)))</code>?
-->
</p>
</div>
<div class="indented">
<p>Since set! does not evaluate its first argument, and
there is no setter for "values", <code>(set! (values x) ...)</code> is not
the same as <code>(set! x ...)</code>. <code>(string-set! (values string) ...)</code>
works because string-set! does evaluate its first argument. <code>((values + 1 2) (values 3 4) 5)</code>
is 15, as anyone would expect.
</p>
</div>
<p>One problem with this way of handling multiple values involves cases where you can't
tell whether an expression will return multiple values. Then you have, for example, <code>(let ((val (expr)))...)</code>
and need to accept either a normal single value from <code>expr</code>, or one member of the
possible set of multiple values. In lint.scm, I'm currently handling this with lambda:
<code>(let ((val ((lambda args (car args)) (expr))))...)</code>, but this feels kludgey.
CL has nth-value which appears to do "the right thing" in this context; perhaps s7 needs
it too.
</p>
<p>A similar difficulty arises in <code>(if (expr) ...)</code> where <code>(expr)</code> might
return multiple values. CL (or sbcl anyway) treats this as if it were wrapped in <code>(nth-value 0 (expr))</code>.
Splicing the values in, on the other hand, could lead to disaster: there would be no way to tell from the code
that the if statement
was valid, or which branch would be taken! So, in those cases where a syntactic form evaluates
an argument, s7 follows CL, and uses only the first of the values (this affects if, when, unless, cond, and case).
</p>
</blockquote>
<div class="header" id="callwithexit1"><h4>call-with-exit, with-baffle and continuation?</h4></div>
<p><b><em class="def" id="callwithexit">call-with-exit</em></b> is call/cc without the ability to jump back into the original context,
similar to "return" in C. This
is cleaner than call/cc, and much faster.
</p>
<pre class="indented">(define-macro (block . body)
;; borrowed loosely from CL — predefine "return" as an escape
`(<em class="red">call-with-exit</em> (lambda (return) ,@body)))
(define-macro (while test . body) ; while loop with predefined break and continue
`(<em class="red">call-with-exit</em>
(lambda (break)
(let continue ()
(if (let () ,test)
(begin
(let () ,@body)
(continue))
(break))))))
(define-macro (switch selector . clauses) ; C-style case (branches fall through unless break called)
`(<em class="red">call-with-exit</em>
(lambda (break)
(case ,selector
,@(do ((clause clauses (cdr clause))
(new-clauses ()))
((null? clause) (reverse new-clauses))
(set! new-clauses (cons `(,(caar clause)
,@(cdar clause)
,@(map (lambda (nc)
(apply values (cdr nc))) ; doubly spliced!
(if (pair? clause) (cdr clause) ())))
new-clauses)))))))
(define (and-for-each func . args)
;; apply func to the first member of each arg, stopping if it returns #f
(<em class="red">call-with-exit</em>
(lambda (quit)
(apply for-each (lambda arglist
(if (not (apply func arglist))
(quit #&lt;unspecified&gt;)))
args))))
(define (find-if f . args) ; generic position-if is very similar
(<em class="red">call-with-exit</em>
(lambda (return)
(apply for-each (lambda main-args
(if (apply f main-args)
(apply return main-args)))
args))))
&gt; (find-if even? #(1 3 5 2))
<em class="gray">2</em>
&gt; (* (find-if &gt; #(1 3 5 2) '(2 2 2 3)))
<em class="gray">6</em>
</pre>
<p>
The call-with-exit function's argument (the "continuation") is only valid
within the call-with-exit function. In call/cc, you can save it, then call it later
to jump back, but if you try that with call-with-exit (from outside the call-with-exit function's body), you'll get an error.
This is similar to trying to read from a closed input port.
</p>
<p>The other side, so to speak, of call-with-exit, is <em class="def" id="withbaffle">with-baffle</em>.
Sometimes we need a normal call/cc, but want to make sure it is active
only within a given block of code.
Normally, if a continuation gets away, there's no telling when it might wreak havoc on us.
with-baffle blocks that — no continuation can jump into its body:
</p>
<pre class="indented">(let ((what's-for-breakfast ())
(bad-dog 'fido)) ; bad-dog wonders what's for breakfast?
(<em class="red">with-baffle</em> ; the syntax is (with-baffle . body)
(set! what's-for-breakfast
(call/cc
(lambda (biscuit?)
(set! bad-dog biscuit?) ; bad-dog smells a biscuit!
'biscuit!))))
(if (eq? what's-for-breakfast 'biscuit!)
(bad-dog 'biscuit!)) ; now, outside the baffled block, bad-dog wants that biscuit!
what's-for-breakfast) ; but s7 says "No!": baffled! ("continuation can't jump into with-baffle")
</pre>
<br>
<p><em class="def" id="continuationp">continuation?</em> returns #t if its argument is a continuation,
as opposed to a normal procedure. I don't know why Scheme hasn't had this function from
the very beginning, but it's needed if you want to write a continuable error
handler. Here is a sketch of the situation:
</p>
<pre class="indented">(catch #t
(lambda ()
(let ((res (call/cc
(lambda (ok)
(error 'cerror "an error" ok)))))
(display res) (newline)))
(lambda args
(when (and (eq? (car args) 'cerror)
(<em class="red">continuation?</em> (cadadr args)))
(display "continuing...")
((cadadr args) 2))
(display "oops")))
</pre>
<p>In a more general case, the error handler is separate from the
catch body, and needs a way to distinguish a real continuation
from a simple procedure.
</p>
<pre class="indented">(define (continuable-error . args)
(call/cc
(lambda (continue)
(apply error args))))
(define (continue-from-error)
(if (<em class="red">continuation?</em> ((owlet) 'continue)) ; might be #&lt;undefined&gt; or a function as in the while macro
(((owlet) 'continue))
'bummer))
</pre>
<!--
(define-macro (call-with-exit func)
(let ((tag (caadr func)))
`(catch ',tag
(lambda ()
(define-macro (,tag . body)
`(throw ',',tag ,@body))
,@(cddr func))
(lambda (type info)
(car info)))))
-->
<div class="header" id="format1"><h4>format, object-&gt;string</h4></div>
<p>object-&gt;string returns the string representation of its argument. Its optional second argument
can be #f or :display (use display), #t or :write (the default, use write), or :readable. In the latter case, object-&gt;string
tries to produce a string that can be evaluated via eval-string to return an object equal to the
original. The optional third argument sets the maximum desired string length; if object-&gt;string
notices it has exceeded this limit, it returns the partial string.
</p>
<pre class="indented">&gt; (object-&gt;string "hiho")
<em class="gray">"\"hiho\""</em>
&gt; (format #f "~S" "hiho")
<em class="gray">"\"hiho\""</em>
</pre>
<br>
<p>s7's <em class="def" id="format">format</em> function is very close to that in srfi-48.
</p>
<pre class="indented">&gt; (format #f "~A ~D ~F" 'hi 123 3.14)
<em class="gray">"hi 123 3.140000"</em>
</pre>
<p>The format directives (tilde chars) are:</p>
<pre class="indented">~% insert newline
~&amp; insert newline if preceding char was not newline
~~ insert tilde
~\n (tilde followed by newline): trim white space
~{ begin iteration (take arguments from a list, string, vector, or any other applicable object)
~} end iteration
~^ ~| jump out of iteration
~* ignore the current argument
~C print character (numeric argument = how many times to print it)
~P insert 's' if current argument is not 1 or 1.0 (use ~@P for "ies" or "y")
~A object-&gt;string as in display
~S object-&gt;string as in write
~B number-&gt;string in base 2
~O number-&gt;string in base 8
~D number-&gt;string in base 10 (~:D for ordinal)
~X number-&gt;string in base 16
~E float to string, (format #f "~E" 100.1) -&gt; "1.001000e+02", (%e in C)
~F float to string, (format #f "~F" 100.1) -&gt; "100.100000", (%f in C)
~G float to string, (format #f "~G" 100.1) -&gt; "100.1", (%g in C)
~T insert spaces (padding)
~N get numeric argument from argument list (similar to ~V in CL)
~W object-&gt;string with :readable (write readably: "serialization"; s7 is the intended reader)
</pre>
<p>The eight directives before ~W take the usual numeric arguments to specify field width and precision.
These can also be ~N or ~n in which case the numeric argument is read from the list of arguments:
</p>
<pre class="indented">(format #f "~ND" 20 1234) ; =&gt; (format "~20D" 1234)
<em class="gray">" 1234"</em>
</pre>
<p>
<code>(format #f ...)</code> simply returns the formatted string; <code>(format #t ...)</code>
also sends the string to the current-output-port. <code>(format () ...)</code> sends the output to
the current-output-port without returning the string (this mimics the other IO routines
such as display and newline). Other built-in port choices are *stdout* and *stderr*.
</p>
<blockquote>
<div class="indented">
<p>Floats can occur in any base, so:
</p>
<pre class="indented">&gt; #xf.c
<em class="gray">15.75</em>
</pre>
<p>This also affects format. In most Schemes, <code>(format #f "~X" 1.25)</code> is
an error. In CL, it is equivalent to using ~A which is perverse. But
</p>
<pre class="indented">&gt; (number-&gt;string 1.25 16)
<em class="gray">"1.4"</em>
</pre>
<p>and there's no obvious way to get the same effect from format unless we accept
floats in the "~X" case. So in s7,
</p>
<pre class="indented">&gt; (format #f "~X" 21)
<em class="gray">"15"</em>
&gt; (format #f "~X" 1.25)
<em class="gray">"1.4"</em>
&gt; (format #f "~X" 1.25+i)
<em class="gray">"1.4+1.0i"</em>
&gt; (format #f "~X" 21/4)
<em class="gray">"15/4"</em>
</pre>
<p>That is, the output choice matches the argument. A case that came up in the Guile mailing lists is:
<code>(format #f "~F" 1/3)</code>. s7 currently returns "1/3", but Clisp returns "0.33333334".
</p>
<br>
<p>The curly bracket directive applies to anything you can map over, not just lists:
</p>
<pre class="indented">&gt; (format #f "~{~C~^ ~}" "hiho")
<em class="gray">"h i h o"</em>
&gt; (format #f "~{~{~C~^ ~}~^...~}" (list "hiho" "test"))
<em class="gray">"h i h o...t e s t"</em>
&gt; (with-input-from-string (format #f "(~{~C~^ ~})" (format #f "~B" 1367)) read) ; integer-&gt;list
<em class="gray">(1 0 1 0 1 0 1 0 1 1 1)</em>
</pre>
<br>
<p>Since any sequence can be passed to ~{~}, we need a way to truncate output and represent
the rest of the sequence with "...", but ~^ only stops at the end of the sequence. ~|
is like ~^ but it also stops after it handles (*s7* 'print-length) elements and prints
"...". So, <code>(format #f "~{~A~| ~}" #(0 1 2 3 4))</code> returns "0 1 2 ..."
if (*s7* 'print-length) is 3.
</p>
</div>
</blockquote>
<blockquote>
<div class="indented">
<p>I added object-&gt;string to s7 before deciding to include format. format excites a
vague disquiet — why do we need this ancient unlispy thing?
We can almost replace it with:
</p>
<pre class="indented">(define (objects-&gt;string . objects)
(apply string-append (map (lambda (obj) (object-&gt;string obj #f)) objects)))
</pre>
<p>But how to handle lists (~{...~} in format), or columnized output (~T)?
I wonder whether formatted string output still matters outside a REPL. Even in that context,
a modern GUI leaves formatting decisions to a text or table widget.
</p>
<pre class="indented">(define-macro (string-&gt;objects str . objs)
`(with-input-from-string ,str
(lambda ()
,@(map (lambda (obj)
`(set! ,obj (eval (read))))
objs))))
</pre>
</div>
<div class="indented">
<p>format is a mess. It is trying to cram two different choices into its first ("port") argument.
Perhaps it should be split into format-&gt;string and format-&gt;port. format-&gt;string has no
port argument and returns a string. format-&gt;port writes to its port argument (which must be an output
port, not a boolean), and returns #f or maybe &lt;unspecified&gt;. Then:
</p>
<pre>(format #f ...) -&gt; (format-&gt;string ...)
(format () ...) -&gt; (format-&gt;port (current-output-port) ...)
(format #t ...) -&gt; (display (format-&gt;string ...))
(format port ...) -&gt; (display (format-&gt;string ...) port)
</pre>
<p>and the currently unavailable choice, format to port without creating a string:
<code>(format-&gt;port port ...)</code>.
</p>
</div>
<!--
:(objects->string "int: " 32 ", string: " "hi")
"int: 32, string: hi"
(define (cycle->string . objs)
(call-with-exit
(lambda (return)
(for-each
(lambda (obj)
(if (pair? obj)
(return
(string-append
(apply objects->string
(map (lambda (obj)
(if (pair? obj)
(car obj)
obj))
objs))
(apply cycle->string
(map (lambda (obj)
(if (pair? obj)
(cdr obj)
obj))
objs))))))
objs)
"")))
;;; (cycle->string ": " (list 1 2 3) " |")
:(objects->string "int: " 32 ", list with spaces: (" (cycle->string (list 1 2 3) " ") "), string: " "hi")
"int: 32, list with spaces: (1 2 3 ), string: hi"
:(let ((x 0) (y 0)) (string->objects "1 2" x y) (list x y))
(1 2)
-->
</blockquote>
<div class="header" id="hooks"><h4>hooks</h4></div>
<pre class="indented">(<em class="def" id="makehook">make-hook</em> . fields) ; make a new hook
(<em class="def" id="hookfunctions">hook-functions</em> hook) ; the hook's list of 'body' functions
</pre>
<p>A hook is a function created by make-hook, and called (normally from C) when something interesting happens.
In GUI toolkits hooks are called callback-lists, in CL conditions,
in other contexts watchpoints or signals. s7 itself has several
hooks: <a href="#errorhook">*error-hook*</a>, <a href="#readerrorhook">*read-error-hook*</a>,
<a href="#unboundvariablehook">*unbound-variable-hook*</a>, *missing-close-paren-hook*, *rootlet-redefinition-hook*,
<a href="#loadhook">*load-hook*</a>, and *autoload-hook*.
make-hook is:
</p>
<pre class="indented">(define (make-hook . args)
(let ((body ()))
(apply lambda* args
'(let ((result #&lt;unspecified&gt;))
(let ((e (curlet)))
(for-each (lambda (f) (f e)) body)
result))
())))
</pre>
<p>So the result of calling make-hook is a function (the lambda* that is applied to args above) that
contains a list of functions, 'body.
Each function in that list takes one argument, the hook.
Each time the hook itself is called, each of the body functions is called, and the value of 'result is returned.
That variable, and each of the hook's arguments are accessible to the hook's internal
functions by going through the environment passed to the internal functions. This is a bit circuitous;
here's a sketch:
</p>
<pre class="indented">&gt; (define h (make-hook '(a 32) 'b)) ; h is a function: (lambda* ((a 32) b) ...)
<em class="gray">h</em>
&gt; (set! (hook-functions h) ; this sets ((funclet h) 'body)
(list (lambda (hook) ; each hook internal function takes one argument, the environment
(set! (hook 'result) ; this is the "result" variable above
(format #f "a: ~S, b: ~S" (hook 'a) (hook 'b))))))
<em class="gray">(#&lt;lambda (hook)&gt;)</em>
&gt; (h 1 2) ; this calls the hook's internal functions (just one in this case)
<em class="gray">"a: 1, b: 2" ; we set "result" to this string, so it is returned as the hook application result</em>
&gt; (h)
<em class="gray">"a: 32, b: #f"</em>
</pre>
<p>In C, to make a hook:
</p>
<pre class="indented">hook = s7_eval_c_string("(make-hook '(a 32) 'b)");
s7_gc_protect(s7, hook);
</pre>
<p>And call it:
</p>
<pre class="indented">result = s7_call(s7, hook, s7_list(s7, 2, s7_make_integer(s7, 1), s7_make_integer(s7, 2)));
</pre>
<div class="indented">
<pre>(define-macro (hook . body) ; return a new hook with "body" as its body, setting "result"
`(let ((h (make-hook)))
(set! (hook-functions h) (list (lambda (h) (set! (h 'result) (begin ,@body)))))
h))
</pre>
</div>
<div class="header" id="variableinfo"><h4>variable info</h4></div>
<pre class="indented">(<em class="def" id="documentation">documentation</em> obj) ; old name: (procedure-documentation obj)
(<em class="def" id="signature">signature</em> obj) ; old: (procedure-signature obj)
(<em class="def" id="setter">setter</em> obj) ; old: (procedure-setter obj)
(<em class="def" id="arity">arity</em> obj) ; very old: (procedure-arity obj)
(<em class="def" id="aritablep">aritable?</em> obj num-args)
(funclet proc)
(<em class="def" id="proceduresource">procedure-source</em> proc)
</pre>
<p>
<b>funclet</b> returns
a procedure's environment.
</p>
<pre class="indented">&gt; (funclet (let ((b 32)) (lambda (a) (+ a b))))
<em class="gray">(inlet 'b 32)</em>
&gt; (funclet abs)
<em class="gray">(rootlet)</em>
</pre>
<p>
<b>setter</b> returns or sets the set function associated with a procedure (set-car! with car, for example).
</p>
<p>
<b>procedure-source</b> returns the procedure source (a list):
</p>
<pre class="indented">(define (procedure-arglist f) (cadr (procedure-source f)))
</pre>
<p>
<b>documentation</b> returns the documentation string associated with a procedure. This used to be
the initial string in the function's body (as in CL), but now it is the value of the '+documentation+ variable, if any,
in the procedure's local environment:
</p>
<pre class="indented">(define func
(let ((+documentation+ "helpful info"))
(lambda (a) a)))
&gt; (documentation func)
<em class="gray">"helpful info"</em>
</pre>
<p>Since documentation is a method, a function's documentation can be computed at run-time:
</p>
<pre class="indented">(define func
(let ((documentation (lambda (f) (format #f "this is func's funclet: ~S" (funclet f)))))
(lambda (x)
(+ x 1))))
&gt; (documentation func)
<em class="gray">"this is func's funclet: (inlet 'x ())"</em>
</pre>
<p>
<b>arity</b> takes any object and returns either #f if it is not applicable,
or a cons containing the minimum and maximum number of arguments acceptable. If the maximum reported
is a really big number, that means any number of arguments is ok.
<b>aritable?</b> takes two arguments, an object and an integer, and returns #t if the object can be
applied to that many arguments.
</p>
<pre class="indented">&gt; (define* (add-2 a (b 32)) (+ a b))
<em class="gray">add-2</em>
&gt; (procedure-source add-2)
<em class="gray">(lambda* (a (b 32)) (+ a b))</em>
&gt; (arity add-2)
<em class="gray">(0 . 2)</em>
&gt; (aritable? add-2 1)
<em class="gray">#t</em>
</pre>
<p>
<b>signature</b> is a list describing the argument types and returned value type
of the function. The first entry in the list is the return type, and the rest are
argument types. #t means any type is possible, and 'values means the function returns multiple values.
</p>
<pre class="indented">&gt; (signature round)
<em class="gray">(integer? real?)</em> ; round takes a real argument, returns an integer
&gt; (signature vector-ref)
<em class="gray">(#t vector? . #1=(integer? . #1#))</em> ; trailing args are all integers (indices)
</pre>
<p>If an entry is a list, any of the listed types can occur:
</p>
<pre class="indented">&gt; (signature char-position)
<em class="gray">((boolean? integer?) (char? string?) string? integer?)</em>
</pre>
<p>which says that the first argument to char-position can be a string or a character,
and the return type can be either boolean or an integer. If we know a function returns
multiple values, the return type (first element of the signature) can contain a list
describing each such value: <code>(define (f x) (values (floor x) (ceiling x)))</code>
could be <code>(((integer?) (integer?)) real?)</code>.
</p>
<p>
If the function is defined in scheme, its signature is the value of the '+signature+ variable
in its closure:
</p>
<pre class="indented">&gt; (define f1 (let ((+documentation+ "helpful info")
(+signature+ '(boolean? real?)))
(lambda (x)
(positive? x))))
<em class="gray">f1</em>
&gt; (documentation f1)
<em class="gray">"helpful info"</em>
&gt; (signature f1)
<em class="gray">(boolean? real?)</em>
</pre>
<p>We could do the same thing using methods:
</p>
<pre class="indented">&gt; (define f1 (let ((documentation (lambda (f) "helpful info"))
(signature (lambda (f) '(boolean? real?))))
(<em class="red">openlet</em> ; openlet alerts s7 that f1 has methods
(lambda (x)
(positive? x)))))
&gt; (documentation f1)
<em class="gray">"helpful info"</em>
&gt; (signature f1)
<em class="gray">(boolean? real?)</em>
</pre>
<p>signature could also be used to implement CL's 'the:
</p>
<pre class="indented">(define-macro (the value-type form)
`((let ((+signature+ (list ,value-type)))
(lambda ()
,form))))
(display (+ 1 (<em class="red">the</em> integer? (+ 2 3))))
</pre>
<p>but the optimizer currently doesn't know how to take advantage of this pattern.
</p>
<p>You can obviously add your own methods:
</p>
<pre class="indented">(define my-add
(let ((<em class="red">tester</em> (lambda ()
(if (not (= (my-add 2 3) 5))
(format #t "oops: (myadd 2 3) -&gt; ~A~%"
(my-add 2 3))))))
(lambda (x y)
(- x y))))
(define (auto-test) ; scan the symbol table for procedures with testers
(let ((st (symbol-table)))
(for-each (lambda (f)
(let* ((fv (and (defined? f)
(symbol-&gt;value f)))
(testf (and (procedure? fv)
((funclet fv) '<em class="red">tester</em>))))
(when (procedure? testf) ; found one!
(testf))))
st)))
&gt; (auto-test)
<em class="gray">oops: (myadd 2 3) -&gt; -1</em>
</pre>
<p>Even the setter can be set this way:
</p>
<pre class="indented">(define flocals
(let ((x 1))
(let ((+setter+ (lambda (val) (set! x val))))
(lambda ()
x))))
&gt; (flocals)
<em class="gray">1</em>
&gt; (setter flocals)
<em class="gray">#&lt;lambda (val)&gt;</em>
&gt; (set! (flocals) 32)
<em class="gray">32</em>
&gt; (flocals)
<em class="gray">32</em>
</pre>
<blockquote>
<br>
<div class="indented">
<pre>(define (for-each-subset func args)
;; form each subset of args, apply func to the subsets that fit its arity
(let subset ((source args)
(dest ())
(len 0))
(if (null? source)
(if (<em class="red">aritable?</em> func len) ; does this subset fit?
(apply func dest))
(begin
(subset (cdr source) (cons (car source) dest) (+ len 1))
(subset (cdr source) dest len)))))
</pre>
</div>
</blockquote>
<div class="header" id="evalstring"><h4>eval</h4></div>
<p>
<b>eval</b> evaluates its argument, a list representing a piece of code. It takes an optional
second argument, the environment in which the evaluation should take place. <b>eval-string</b>
is similar, but its argument is a string.
</p>
<pre class="indented">&gt; (eval '(+ 1 2))
<em class="gray">3</em>
&gt; (eval-string "(+ 1 2)")
<em class="gray">3</em>
</pre>
<p>Leaving aside a few special cases, eval-string could be defined:
</p>
<pre class="indented">(define-macro* (eval-string x e)
`(eval (with-input-from-string ,x read) (or ,e (curlet))))
</pre>
<div class="header" id="IO"><h4>IO and other OS functions</h4></div>
<p>Besides files, ports can also represent strings and functions. The string port functions
are:
</p>
<pre class="indented">(with-output-to-string thunk) ; open a string port as current-output-port, call thunk, return string
(with-input-from-string string thunk) ; open string as current-input-port, call thunk
(call-with-output-string proc) ; open a string port, apply proc to it, return string
(call-with-input-string string proc) ; open string as current-input-port, apply proc to it
(open-output-string) ; open a string output port
(get-output-string port clear) ; return output accumulated in the string output port
(open-input-string string) ; open a string input port reading string
(<em class="def" id="openinputfunction">open-input-function</em> function) ; open a function input port
(<em class="def" id="openoutputfunction">open-output-function</em> function) ; open a function output port
</pre>
<pre class="indented">&gt; (let ((result #f)
(p (<em class="red">open-output-string</em>)))
(format p "this ~A ~C test ~D" "is" #\a 3)
(set! result (<em class="red">get-output-string</em> p))
(close-output-port p)
result)
<em class="gray">"this is a test 3"</em>
</pre>
<p>In get-output-string, if the optional 'clear' argument is #t, the port is cleared (the default in r7rs I think).
Other functions:
</p>
<ul>
<li>read-byte and write-byte: binary IO
</li><li>read-line: line-at-a-time reads, optional second argument #t to include the newline
</li><li>read-string (r7rs)
</li><li>current-error-port, set-current-error-port
</li><li><em class="def" id="portfilename">port-filename</em> and
<em class="def" id="portlinenumber">port-line-number</em> (input ports)
</li><li><em class="def" id="portposition">port-position</em> (input port, settable)
</li><li><em class="def" id="portfile">port-file</em>
</li></ul>
<p>Use length to get the length in bytes of an input port's file or string.
port-line-number is settable (for fancy *#readers*).
<b>port-position</b> is the position in bytes of the reader in the port. It is settable.
<b>port-file</b> is intended for use with the *libc* library. It returns a c-pointer
containing the FILE* pointer associated with the file port (except in Windows):
</p>
<pre class="indented">(call-with-input-file "s7test.scm"
(lambda (p)
(with-let (sublet *libc* :file (<em class="red">port-file</em> p))
(fseek file 1000 SEEK_SET))))
</pre>
<p>The variable (*s7* 'print-length) sets
the upper limit on how many elements of a sequence are printed by object-&gt;string and format.
When running s7 behind a GUI, you often want input to come from and output to go to
arbitrary widgets. The function ports provide a way to redirect IO in C. See <a href="#functionportexample">below</a>
for an example.
</p>
<p>The function ports call a function rather than reading or writing the data to a string or file.
See nrepl.scm and s7test.scm for examples. The function-port function is accessible as
<code>((object-&gt;let function-port) 'function)</code>. These ports are even more esoteric than
their C-side cousins. An example that traps current-ouput-port output:
</p>
<pre class="indented">(let* ((str ())
(stdout-wrapper (open-output-function
(lambda (c)
(set! str (cons c str))))))
(let-temporarily (((current-output-port) stdout-wrapper))
(write-char #\a)
...))
</pre>
<blockquote>
<div class="indented">
<p>
The end-of-file object is #&lt;eof&gt;.
When the read function encounters the constant #&lt;eof&gt; it returns #&lt;eof&gt;.
This is neither inconsistent nor unusual: read returns either a form or
#&lt;eof&gt;. If read encounters a form that contains #&lt;eof&gt;, it returns a
form containing #&lt;eof&gt;, just as with any other constant.
</p>
<pre class="indented">&gt; (with-input-from-string "(or x #&lt;eof&gt;)" read)
<em class="gray">(or x #&lt;eof&gt;)</em>
&gt; (eof-object? (with-input-from-string "'#&lt;eof&gt;" read))
<em class="gray">#f</em>
</pre>
<p>If read hits the end of
the input while reading a form, it raises an error (e.g. "missing close paren").
If it encounters
#&lt;eof&gt; all by itself at the top level (this never happens),
it returns that #&lt;eof&gt;. But this is specific to read, not (for example) load:
</p>
<pre class="indented">;; say we have "t234.scm" with:
(display "line 1") (newline)
#&lt;eof&gt;
(display "line 2") (newline)
;; end of t234.scm
&gt; (load "t234.scm")
<em class="gray">line 1
line 2</em>
(with-input-from-file "t234.scm"
(lambda ()
(do ((c (read) (read)))
((eof-object? c))
(eval c))))
<em class="gray">line 1</em>
</pre>
<p>
Built-in #&lt;eof&gt; has lots of
uses, and as far as I can see, no drawbacks. For example,
it is common to call
read (or one of its friends) in a loop which first checks for #&lt;eof&gt;, then falls into
a case statement. In s7, we can dispense with the extra if (and let), and include
the #&lt;eof&gt; in the case statement: <code>(case (read-char) ((#&lt;eof&gt;) (quit-reading)) ((#\a)...))</code>.
Another example: <code>(or (eof-object? x) (eqv x 24)...)</code> can be instead: <code>(memv x '(#&lt;eof&gt; 24 ...)</code>.
</p>
</div>
<div class="indented">
<p>
The default IO ports are *stdin*, *stdout*, and *stderr*.
*stderr* is useful if you want to make sure output is flushed out immediately.
The default output port is *stdout* which buffers output until a newline is seen.
</p>
</div>
<div class="indented">
<p>An environment can be treated as an IO port, providing what Guile calls a "soft port":
</p>
<pre class="indented">(define (call-with-input-vector v proc)
(let ((i -1))
(proc (openlet (inlet 'read (lambda (p) (v (set! i (+ i 1)))))))))
</pre>
<p>Here the IO port is an open environment that redefines the "read" function so that it
returns the next element of a vector. See stuff.scm for call-with-output-vector.
The "proc" argument above can also be a macro, giving you a kludgey way to get around
the dumb "lambda". Here are more useful examples:
</p>
<pre class="indented">(openlet ; a soft port for format that sends its output to *stderr* and returns the string
(inlet 'format (lambda (port str . args)
(apply format *stderr* str args))))
(define (open-output-log name)
;; return a soft output port that does not hold its output file open
(define (logit name str)
(let ((p (open-output-file name "a")))
(display str p)
(close-output-port p)))
(openlet
(inlet :name name
:format (lambda (p str . args) (logit (p 'name) (apply format #f str args)))))))
:write (lambda (obj p) (logit (p 'name) (object-&gt;string obj #t)))
:display (lambda (obj p) (logit (p 'name) (object-&gt;string obj #f)))
:write-string (lambda (str p) (logit (p 'name) str))
:write-char (lambda (ch p) (logit (p 'name) (string ch)))
:newline (lambda (p) (logit (p 'name) (string #\newline)))
:output-port? (lambda (p) #t)
:close-output-port (lambda (p) #f)
:flush-output-port (lambda (p) #f)
(let ((p (open-output-log "logit.data")))
(format p "this is a test~%")
(format p "line: ~A~%" 2))
</pre>
</div>
<div class="indented">
<p>binary-io.scm in the Snd package has functions that read and write integers and floats in
both endian choices in a variety of sizes.
</p>
</div>
</blockquote>
<p>If the compile time switch WITH_SYSTEM_EXTRAS is 1, several additional OS-related and
file-related functions are built-in. This is work in progress; currently this switch
adds:
</p>
<pre class="indented">(directory? str) ; return #t if str is the name of a directory
(file-exists? str) ; return #t if str names an existing file
(delete-file str) ; try to delete the file, return 0 is successful, else -1
(getenv var) ; return the value of an environment variable: (getenv "HOME")
(directory-&gt;list dir) ; return contents of directory as a list of strings (if HAVE_DIRENT_H)
(system command) ; execute command
</pre>
<p>But maybe this is not needed; see <a href="#cload">cload.scm</a> below for
a more direct approach.
</p>
<div class="header" id="errors"><h4>error handling</h4></div>
<pre class="indented">(error tag . info) ; signal an error of type tag with addition information
(catch tag body err) ; if error of type tag signalled in body (a thunk), call err with tag and info
(throw tag . info) ; jump to corresponding catch
</pre>
<p>s7's error handling mimics that of Guile. An error is signalled
via the error function, and can be trapped and dealt with via <em class="def" id="catch">catch</em>.
</p>
<pre class="indented">&gt; (<em class="red">catch</em> 'wrong-number-of-args
(lambda () ; code protected by the catch
(abs 1 2))
(lambda args ; the error handler
(apply format #t (cadr args))))
<em class="gray">"abs: too many arguments: (1 2)"</em>
&gt; (<em class="red">catch</em> 'division-by-zero
(lambda () (/ 1.0 0.0))
(lambda args (string-&gt;number "+inf.0")))
<em class="gray">+inf.0</em>
(define-macro (catch-all . body)
`(<em class="red">catch</em> #t (lambda () ,@body) (lambda args args)))
</pre>
<p>
catch has 3 arguments: a tag indicating what error to catch (#t = anything),
the code, a thunk, that the catch is protecting, and the function to call
if a matching error occurs during the evaluation of the thunk. The error handler
takes a rest argument which will hold whatever the error function chooses to pass it.
The error function itself takes at least 2 arguments, the error type, a symbol,
and the error message. There may also be other arguments describing the error.
The default action, in the absence of any catch, is to treat the message as
a format control string, apply format to it and the other arguments, and
send that info to the current-error-port:
</p>
<pre class="indented">(catch #t
(lambda ()
(error 'oops))
(lambda args
(format (current-error-port) "~A: ~A~%~A[~A]:~%~A~%"
(car args) ; the error type
(apply format #f (cadr args)) ; the error info
(port-filename) (port-line-number); error file location
(stacktrace)))) ; and a stacktrace
</pre>
<blockquote>
<div class="indented">
<p>Normally when reading a file, we have to check for #&lt;eof&gt;, but we can let s7
do that:
</p>
<pre>(define (copy-file infile outfile)
(call-with-input-file infile
(lambda (in)
(call-with-output-file outfile
(lambda (out)
(<em class="red">catch</em> 'wrong-type-arg ; s7 raises this error if write-char gets #&lt;eof&gt;
(lambda ()
(do () () ; read/write until #&lt;eof&gt;
(write-char (read-char in) out)))
(lambda err
outfile)))))))
</pre>
<p>catch is not limited to error handling:
</p>
<pre class="indented">(define (map-with-exit func . args)
;; map, but if early exit taken, return the accumulated partial result
;; func takes escape thunk, then args
(let* ((result ())
(escape-tag (gensym))
(escape (lambda () (throw escape-tag))))
(<em class="red">catch</em> escape-tag
(lambda ()
(let ((len (apply max (map length args))))
(do ((ctr 0 (+ ctr 1)))
((= ctr len) (reverse result)) ; return the full result if no throw
(let ((val (apply func escape (map (lambda (x) (x ctr)) args))))
(set! result (cons val result))))))
(lambda args
(reverse result))))) ; if we catch escape-tag, return the partial result
(define (truncate-if func lst)
(map-with-exit (lambda (escape x) (if (func x) (escape) x)) lst))
&gt; (truncate-if even? #(1 3 5 -1 4 6 7 8))
<em class="gray">(1 3 5 -1)</em>
</pre>
<p>But this is less useful than map (it can't map over a hash-table for example),
and is mostly reimplementing built-in code. Perhaps s7 should have an extension
of map (and more usefully, for-each) that is patterned after dynamic-wind:
<code>(dynamic-for-each init-func main-func end-func . args)</code> where init-func
is called with one argument, the length of the shortest sequence argument (for-each
and map know this in advance); main-func takes n arguments where n matches
the number of sequences passed; and end-func is called even if a jump out of main-func
occurs (like dynamic-wind in this regard). In the dynamic-map case, the end-func
takes one argument, the current, possibly partial, result list. dynamic-for-each
then could easily (but maybe not efficiently) implement generic functions such as -&gt;list, -&gt;vector, and
-&gt;string (converting any sequence into a sequence of some other type).
map-with-exit would be
</p>
<pre class="indented">(define (map-with-exit func . args)
(let ((result ()))
(call-with-exit
(lambda (quit)
(apply dynamic-map #f ; no init-func in this case
(lambda main-args
(apply func quit main-args))
(lambda (res)
(set! result res))
args)))
result))
</pre>
</div>
<div class="indented">
<p>With all the lambda boilerplate, nested catches are hard to read:
</p>
<pre class="indented">(catch #t
(lambda ()
(catch 'division-by-zero
(lambda ()
(catch 'wrong-type-arg
(lambda ()
(abs -1))
(lambda args (format () "got a bad arg~%") -1)))
(lambda args 0)))
(lambda args 123))
</pre>
<p>Perhaps we need a macro:
</p>
<pre class="indented">(define-macro (catch-case clauses . body)
(let ((base (cons 'lambda (cons () body))))
(for-each (lambda (clause)
(let ((tag (car clause)))
(set! base `(lambda ()
(catch ',(or (eq? tag 'else) tag)
,base
,@(cdr clause))))))
clauses)
(caddr base)))
;;; the code above becomes:
(catch-case ((wrong-type-arg (lambda args (format () "got a bad arg~%") -1))
(division-by-zero (lambda args 0))
(else (lambda args 123)))
(abs -1))
</pre>
<p>This is similar to r7rs scheme's "guard", but I don't want a pointless thunk for the body of the catch.
Along the same lines:
</p>
<pre class="indented">(define (catch-if test func err)
(catch #t
func
(lambda args
(apply (if (test (car args)) err throw) args)))) ; if not caught, re-raise the error via throw
(define (catch-member lst func err)
(catch-if (lambda (tag) (member tag lst)) func err))
(define-macro (catch* clauses . error)
;; try each clause until one evaluates without error, else error:
;; (macroexpand (catch* ((+ 1 2) (- 3 4)) 'error))
;; (catch #t (lambda () (+ 1 2)) (lambda args (catch #t (lambda () (- 3 4)) (lambda args 'error))))
(define (builder lst)
(if (null? lst)
(apply values error)
`(catch #t (lambda () ,(car lst)) (lambda args ,(builder (cdr lst))))))
(builder clauses))
</pre>
</div>
<!--
(define (or-catch . funks)
(call-with-exit
(lambda (return)
(for-each
(lambda (f)
(catch #t
(lambda ()
(return (f)))
(lambda args
(case (car args)
((wrong-type-arg) ...)
(...)
(else (apply throw args))))))
funks))))
-->
</blockquote>
<p>When an error is encountered, and when s7 is interrupted via <a href="#beginhook">begin_hook</a>,
(<em class="def" id="owlet">owlet</em>) returns an environment that contains
additional info about that error:
</p>
<ul>
<li>error-type: the error type or tag, e.g. 'division-by-zero
</li><li>error-data: the message or information passed by the error function
</li><li>error-code: the code that s7 thinks triggered the error
</li><li>error-line: the line number of that code
</li><li>error-file: the file name of that code
</li><li>error-history: previous evaluations leading to the error (a circular list)
</li></ul>
<p>The error-history field depends on the compiler flag WITH_HISTORY. See ow! in
stuff.scm for one way to display this data. The *s7* field 'history-size sets the size of the buffer.
</p>
<blockquote>
<div class="indented">
<p>To find a variable's value at the point of the error: <code>((owlet) var)</code>.
To list all the local bindings from the error outward:
</p>
<pre class="indented">(do ((e (outlet (owlet)) (outlet e)))
((eq? e (rootlet)))
(format () "~{~A ~}~%" e))
</pre>
<p>To see the current s7 stack, <code>(stacktrace)</code>. You'll probably
want to use this in conjunction with *error-hook*.
To evaluate the error handler in the environment of the error:
</p>
<pre class="indented">(let ((x 1))
(catch #t
(lambda ()
(let ((y 2))
(error 'oops)))
(lambda args
(with-let (sublet (owlet) :args args) ; add the error handler args
(list args x y))))) ; we have access to 'y'
</pre>
<p>To limit the maximum size of the stack, set (*s7* 'max-stack-size).
</p>
</div>
</blockquote>
<p>The hook <em class="def" id="errorhook">*error-hook*</em> provides a way to specialize error reporting.
Its arguments are named 'type and 'data.
</p>
<pre class="indented">(set! (hook-functions *error-hook*)
(list (lambda (hook)
(apply format *stderr* (hook 'data))
(newline *stderr*))))
</pre>
<p><em class="def" id="readerrorhook">*read-error-hook*</em> provides two hooks into the reader.
A major problem when reading code written for other Schemes is that each Scheme provides
a plethora of idiosyncratic #-names (even special character names), and \ escapes in string
constants. *read-error-hook* provides a way to handle these weird cases. If a #-name
is encountered that s7 can't deal with, *read-error-hook* is called with two arguments,
#t and the string representing the constant. If you set (hook 'result), that result is
returned to the reader. Otherwise a 'read-error is raised and you drop into the error handler.
Similarly, if some bizaare \ use occurs, *read-error-hook* is called with two arguments,
#f and the offending character. If you return a character, it is passed to the reader;
otherwise you get an error. lint.scm has an example.
</p>
<p><em class="def" id="rootletredefinitionhook">*rootlet-redefinition-hook*</em> is called when
a top-level variable is redefined (via define and friends, not set!).
</p>
<pre class="indented">(set! (hook-functions *rootlet-redefinition-hook*)
(list (lambda (hook)
(format *stderr* "~A ~A~%" (hook 'name) (hook 'value)))))
</pre>
<p>will print out the variable's name and the new value.
</p>
<div class="indented">
<p>The s7-built-in catch tags are 'wrong-type-arg, 'syntax-error, 'read-error, 'unbound-variable,
'out-of-memory, 'wrong-number-of-args, 'format-error, 'out-of-range, 'division-by-zero, 'io-error, and 'bignum-error.
</p>
</div>
<div class="header" id="autoload"><h4>autoload</h4></div>
<!-- INDEX autoload:autoload -->
<p>
If s7 encounters an unbound variable, it first looks to see if it has any autoload information about it.
This info can be declared via <em class="def">autoload</em>, a function of two arguments, the
symbol that triggers the autoload, and either a filename or a function. If a filename, s7
loads that file; if a function, it is called with one argument, the current (calling) environment.
</p>
<pre class="indented">(autoload 'channel-distance "dsp.scm")
;; now if we subsequently call channel-distance but forget to load "dsp.scm" first,
;; s7 loads "dsp.scm" itself, and uses its definition of channel-distance.
;; The C-side equivalent is s7_autoload.
;; here is the cload.scm case, loading j0 from the math library if it is called:
(autoload 'j0
(lambda (e)
(unless (provided? 'cload.scm)
(load "cload.scm"))
(c-define '(double j0 (double)) "" "math.h")
(varlet e 'j0 j0)))
</pre>
<p>The entity (hash-table or environment probably) that holds the autoload info is named *autoload*.
If after checking autoload, the symbol is still unbound, s7 calls
<em class="def" id="unboundvariablehook">*unbound-variable-hook*</em>.
The offending symbol is named 'variable in the hook environment.
If after running *unbound-variable-hook*, the symbol is still unbound,
s7 calls the error handler.
</p>
<p>The autoloader knows about s7 environments used as libraries, so, for example,
you can <code>(autoload 'j0 "libm.scm")</code>, then use j0 in scheme code. The first
time s7 encounters j0, j0 is undefined, so
s7 loads libm.scm. That load returns the C math library as the environment *libm*.
s7 then automatically looks for j0 in *libm*, and defines it for you.
So the result is the same as if you had defined j0 yourself in C code.
You can use the r7rs library mechanism here, or with-let, or
whatever you want! (In Snd, libc, libm, libdl, and libgdbm are automatically
tied into s7 via autoload, so if you call, for example, frexp, libm.scm
is loaded, and frexp is exported from the *libm* environment, then the
evaluator soldiers on, as if frexp had always been defined in s7).
You can also import all of (say) gsl into the current environment
via <code>(varlet (curlet) *libgsl*)</code>.
</p>
<div class="header" id="constants"><h4>define-constant</h4></div>
<p>
<b><em class="def" id="defineconstant">define-constant</em></b> defines a symbol whose value is always the same (within the current lexical scope),
<b><em class="def" id="constantp">constant?</em></b> returns #t if its argument is a constant,
<b><em class="def" id="immutableb">immutable!</em></b> declares a sequence to be immutable (its elements can't be changed), and
<b><em class="def" id="immutablep">immutable?</em></b> returns #t if its argument is immutable.
</p>
<pre class="indented">&gt; (define v (immutable! (vector 1 2 3)))
<em class="gray">#(1 2 3)</em>
&gt; (vector-set! v 0 23)
<em class="red">error</em><em class="gray">: can't vector-set! #(1 2 3) (it is immutable)</em>
&gt; (immutable? v)
<em class="gray">#t</em>
&gt; (define-constant var 32)
<em class="gray">var</em>
&gt; (set! var 1)
<em class="gray">;set!: can't alter immutable object: var</em>
&gt; (let ((var 1)) var)
<em class="gray">;can't bind or set an immutable object: var, line 1</em>
</pre>
<p>There is one complication here. <code>(immutable! let)</code> closes the let in the sense
that you can't add locals to or delete locals from the let. You can still set! the locals. To make
the locals themselves immutable:
</p>
<pre class="indented">(define (vars-immutable! L)
(with-let L
(for-each (lambda (f)
(immutable! (car f)))
(curlet)))
L)
</pre>
<p>Now <code>(vars-immutable! let)</code> makes it an error to set! any of the locals, but you
can add locals to the let.
You can speed up evaluation by doing this because it tells the optimizer that the current entries in the let will not change.
To completely petrify the let, <code>(immutable! (vars-immutable! let))</code>.
To make a function's documentation immutable: <code>(with-let (funclet 'f2) (immutable! '+documentation+))</code>,
and similarly for other function closure entries.
</p>
<p>define-constant blocks any attempt to set! or shadow the constant (lexically speaking of course),
so local constants behave as you'd expect:
</p>
<pre class="indented">&gt; (let () (define-constant x 3) (let ((x 32)) x))
<em class="red">error</em><em class="gray">: can't bind an immutable object: ((x 32))</em>
&gt; (let ((x 3)) (set! x (let () (define-constant x 32) x))) ; outer x is not a constant
32
</pre>
<p>But watch out for deferred bindings:
</p>
<pre class="indented">&gt; (define (func a) (let ((cvar (+ a 1))) cvar))
<em class="gray">func</em>
&gt; (define-constant cvar 23) ; cvar is now globally constant so it can't be shadowed
<em class="gray">23</em>
&gt; (func 1) ; here we're trying to shadow cvar
<em class="red">error</em><em class="gray">: can't bind an immutable object: ((cvar (+ a 1)))</em>
&gt; (let ((x 1))
(define z (let ()
(define-constant x 3)
(lambda (y)
(let ((x y)) ; this x is the inner constant x
x))))
(z 1)) ; so this is an error even though the outer x is not a constant
<em class="red">error</em><em class="gray">: can't bind an immutable object: ((x y))</em>
</pre>
<p>
A function can also be a constant. In some cases, the optimizer can take advantage
of this information to speed up function calls.
</p>
<p>Constants are very similar to things such as keywords (no set, always return itself as its value),
variable trace (informative function upon set or keeping a history of past values), typed variables (restricting a
variable's values or doing automatic conversions upon set), and notification upon set (either in Scheme
or in C; I wanted this many years ago in Snd). The notification function is especially useful if
you have a Scheme variable and want to reflect any change in its value immediately in C (see <a href="#notify">below</a>).
In s7, setter sets this function.
</p>
<p>Each environment is a set of symbols and their associated values.
setter places a function (or macro) between a symbol
and its value in a given environment. The setter function takes two
arguments, the symbol and the new value, and
returns the value that is actually set. If the setter function accepts a
third argument, the current (symbol-relative) environment
is also passed (the weird argument order is an historical artifact).
</p>
<pre class="indented">(define e ; save environment for use below
(let ((x 3) ; will always be an integer
(y 3) ; will always keep its initial value
(z 3)) ; will report set!
(set! (setter 'x) (lambda (s v) (if (integer? v) v x)))
(set! (setter 'y) (lambda (s v) y))
(set! (setter 'z) (lambda (s v) (format *stderr* "z ~A -&gt; ~A~%" z v) v))
(set! x 3.3) ; x does not change because 3.3 is not an integer
(set! y 3.3) ; y does not change
(set! z 3.3) ; prints "z 3 -&gt; 3.3"
(curlet)))
&gt; e
<em class="gray">(inlet 'x 3 'y 3 'z 3.3)</em>
&gt;(begin (set! (e 'x) 123) (set! (e 'y) #()) (set! (e 'z) #f))
;; prints "z 3.3 -&gt; #f"
&gt; e
<em class="gray">(inlet 'x 123 'y 3 'z #f)</em>
&gt; (define-macro (reflective-let vars . body)
`(let ,vars
,@(map (lambda (vr)
`(set! (setter ',(car vr))
(lambda (s v)
(format *stderr* "~S -&gt; ~S~%" s v)
v)))
vars)
,@body))
<em class="gray">reflective-let</em>
&gt; (reflective-let ((a 1)) (set! a 2))
<em class="gray">2</em> ; prints "a -&gt; 2"
&gt;(let ((a 0))
(set! (setter 'a)
(let ((history (make-vector 3 0))
(position 0))
(lambda (s v)
(set! (history position) v)
(set! position (+ position 1))
(if (= position 3) (set! position 0))
v)))
(set! a 1)
(set! a 2)
((funclet (setter 'a)) 'history))
<em class="gray">#(1 2 0)</em>
</pre>
<p>See also typed-let in stuff.scm.
define-constant is more restrictive than a setter that raises an error: the latter
does not block nested (possibly non-constant) bindings of the symbol. The setters
are kind of ugly. Here's a macro that lets you put the let variable's setter after
the initial value:
</p>
<pre class="indented">(define-macro (let/setter vars . body)
;; (let/setter ((name value [setter])...) ...)
(let ((setters (map (lambda (binding)
(and (pair? (cddr binding))
(caddr binding)))
vars))
(gsetters (gensym)))
`(let ((,gsetters (list ,@setters))
,@(map (lambda (binding)
(list (car binding) (cadr binding)))
vars))
,@(do ((s setters (cdr s))
(var vars (cdr var))
(i 0 (+ i 1))
(result ()))
((null? s)
(reverse result))
(if (car s)
(set! result (cons `(set! (setter (quote ,(caar var))) (list-ref ,gsetters ,i)) result))))
,@body)))
(let ((a 3))
(let/setter ((a 1)
(b 2 (lambda (s v)
(+ v a)))) ; this is the outer "a"
(set! a (+ a 1))
(set! b (+ a b))
(display (list a b)) (newline)))
</pre>
<div class="header" id="miscellanea"><h4>marvels and curiousities</h4></div>
<p>
<b><em class="def" id="loadpath">*load-path*</em></b> is a list of directories to search when loading a file.
<b><em class="def" id="loadhook">*load-hook*</em></b> is a hook whose functions are called just before a file is loaded.
The hook function argument, named 'name, is the filename.
While loading, port-filename and
port-line-number of the current-input-port can tell you
where you are in the file. This data is also available after loading via <em class="def" id="pairlinenumber">pair-line-number</em>
and <em class="def" id="pairfilename">pair-filename</em>.
</p>
<pre class="indented">(set! (hook-functions *load-hook*)
(list (lambda (hook)
(format () "loading ~S...~%" (hook 'name)))))
(set! (hook-functions *load-hook*)
(cons (lambda (hook)
(format *stderr* "~A~%"
(system (string-append "./snd lint.scm -e '(begin (lint \"" (hook 'name) "\") (exit))'") #t)))
(hook-functions *load-hook*)))
</pre>
<p>Here's a *load-hook* function that adds the loaded file's directory
to the *load-path* variable so that subsequent loads don't need to specify
the directory:
</p>
<pre class="indented">(set! (hook-functions <em class="red">*load-hook*</em>)
(list (lambda (hook)
(let ((pos -1)
(filename (hook 'name)))
(do ((len (length filename))
(i 0 (+ i 1)))
((= i len))
(if (char=? (filename i) #\/)
(set! pos i)))
(if (positive? pos)
(let ((directory-name (substring filename 0 pos)))
(if (not (member directory-name <em class="red">*load-path*</em>))
(set! <em class="red">*load-path*</em> (cons directory-name *load-path*)))))))))
</pre>
<div class="separator"></div>
<p>As in Common Lisp, <b><em class="def" id="featureslist">*features*</em></b> is a list describing what is currently loaded into s7. You can
check it with the <b>provided?</b> function, or add something to it with <b>provide</b>. In my version of Snd,
at startup *features* is:
</p>
<pre class="indented">&gt; *features*
<em class="gray">(snd-20.0 snd20 snd audio snd-s7 snd-motif gsl alsa xm clm6 clm sndlib linux
autoload dlopen history complex-numbers system-extras overflow-checks ratio s7-8.11 s7)</em>
&gt; (provided? 'gsl)
<em class="gray">#t</em>
</pre>
<p>The other side of <code>provide</code> is <em class="def" id="requires7">require</em>.
<code>(require . things)</code> finds each thing
(via <a href="#autoload">autoload</a>), and if that thing has not already been loaded,
loads the associated file. <code>(require integrate-envelope)</code>
loads "env.scm", for example; in this case it is equivalent to
simply using integrate-envelope, but if placed at the start of
a file, it documents that you're using that function.
In the more normal use, <code>(require snd-ws.scm)</code>
looks for the file that has <code>(provide 'snd-ws.scm)</code>
and if it hasn't already been loaded, loads it ("ws.scm" in this case).
To add your own files to this mechanism, add the provided symbol via <a href="#autoload">autoload</a>.
Since load can take an environment argument, *features* and its friends follow block structure.
So, for example, (let () (require stuff.scm) ...) loads "stuff.scm" into the local environment,
not globally.
</p>
<div class="indented">
<p>*features* is an odd variable: it is spread out across the chain of environments, and
can hold features in an intermediate environment that aren't in subsequent (nested) values.
One simple way this can happen is to load a file in a let, but cause the load to happen
at the top level. The provided entities get added to the top-level *features* value,
not the current let's value, but they are actually accessible locally. So *features*
is a merge of all its currently accessible values, vaguely like call-next-method in
CLOS. We can mimic this behavior:
</p>
<pre class="indented">(let ((x '(a)))
(let ((x '(b)))
(define (transparent-memq sym var e)
(let ((val (symbol-&gt;value var e)))
(or (and (pair? val)
(memq sym val))
(and (not (eq? e (rootlet)))
(transparent-memq sym var (outlet e))))))
(let ((ce (curlet)))
(list (transparent-memq 'a 'x ce)
(transparent-memq 'b 'x ce)
(transparent-memq 'c 'x ce)))))
'((a) (b) #f)
</pre>
</div>
<!--
(let ((spread-function (lambda (x e) (+ x 1))))
(let ((spread-function (lambda (x e) (+ x 2))))
(let ((x 3))
(define (spread-function x e)
(let ((val x))
(do ((e1 e (outlet e1)))
((eq? e1 (rootlet)) val)
(let ((f (symbol->value 'spread-function e1)))
(if (procedure? f)
(set! val (f val (rootlet))))))))
(spread-function x (curlet)))))
6
-->
<div class="separator"></div>
<p>Multi-line and in-line comments can be enclosed in #| and |#.
<code>(+ #| add |# 1 2)</code>.
</p>
<div class="indented">
<p>Leaving aside this case and the booleans, #f and #t, you can specify your own handlers for
tokens that start with "#". <b><em class="def" id="sharpreaders">*#readers*</em></b> is a list of pairs: <code>(char . func)</code>.
"char" refers to the first character after the sharp sign (#). "func" is a function of
one argument, the string that follows the #-sign up to the next delimiter. "func" is called
when #&lt;char&gt; is encountered. If it returns something other than #f, the #-expression
is replaced with that value. Scheme has several predefined #-readers for cases such
as #b1, #\a, and so on, but you can override these if you like. If the string
passed in is not the complete #-expression, the function can use read-char or read to get the
rest. Say we'd like #t&lt;number&gt; to interpret the number in base 12:
</p>
<pre class="indented">(set! *#readers* (cons (cons #\t (lambda (str) (string-&gt;number (substring str 1) 12))) *#readers*))
&gt; #tb
<em class="gray">11</em>
&gt; #t11.3
<em class="gray">13.25</em>
</pre>
<p>Or have #c(real imag) be read as a complex number:
</p>
<pre class="indented">(set! *#readers* (cons (cons #\c (lambda (str) (apply complex (read)))) *#readers*))
&gt; #c(1 2)
<em class="gray">1+2i</em>
</pre>
<p>Here's a reader macro for read-time evaluation:
</p>
<pre class="indented">(set! *#readers*
(cons (cons #\. (lambda (str)
(and (string=? str ".") (eval (read)))))
*#readers*))
&gt; '(1 2 #.(* 3 4) 5)
<em class="gray">(1 2 12 5)</em>
</pre>
<p>And a reader that implements #[...]# for literal hash-tables:
</p>
<pre class="indented">&gt; (set! *#readers*
(list (cons #\[ (lambda (str)
(let ((h (make-hash-table)))
(do ((c (read) (read)))
((eq? c ']#) h) ; ]# is a symbol from the reader's point of view
(set! (h (car c)) (cdr c))))))))
<em class="gray">((#\[ . #&lt;lambda (str)&gt;))</em>
&gt; #[(a . 1) (b . #[(c . 3)]#)]#
<em class="gray">(hash-table '(b . (hash-table '(c . 3))) '(a . 1))</em>
</pre>
<p>To return no value from a reader, use <code>(values)</code>.
</p>
<pre class="indented">&gt; (set! *#readers* (cons (cons #\; (lambda (str) (if (string=? str ";") (read)) (values))) *#readers*))
<em class="gray">((#\; . #&lt;lambda (str)&gt;))</em>
&gt; (+ 1 #;(* 2 3) 4)
<em class="gray">5</em>
</pre>
<p>Here is CL's #+ reader:
</p>
<pre class="indented">(define (sharp-plus str)
;; str here is "+", we assume either a symbol or an expression involving symbols follows
(let ((e (if (string=? str "+")
(read) ; must be #+(...)
(string-&gt;symbol (substring str 1)))) ; #+feature
(expr (read))) ; this is the expression following #+
(if (symbol? e)
(if (provided? e)
expr
(values))
(if (not (pair? e))
(error 'wrong-type-arg "strange #+ chooser: ~S~%" e)
(begin ; evaluate the #+(...) expression as in cond-expand
(define (traverse tree)
(if (pair? tree)
(cons (traverse (car tree))
(case (cdr tree) ((())) (else =&gt; traverse)))
(if (memq tree '(and or not)) tree
(and (symbol? tree) (provided? tree)))))
(if (eval (traverse e))
expr
(values)))))))
</pre>
<p>See also the <a href="#circularlistreader">#n=</a> reader below.</p>
</div>
<div class="separator"></div>
<p id="makelist">(<b>make-list</b> length (initial-element #f)) returns a list of 'length' elements defaulting to 'initial-element'.
</p>
<div class="separator"></div>
<pre class="indented">(<em class="def" id="charposition">char-position</em> char-or-string searched-string (start 0))
(<em class="def" id="stringposition">string-position</em> substring searched-string (start 0))
</pre>
<p>
<b>char-position</b> and <b>string-position</b> search a string for the occurrence of a character,
any of a set of characters, or a string. They return either #f if none is found, or the position
within the searched string of the first occurrence. The optional third argument sets where the
search starts in the second argument.
</p>
<p>If char-position's first argument is a string, it is treated as a set of characters, and
char-position looks for the first occurrence of any member of that set.
Currently, the strings involved are assumed to be C strings (don't expect embedded nulls
to work right in this context).
</p>
<pre class="indented">(call-with-input-file "s7.c" ; report any lines with "static " but no following open paren
(lambda (file)
(let loop ((line (read-line file #t)))
(or (eof-object? line)
(let ((pos (<em class="red">string-position</em> "static " line)))
(if (and pos
(not (<em class="red">char-position</em> #\( (substring line pos))))
(if (&gt; (length line) 80)
(begin (display (substring line 0 80)) (newline))
(display line))))
(loop (read-line file #t)))))))
</pre>
<div class="separator"></div>
<p id="keywords">
Keywords exist mainly for define*'s benefit. The keyword functions are:
<b>keyword?</b>, <b>string-&gt;keyword</b>, <b>symbol-&gt;keyword</b>, and <b>keyword-&gt;symbol</b>.
A keyword is a symbol that starts or ends with a colon. The colon
is considered to be a part of the symbol name. A keyword is a constant that evaluates to itself.
</p>
<div class="separator"></div>
<pre class="indented">(<em class="def" id="symboltable">symbol-table</em>)
(<em class="def" id="symboltovalue">symbol-&gt;value</em> sym (env (curlet)))
(<em class="def" id="symboltodynamicvalue">symbol-&gt;dynamic-value</em> sym)
(<em class="def" id="definedp">defined?</em> sym (env (curlet)) ignore-rootlet)
</pre>
<p>
<code>defined?</code> returns #t if the symbol is defined in the environment:
</p>
<pre class="indented">(define-macro (defvar name value)
`(unless (defined? ',name)
(define ,name ,value)))
</pre>
<p>If ignore-rootlet is #t, the search is confined to the given environment.
</p>
<p>
<code>symbol-&gt;value</code> returns the value (lexically) bound to the symbol, whereas <code>symbol-&gt;dynamic-value</code>
returns the value dynamically bound to it.
</p>
<p>
<code>symbol-table</code> returns a vector containing the symbols currently in the symbol-table.
Here we scan the symbol table looking for any function that doesn't have documentation:
</p>
<pre class="indented">(for-each
(lambda (sym)
(if (<em class="red">defined?</em> sym)
(let ((val (<em class="red">symbol-&gt;value</em> sym)))
(if (and (procedure? val)
(string=? "" (documentation val)))
(format *stderr* "~S " sym)))))
(<em class="red">symbol-table</em>))
</pre>
<p>Or get a list of gensyms:</p>
<pre>(map (lambda (sym) (if (gensym? sym) sym (values))) (<em class="red">symbol-table</em>))
</pre>
<div class="indented">
<p>An automatic software tester (see also tauto.scm and auto-tester.scm in the tools directory):
</p>
<pre class="indented">(for-each
(lambda (sym)
(if (<em class="red">defined?</em> sym)
(let ((val (<em class="red">symbol-&gt;value</em> sym)))
(if (procedure? val)
(let ((max-args (cdr (arity val))))
(if (or (&gt; max-args 4)
(memq sym '(exit abort)))
(format () ";skip ~S for now~%" sym)
(begin
(format () ";whack on ~S...~%" sym)
(let ((constants (list #f #t pi () 1 1.5 3/2 1.5+i)))
(let autotest ((args ()) (args-left max-args))
(catch #t (lambda () (apply func args)) (lambda any #f))
(if (&gt; args-left 0)
(for-each
(lambda (c)
(autotest (cons c args) (- args-left 1)))
constants)))))))))))
(<em class="red">symbol-table</em>))
</pre>
</div>
<div class="separator"></div>
<p id="s7help"><b>help</b> tries to find information about its argument.
</p>
<pre class="indented">&gt; (help 'caadar)
<em class="gray">"(caadar lst) returns (car (car (cdr (car lst)))): (caadar '((1 (2 3)))) -&gt; 2"</em>
</pre>
<div class="separator"></div>
<p id="s7gc"><b>gc</b> calls the garbage collector. <code>(gc #f)</code> turns off the GC, and <code>(gc #t)</code> turns it on.
</p>
<p>If you get an error complaining about a "free cell", this is usually a sign that the GC freed some object
that it should have left alone. In straight scheme code, it's an s7 bug; please send me mail about it!
In foreign code, it probably indicates that you need to protect some s7_pointer with s7_gc_protect.
</p>
<div class="separator"></div>
<pre class="indented">(<b><em class="def" id="equivalentp">equivalent?</em></b> x y)
</pre>
<p>
Say we want to check that two different computations came to the same result, and that result might
involve circular structures. Will equal? be our friend?
</p>
<pre class="indented">&gt; (equal? 2 2.0)
<em class="gray">#f</em>
&gt; (let ((x +nan.0)) (equal? x x))
<em class="gray">#f</em>
&gt; (equal? .1 1/10)
<em class="gray">#f </em>
&gt; (= .1 1/10)
<em class="gray">#f</em>
&gt; (= 0.0 0+1e-300i)
<em class="gray">#f</em>
</pre>
<p>No! We need an equality check that ignores epsilonic differences in real and
complex numbers, and knows that NaNs are equal for all practical purposes.
Leaving aside numbers,
closed ports are not equal, yet nothing can be done with them.
#() is not equal to #2d(). And two closures are never equal, even if their
arguments, environments, and bodies are equal.
Since there might be circles, it is not easy to write
a replacement for equal? in Scheme.
So, in s7, if one thing is basically the same as
some other thing, they satisfy the function equivalent?.
</p>
<pre class="indented">&gt; (equivalent? 2 2.0)
<em class="gray">#t</em>
&gt; (equivalent? 1/0 1/0) ; NaN
<em class="gray">#t</em>
&gt; (equivalent? .1 1/10)
<em class="gray">#t</em> ; floating-point epsilon here is 1.0e-15 or thereabouts
&gt; (equivalent? 0.0 1e-300)
<em class="gray">#t</em>
&gt; (equivalent? 0.0 1e-14)
<em class="gray">#f</em> ; its not always #t!
&gt; (equivalent? (lambda () #f) (lambda () #f))
<em class="gray">#t</em>
</pre>
<p>The *s7* field equivalent-float-epsilon sets the floating-point fudge factor.
I can't decide how bignums should interact with equivalent?. Currently,
if a bignum is involved, either here or in a hash-table, s7 uses equal?.
Finally, if either argument is an environment with an 'equivalent? method,
that method is invoked.
</p>
<div class="separator"></div>
<p>
<b><em class="def" id="expansion">define-expansion</em></b> defines a macro that expands at read-time.
It has the same syntax as
define-macro, and (in normal use) the same result, but it is much faster because it expands only once.
Similarly, <b>define-expansion*</b> defines a read-time macro*.
(See also define-with-macros in s7test.scm for a way to expand macros in a function body at definition time).
Since the reader knows almost nothing
about the code it is reading,
you need to make sure the expansion is defined at the top level and that its name is unique.
The reader does know about global variables, so:
</p>
<pre class="indented">(define *debugging* #t)
(define-expansion (assert assertion)
(if *debugging* ; or maybe better, (eq? (symbol-&gt;value '*debugging*) #t)
`(unless ,assertion
(format *stderr* "~A: ~A failed~%" (*function*) ',assertion))
(values)))
</pre>
<p>Now the assertion code is only present in the function body (or wherever)
if *debugging* is #t; otherwise assert expands into nothing. Another very handy
use is to embed a source file line number into a message; see for example lint-format
in lint.scm.
Leaving aside
read-time expansion and splicing, the real difference between define-macro and define-expansion
is that the expansion's result is not evaluated.
I'm no historian, but I believe that means that define-expansion creates
a (gasp!) f*xpr. In fact:
</p>
<pre>(define-macro (define-f*xpr name-and-args . body)
`(define ,(car name-and-args)
(apply define-expansion
(append (list (append (list (gensym)) ',(cdr name-and-args))) ',body))))
&gt; (define-f*xpr (mac a) `(+ ,a 1))
<em class="gray">mac</em>
&gt; (mac (* 2 3))
<em class="gray">(+ (* 2 3) 1)</em>
</pre>
<p>
You can do something similar with a normal macro, or make the indirection explicit:
</p>
<pre class="indented">&gt; (define-macro (fx x) `'(+ 1 ,x)) ; quote result to avoid evaluation
<em class="gray">fx</em>
&gt; (let ((a 3)) (fx a))
<em class="gray">(+ 1 a)</em>
&gt; (define-expansion (ex x) `(+ 1 ,x))
<em class="gray">ex</em>
&gt; (let ((x ex) (a 3)) (x a)) ; avoid read-time splicing
<em class="gray">(+ 1 a)</em>
&gt; (let ((a 3)) (ex a)) ; spliced in at read-time
<em class="gray">4</em>
</pre>
<p>As this example shows, the reader knows nothing about the program context,
so if it does not see a list whose first element is a expansion name, it does
not do anything special. In the <code>(x a)</code> case above, the
expansion happens when the code is evaluated, and the expansion result
is simply returned, unevaluated.
</p>
<p>You can also use macroexpand to cancel the evaluation of a macro's expansion:
</p>
<pre>(define-macro (rmac . args)
(if (null? args)
()
(if (null? (cdr args))
`(display ',(car args))
(list 'begin
`(display ',(car args))
(apply macroexpand (list (cons 'rmac (cdr args))))))))
&gt; (macroexpand (rmac a b c))
<em class="gray">(begin (display 'a) (begin (display 'b) (display 'c)))</em>
&gt; (begin (rmac a b c d) (newline))
<em class="gray">abcd</em>
</pre>
<p>The main built-in expansion is <b><em class="def" id="readercond">reader-cond</em></b>. The syntax is based on cond:
the car of each clause is evaluated (in the read-time context), and if it is not false,
the remainder of that clause is spliced into the code as if you had typed it from the start.
</p>
<pre class="indented">&gt; '(1 2 (reader-cond ((&gt; 1 0) 3) (else 4)) 5 6)
<em class="gray">(1 2 3 5 6)</em>
&gt; ((reader-cond ((&gt; 1 0) list 1 2) (else cons)) 5 6)
<em class="gray">(1 2 5 6)</em>
</pre>
<!-- from kanren
(define-syntax conj*
(syntax-rules ()
((conj*) succeed)
((conj* g) g)
((conj* g gs ...)
(conj g (lambda (s) ((conj* gs ...) s))))))
is the same (in that context) as:
(define-macro (conj* . args)
(if (null? args)
succeed
(if (null? (cdr args))
(car args)
`(conj ,(car args)
(lambda (s) ((conj* ,@(cdr args)) s))))))
-->
<div class="separator"></div>
<p id="profiling">
Whenever (*s7* 'profile) is positive, profiling is turned on.
As the program runs, the profiler collects data about each function it can identify.
At any time, you can call show-profile to see that data. The first timing is inclusive
(it includes the time spent in any nested calls), the second is exclusive (it is the time
spent just in the current function). In Linux and *BSD, we use clock_gettime() which is reasonably
fast, but there is some profiler overhead. In other systems, we use clock() which is
amazingly slow. The optimizer sometimes recasts tail recursion and similar cases as while loops,
so the number of calls listed may be less than you'd expect, but the overall time should be
correct. To clear out the current data, call clear-profile.
</p>
<div class="separator"></div>
<p id="s7env"><b>*s7*</b> is a let that gives access to some of s7's internal
state:
</p>
<pre class="indented">print-length number of elements to print of a non-string sequence
max-string-length maximum size arg to make-string and read-string
max-format-length maximum size arg to ~N or the width and precision fields for floats in format
max-list-length maximum size arg to make-list
max-port-data-size maximum size of a port data buffer
max-vector-length maximum size arg to make-vector and make-hash-table
max-vector-dimensions make-vector dimensions limit
default-hash-table-length default size for make-hash-table (8, tables resize as needed)
initial-string-port-length 128, initial size of a input string port's buffer
output-port-data-size 2048, size of an output port's buffer
history a circular buffer of recent eval entries stored backwards (use set! to add an entry)
history-size eval history buffer size if s7 built WITH_HISTORY=1
history-enabled is history buffer receiving additions (if WITH_HISTORY=1 as above)
debug determines debugging level (see debug.scm), default=0
profile profile switch (0=default, 1=gather profiling info)
profile-info the current profiling data; see profile.scm
profile-prefix name (a symbol) used to identify the current environment in profile data
default-rationalize-error 1e-12
equivalent-float-epsilon 1e-15
hash-table-float-epsilon 1e-12 (currently limited to less than 1e-3).
bignum-precision bits for bignum floats (128)
float-format-precision digits to print for floats (16)
default-random-state the default arg for random
most-positive-fixnum if not using gmp, the most positive integer ("fixnum" comes from CL)
most-negative-fixnum as above, but negative
safety 0 (see below)
undefined-identifier-warnings #f
undefined-constant-warnings #f
accept-all-keyword-arguments #f
autoloading? #t
openlets #t, whether any let can be open globally (this overrides all openlets)
expansions? #t, whether expansions are handled at read-time
muffle-warnings? #f, if #t s7_warn does not output anything
cpu-time run time so far
file-names currently loaded files (a list)
catches a list of the currently active catch tags
c-types a list of c-object type names (from s7_make_c_type, etc)
stack the current stack entries
stack-top current stack location
stack-size current stack size
max-stack-size maximum stack size
stacktrace-defaults stacktrace formatting info for error handler
rootlet-size the number of globals
heap-size total cells currently available
max-heap-size maximum heap size
free-heap-size the number of currently unused cells
gc-stats 0 (or #f), 1: show GC activity, 2: heap, 4: stack, 8: protected_objects, #t = 1
gc-freed number of cells freed by the last GC pass
gc-total-freed number of cells freed so far by the GC; the total allocated is probably close to
(with-let *s7* (+ (- heap-size free-heap-size) gc-total-freed))
gc-info a list: calls total-time ticks-per-second (see profile.scm)
gc-temps-size number of cells just allocated that are protected from the GC (256)
gc-resize-heap-fraction when to resize the heap (0.8); these two are aimed at GC experiments
gc-resize-heap-by-4-fraction when to get panicky about resizing the heap
gc-protected-objects vector of the objects permanently protected from the GC
memory-usage a description of current memory allocations (sent to current-output-port)
</pre>
<p>
Use the standard environment syntax to access these fields:
<code>(*s7* 'stack-top)</code>. stuff.scm has the function
*s7*-&gt;list that returns most of these fields in a list.
</p>
<p>The compile-time defaults for some of these fields can be set:
</p>
<pre class="indented">heap-size: INITIAL_HEAP_SIZE (64000)
stack-size: INITIAL_STACK_SIZE (4096)
gc-temps-size: GC_TEMPS_SIZE (256)
bignum-precision: DEFAULT_BIGNUM_PRECISION (128)
history-size: DEFAULT_HISTORY_SIZE (8)
print-length: DEFAULT_PRINT_LENGTH (12)
gc-resize-heap-fraction: GC_RESIZE_HEAP_FRACTION (0.8)
output-port-data-size: OUTPUT_PORT_DATA_SIZE (2048)
See also WITH_WARNINGS, S7_ALIGNED, and GC_TRIGGER_SIZE.
</pre>
<p><code>(set! (*s7* 'autoloading) #f)</code> turns off the autoloader.
</p>
<p>The 'safety variable is an integer. Currently:
</p>
<pre class="indented">0: default.
1: no remove_from_heap (a GC optimization)
infinite loop check in eval, sort! and some iterators
immutable object check in reverse!, sort!, and fill!
more info in (*s7* 'history) for s7_apply_function, s7_call and s7_eval
less aggressive optimization in with-let and lambda
warnings about syntax redefinition
incoming s7_pointer checks in some FFI functions
bignum int to s7_int conversion checks
2: vector, string, and pair constants are immutable (but checks for this are currently sparse)
</pre>
<p>The debug variable controls where <a href="#debug">debug.scm</a> is active. If it is (if debug &gt; 0), it inserts
trace calls in functions and so on. It uses <em class="def" id="dynamicunwind">dynamic-unwind</em>
to establish a catcher for the return value. <code>(dynamic-unwind function arg)</code> causes
<code>function</code> to be called after the traced function has returned, passing it <code>arg</code>
and the returned value.
</p>
<p><code>(*s7* 'stacktrace-defaults)</code> is a list of four integers and a boolean that tell the error
handler how to format stacktrace information. The four integers are:
how many frames to display,
how many columns are devoted to code display,
how many columns are available for a line of data,
and where to place comments.
The boolean sets whether the entire output should be displayed as a comment.
The defaults are '(3 45 80 45 #t).
</p>
<p>This will display s7 memory usage sort of like the top program:
</p>
<pre class="indented">(format *stderr* "~C[~D;~DH" #\escape 0 0)
(format *stderr* "~C[J" #\escape)
(display (with-output-to-string (lambda() (<em class="red">*s7* 'memory-usage</em>))))
</pre>
<p>(Ideally we'd only redisplay the changed fields).
</p>
<p>The standard time macro:</p>
<pre class="indented">(define-macro (time expr)
`(let ((start (<em class="red">*s7* 'cpu-time</em>)))
(let ((res (list ,expr))) ; expr might return multiple values
(list (car res)
(- (<em class="red">*s7* 'cpu-time</em>) start)))))
</pre>
<p>Add automatic log10 recalculation to (*s7* 'bignum-precision):</p>
<pre class="indented">(define log10 (log (bignum 10)))
(define bignum-precision (dilambda (lambda ()
(<em class="red">*s7* 'bignum-precision</em>))
(lambda (val)
(set! (<em class="red">*s7* 'bignum-precision</em>) val)
(set! log10 (log (bignum 10)))
val)))
</pre>
<p>The stack, history and gc-protected-objects fields are intended for debugging. Don't keep
these hanging around and expect good things to happen!
</p>
<div class="separator"></div>
<pre class="indented">(<em class="def" id="cobject">c-object?</em> obj)
(<em class="def" id="cobjecttypew">c-object-type</em> obj)
(<em class="def" id="cpointer">c-pointer?</em> obj)
(<em class="def" id="cpoint">c-pointer</em> int type info weak1 weak2)
(<em class="def" id="cpointtype">c-pointer-type</em> obj)
(<em class="def" id="cpointinfo">c-pointer-info</em> obj)
(<em class="def" id="cpointweak1">c-pointer-weak1</em> obj) ; also weak2
(<em class="def" id="cpointertolist">c-pointer-&gt;list</em> obj)
</pre>
<p>
c-object? returns #t is its argument is a c-object.
c-object-type returns the object's type tag (otherwise #f of course). This tag is also the position
of the object's type in the (*s7* 'c-types) list.
(*s7* 'c-types) returns a list of the types created by s7_make_c_type.
</p>
<p>
You can wrap up raw C pointers and
pass them around in s7 code. The function c-pointer returns a wrapped pointer,
and c-pointer? returns #t if passed one. <code>(define NULL (c-pointer 0))</code>.
If the type field is a symbol, it is used to check types in s7_c_pointer with_type.
If the 'info field of a c-pointer is a let, that pointer can participate in
the generic functions mechanism, much like a c-object:
</p>
<pre class="indented">&gt; (let ((ptr (c-pointer 1 'abc
(inlet 'object-&gt;string
(lambda (obj . args)
(let ((lt (object-&gt;let obj)))
(format #f "I am pointer ~A of type '~A!"
(lt 'c-pointer) ; we need c-pointer-type etc
(lt 'c-type))))))))
(openlet ptr)
(object-&gt;string ptr))
<em class="gray">"I am pointer 1 of type 'abc!"</em>
</pre>
<p>c-pointer-&gt;list returns (list pointer-as-int type info).
The "weak1" and "weak2" fields are intended for custom "weak" references. The weak
fields values are not marked during the GC sweep, much like a key in a weak-hash-table.
If either value is GC'd, that field is set to #f by the GC. The weak fields are
ignored by equal? and equivalent? when comparing c-pointers, and by object-&gt;string
of a c-pointer even if :readable is specified.
</p>
<div class="separator"></div>
<p>There are several tree-oriented functions currently built into s7:
</p>
<pre class="indented">(<em class="def" id="treecyclic">tree-cyclic?</em> tree) returns #t if tree contains a cycle.
(<em class="def" id="treeleaves">tree-leaves</em> tree) returns the number of leaves in tree.
(<em class="def" id="treememq">tree-memq</em> obj tree) returns #t if obj is in tree (using eq?).
(<em class="def" id="treesetmemq">tree-set-memq</em> set tree) returns #t if any member of the set (a list of symbols) is in tree.
(<em class="def" id="treecount">tree-count</em> obj tree) returns how many times obj is in tree.
</pre>
<div class="separator"></div>
<p>s7 originally had Scheme-level multithreading support, but I removed it in August, 2011.
It turned out to be less useful than I hoped,
mainly because s7 threads shared the heap and therefore had to coordinate
all cell allocations. It was faster and simpler to use multiple
processes each running a separate s7 interpreter, rather than one s7
running multiple s7 threads. In CLM, there was also contention for access
to the output stream. In GUI-related situations,
threads were not useful mainly because the GUI toolkits are not thread safe.
Last but not least, the effort to make the non-threaded
s7 faster messed up parts of the threaded version. Rather than
waste a lot of time fixing this, I chose to flush multithreading.
s7 is thread-safe:
</p>
<blockquote>
<div class="indented">
<pre>#include &lt;stdio.h&gt;
#include &lt;stdlib.h&gt;
#include &lt;pthread.h&gt;
#include "s7.h"
#define NUM_THREADS 16
static pthread_t threads[NUM_THREADS];
static pthread_mutex_t lock = PTHREAD_MUTEX_INITIALIZER;
static void *run_thread(void *obj)
{
s7_scheme *sc = (s7_scheme *)obj;
const char *str;
str = s7_object_to_c_string(sc, s7_make_integer(sc, 123));
s7_eval_c_string(sc, "(let () \
(define (f) \
(do ((i 0 (+ i 1))) ((= i 10)) \
(do ((k 0 (+ k 1))) ((= k 1000000))) \
(format *stderr* \"~D \" i))) \
(f))");
pthread_mutex_lock(&amp;lock);
fprintf(stderr, "%s\n", str);
pthread_mutex_unlock(&amp;lock);
}
int main(int argc, char **argv)
{
int32_t i;
for (i = 0; i &lt; NUM_THREADS; i++)
pthread_create(&amp;threads[i], NULL, run_thread, (void *)s7_init());
for (i = 0; i &lt; NUM_THREADS; i++)
pthread_join(threads[i], NULL);
exit(0);
}
/* linux: gcc -o threads threads.c s7.o -Wl,-export-dynamic -pthread -lm -I. -ldl
* mac: clang -o threads threads.c s7.o -pthread -lm -I. -ldl
*/
</pre>
</div>
</blockquote>
<div class="separator"></div>
<blockquote>
<div class="indented">
<p id="s7vsr5rs">Some other differences from r5rs:
</p>
<ul style="list-style-type:disc;">
<li>no force or delay (see <a href="#r7rs">below</a>).
</li><li>no syntax-rules or any of its friends.
</li><li>no scheme-report-environment, null-environment, or interaction-environment (use curlet).
</li><li>no transcript-on or transcript-off.
</li><li>begin returns the value of the last form; it can contain both definitions and other statements.
</li><li>#&lt;unspecified&gt;, #&lt;eof&gt;, and #&lt;undefined&gt; are first-class objects.
</li><li>for-each and map accept different length arguments; the operation stops when any argument reaches its end.
</li><li>for-each and map accept any applicable object as the first argument, and any sequence or iterator as a trailing argument.
</li><li>letrec*, but without conviction.
</li><li>set! and *-set! return the new value (modulo setter), not #&lt;unspecified&gt;.
</li><li>define and its friends return the new value.
</li><li>port-closed?
</li><li>list? means "pair or null", proper-list? is r5rs list?, float? =
real and not rational, sequence? = length, byte? = unsigned byte.
<!-- a vector can be a member of itself, and yet vector? returns #t, why is list? different; we even call it a circular list! -->
</li><li>the default IO ports are named *stdin*, *stdout*, and *stderr*.
</li><li>#f as an output port means nothing is output (#f is /dev/null, I guess).
</li><li>member and assoc accept an optional third argument, the comparison function (equal? is the default).
</li><li>case accepts =&gt; much like cond (the function argument is the selector).
</li><li>if WITH_SYSTEM_EXTRAS is 1, the following are built-in:
directory?, file-exists?, delete-file, system, directory-&gt;list,
getenv.
</li><li>s7 is case sensitive.
</li><li>when and unless (for r7rs), returning the value of the last form.
</li><li>the "d", "f", "s", and "l" exponent markers are not supported by default (use "e", "E", or "@").
</li><li>quasiquoted vector constants are not supported (use the normal list expansions wrapped in list-&gt;vector).
</li><li><em class="def" id="typeof">type-of</em> returns a type indicator for its argument.
</li></ul>
<p>In s7 if a built-in function like gcd is referred to in a function
body, the optimizer is free to replace it with #_function. That is, <code>(gcd ...)</code> can be changed
to <code>(#_gcd ...)</code> at s7's whim, if gcd has its original value at the time the optimizer
sees the expression using it. A subsequent <code>(set! gcd +)</code> does not affect this optimized call.
I think I could wave my hands and mumble about "aggressive lexical scope" or something, but actually the
choice here is that speed trumps that ol' hobgoblin consistency. If you want to change gcd to +, do it before
loading code that calls gcd.
I think most Schemes handle macros this way: the macro call is replaced by its expansion using its current
definition, and a later redefinition does not affect earlier uses.
Guile behaves like s7:
</p>
<pre class="indented">(define (add1 x) (+ x 1))
(set! + -)
(display (add1 3))) ; 4 in both s7 and Guile 3.0.4
</pre>
<p>But if a Scheme function is involved, things get messy:
</p>
<pre class="indented">(define (fib n) (if (&lt; n 2) n (+ (fib (- n 1)) (fib (- n 2)))))
(define oldfib fib)
(set! fib 32)
(display (oldfib 10))) ; s7 says 55, Guile says "wrong type to apply: 32"
</pre>
<p>I can't decide which way is correct: s7 looks more consistent,
but:
</p>
<pre class="indented">(define (fib n) 32)
(set! fib (lambda (n) (if (&lt; n 2) n (+ (fib (- n 1)) (fib (- n 2))))))
(define oldfib fib)
(set! fib 32)
(display (oldfib 10)) ; "attempt to apply an integer 32 to..."
</pre>
<p>So s7 is inconsistent too! (Actually this was consistent until Jan 2021 when I suddenly thought it was
a mistake and "fixed" it; now I'm having second thoughts.
</p>
<!-- another case: (with-let (inlet '+ -) (+ 2 3)) -> 5 -->
<!-- also, (eq? (if #f #f) (apply values ())) is #t, but memq and assq don't treat them as equal -->
</div>
<div class="indented">
<p>Here are some changes I'd make to s7 if I didn't care about compatibility with other Schemes:
</p>
<ul style="list-style-type:disc;">
<li>remove the exact/inexact distinction including #i and #e (done! #i means int-vector constant).
</li><li>remove call-with-values and its friends
</li><li>remove char-ready?
</li><li>change eof-object? to eof? or just omit it (you can use eq? #&lt;eof&gt;)
</li><li>change make-rectangular to complex (done!), and remove make-polar.
</li><li>remove unquote (the name, not the functionality).
</li><li>remove cond-expand.
</li><li>remove *-ci functions
</li><li>remove #d (done!)
</li></ul>
<p>(most of these are removed if you set the compiler flag WITH_PURE_S7), and perhaps:
</p>
<ul style="list-style-type:disc;">
<li>remove even? and odd?, gcd and lcm.
</li><li>remove string-length and vector-length.
</li><li>remove list-ref|set!, string-ref|set!, vector-ref|set!,
hash-table-ref|set!, set-car!|cdr!, and
set-current-output|input|error-port.
</li><li>change file-exists? to file? (or omit it and assume the use of libc.scm — why reinvent the wheel?).
</li><li>remove all the conversion and copy functions like vector-&gt;list and vector-copy (use copy or map).
</li><li>change string-&gt;symbol to symbol (what to do with symbol-&gt;string in that case?)
</li><li>change with-output-to-* and with-input-from-* to omit the pointless lambda.
</li><li>remove the with-* IO functions (e.g. with-input-from-string), keeping the call-with-* versions (call-with-input-string).
</li><li>remove assq, assv, memq, and memv (these are pointless now that assoc and member can be passed eq? and eqv?).
</li><li>move all the "*var*" names to *s7*: *load-hook* becomes (*s7* 'load-hook) for example.
</li></ul>
<p>With the move to s7_setter and s7_set_setter (setter in Scheme),
dilambda and dilambda? have been reduced to trivial conveniences, so perhaps they can also be
removed.
</p>
<p>string-copy has 3 extra arguments to allow strings to be copied directly into other strings.
In vectors, we can use subvector, but substring returns a new string (copying its argument) unless
the optimizer notices that the copy is not needed. Copy almost works, but its start and end arguments
refer to the source, not the destination. substring should be like subvector, but that is not backwards compatible.
</p>
<p>There are several less-than-ideal names.
get-output-string should be current-output-string. write-char behaves
like display, not write.
provided? should be feature? or *features* should be *provisions*.
list-ref, list-set!, and list-tail actually only apply to pairs.
let-temporarily should be templet, or maybe set-temporarily.
There should not be two names for the same thing: call/cc and
call-with-current-continuation: flush the latter!
The CL-inspired "log*" names such as logand look very old-fashioned.
Standard scheme opts
for the name "bitwise*"; why not "integerwise" or "bytevectorwise"? The
"wise" business is just noise; are they thinking of The Hobbit?
<code>(define &amp; logand) (define | logior) (define ~ lognot)</code>, but ^ for logxor
(as in C) is not ideal; ^ should be expt. Finally, I think the notion of a current input or output port is
a mistake: the IO functions should always get an explicit port.
</p>
<p>
cond-expand is dumb and its name is dumber.
Take libgsl.scm; different versions of the GSL library have different functions. We need to know
when we're building the FFI what GSL version we're dealing with. It would be nuts to start pushing and checking dozens
of library version symbols when all we actually want is <code>(&gt; version 23.19)</code>.
In place of cond-expand, s7 uses <a href="#readercond">reader-cond</a>,
so the read-time decision involves normal Scheme evaluation.
</p>
<p>Then there's the case case: a case clause without a result appears to be an error in r7rs.
But the notation used to indicate that is the same as that used for begin,
so if we allow <code>(begin)</code>, we should allow case clauses to have no explicit result.
In cond,
the "implicit progn" (in CL terminology) includes the test expression, so a clause without a result returns
the test result (if true of course). In the case case, s7 returns the selector.
<code>(case x ((0 1)))</code> is equivalent to <code>(case x ((0 1) =&gt; values))</code>,
just as <code>(cond (A))</code> is equivalent to <code>(cond (A =&gt; values))</code>.
One application is method lookup: <code>((case (obj 'abs) ((#&lt;undefined&gt;) abs) (else)) ...)</code>;
we would otherwise have to save the lookup result or do it twice.
This choice has a ripple
effect on do: if no result is specified for do, s7 returns the test result.
It also affects
hash-tables. Currently hash-table-ref returns #f if the key is not in the table,
mimicking assoc and aimed at cond with =&gt;, but if we also use case and #&lt;undefined&gt;,
it seems more useful and maybe intuitive to mimic let-ref instead. But if hash-table-ref returns
#&lt;undefined&gt;, it's harder to use hash-tables as sets. Hmm.
In any case,
the fall-through value of case should be (and is in s7)
#&lt;unspecified&gt;: case is a form of if, so
<code>(if #f #f)</code>, <code>(cond (#f #f))</code>, and <code>(case #t ((#f) #f))</code> should be equal.
</p>
<p>
Better ideas are always welcome!
</p>
<p>Here are the built-in s7 variables:
</p>
<ul>
<li>*features* ; a list of symbols
</li><li>*libraries* ; a list of (filename . let) pairs
</li><li>*load-path* ; a list of directories
</li><li>*cload-directory* ; directory for cload output
</li><li>*autoload* ; autoload info
</li><li>*#readers* ; a list of (char . handler) pairs
</li></ul>
<p>And the built-in constants:
</p>
<ul style="list-style-type:disc;">
<li>pi
</li><li>*stdin* *stdout* *stderr*
</li><li>*s7*
</li><li>+nan.0 -nan.0 +inf.0 -inf.0 (what crappy names! +nan.0 is a positive inexact integer that is not a number?)
</li><li>*unbound-variable-hook* *missing-close-paren-hook* *load-hook* *autoload-hook*
</li><li>*error-hook* *read-error-hook* *rootlet-redefinition-hook*
</li></ul>
<p>Is it odd that the "+" in +nan.0 can't be omitted, but as used in a complex number, someone drops a "+": 1+nan.0i?
</p>
<p>(<b><em class="def" id="currentfunction">*function*</em></b>) returns the name (or name and location) of the function currently being called.
<code>(define (example) (*function*))</code> returns <code>'example</code>.
Here is an example using a bacro (to access the call-time environment) and an openlet to implement a probe;
it reports any operation that the probe participates in, using *function* to get the calling function name:
</p>
<pre class="indented">(define (probe-eval val)
(let ((all-let (inlet)))
(for-each
(lambda (sym)
(unless (immutable? sym) ; apply-values etc
(let ((func (symbol-&gt;value sym (rootlet))))
(when (procedure? func)
(varlet all-let sym
(apply <em class="red">bacro</em> 'args
`((let-temporarily (((*s7* 'openlets) #f))
(let ((clean-args (map (lambda (arg)
(if (eq? arg probe-eval)
(probe-eval 'value)
arg))
args)))
(format *stderr* "(~S ~{~S~^ ~}) ; ~S~%"
,sym clean-args
(<em class="red">*function*</em> (outlet (outlet (curlet)))))
(apply ,func clean-args))))))))))
(symbol-table))
(varlet all-let 'value val)
(<em class="red">openlet</em> all-let)))
(define (call-any x)
(+ x 21))
(call-any (probe-eval 42)) ; prints "(+ 42 21) ; call-any", returns 63
</pre>
<p>
The second argument to *function* is the let from which to start searching for a function.
In the example above, we start the search from the let outside the bacro, since we hope to find the bacro's caller.
As a convenience, *function* takes an optional third argument specifying what information you want
about the current function. An example: <code>(*function* (curlet) 'name)</code>.
<code>name</code> returns the name (a symbol) of the current function.
<code>line</code> returns the function's definition line number.
<code>file</code> returns the function's definition file.
Other possibilities are <code>signature</code>, <code>documentation</code>,
<code>arity</code>, <code>arglist</code>, <code>value</code>, and <code>source</code>.
<code>funclet</code> returns the current function's funclet.
</p>
<p>Currently WITH_PURE_S7:
</p>
<ul style="list-style-type:disc;">
<li>places 'pure-s7 in *features*
</li><li>omits char-ready, char-ci*, string-ci*
</li><li>omits string-fill!, vector-fill!, vector-append
</li><li>omits list-&gt;string, list-&gt;vector, string-&gt;list, vector-&gt;list, let-&gt;list
</li><li>omits string-length and vector-length
</li><li>omits cond-expand, multiple-values-bind|set!, call-with-values
</li><li>omits unquote (the name)
</li><li>omits d/f/s/l exponents
</li><li>omits make-polar and make-rectangular (use complex)
</li><li>omits exact?, inexact?, exact-&gt;inexact, inexact-&gt;exact
</li><li>omits set-current-output-port and set-current-input-port
</li></ul>
</div>
<div class="indented">
<p>Schemes vary in their treatment of (). s7 considers it a constant that evaluates to itself,
so you don't need to quote it. <code>(eq? () '())</code> is #t.
This is consistent with, for example,
<code>(eq? #f '#f)</code> which is also #t.
The standard says "the empty list is a special object of its own type", so surely either choice is
acceptable in that regard (but, sigh, the standard stupidly goes on to deny that () can evaluate to itself).
(I'm told that "is an error" means "is not portable" in the standard's weasely abuse of English; if
they mean "is not portable" why not say so?).
Some of the confusion appears to be caused by the word "list". I would describe the evaluator: "if it gets a
constant (and () is a constant) it returns that constant; if a symbol, it returns the value
associated with that symbol; if a pair, it looks at the pair's
car to decide what to do". It's kinda looney to insist on looking at the car of a list when you know () has no car!
</p>
<!--
One place where the quote matters is in a case statement; the selector is
evaluated but the key is not:
</p>
<pre class="indented">
&gt; (case '() ((()) 2) (else 1)) ; in s7 this is the same as (case () ((()) 2) (else 1))
<em class="gray">2</em>
&gt; (case '() (('()) 2) (else 1)) ; (eqv? '() ''()) is #f
<em class="gray">1</em>
;;; which parallels #f (or a number such as 2 etc):
&gt; (case '#f ((#f) 2) (else 1))
<em class="gray">2</em>
&gt; (case '#f (('#f) 2) (else 1)) ; (eqv? '#f ''#f) is #f
<em class="gray">1</em>
</pre>
-->
<p>Similarly, in s7, vector constants do not have to be quoted. A list constant is quoted
to keep it from being evaluated, but
#(1 2 3) is as unproblematic as "123" or 123.
</p>
<!-- there's another sense in which '() is a constant: you can't apply it to anything. ('() 0) -> error
-->
<p>These examples bring up another odd corner of scheme: else. In <code>(cond (else 1))</code>
the 'else is evaluated (like any cond test), so its value might be #f; in <code>(case 0 (else 1))</code>
it is not evaluated (like any case key), so it's just a symbol.
Since setters are local in s7,
someone can <code>(let ((else #f)) (cond (else 1)))</code> even if we protect the rootlet 'else.
Of course, in scheme this kind of trouble is pervasive, so rather than make 'else a constant
I think the best path is to use unlet:
<code>(let ((else #f)) (cond (#_else 1)))</code>. This is 1 (not ()) because the initial value of 'else
can't be changed.
</p>
</div>
<div class="indented">
<p>s7 handles circular lists and vectors and dotted lists with its customary aplomb.
You can pass them to memq, or print them, for example; you can even evaluate them.
The print syntax is borrowed from CL:
</p>
<pre class="indented">&gt; (let ((lst (list 1 2 3)))
(set! (cdr (cdr (cdr lst))) lst)
lst)
<em class="gray">#1=(1 2 3 . #1#)</em>
&gt; (let* ((x (cons 1 2))
(y (cons 3 x)))
(list x y))
<em class="gray">(#1=(1 . 2) (3 . #1#))</em>
</pre>
<p id="circularlistreader">
But should this syntax be readable as well? I'm inclined to say no because
then it is part of the language, and it doesn't look like the rest of the language.
(I think it's kind of ugly). Perhaps we could implement it via *#readers*:
</p>
<pre>(define circular-list-reader
(let ((known-vals #f)
(top-n -1))
(lambda (str)
(define (replace-syms lst)
;; walk through the new list, replacing our special keywords
;; with the associated locations
(define (replace-sym tree getter)
(if (keyword? (getter tree))
(let ((n (string-&gt;number (symbol-&gt;string (keyword-&gt;symbol (getter tree))))))
(if (integer? n)
(let ((lst (assoc n known-vals)))
(if lst
(set! (getter tree) (cdr lst))
(format *stderr* "#~D# is not defined~%" n)))))))
(let walk-tree ((tree (cdr lst)))
(if (pair? tree)
(begin
(if (pair? (car tree)) (walk-tree (car tree)) (replace-sym tree car))
(if (pair? (cdr tree)) (walk-tree (cdr tree)) (replace-sym tree cdr))))
tree))
;; str is whatever followed the #, first char is a digit
(let* ((len (length str))
(last-char (str (- len 1))))
(and (memv last-char '(#\= #\#)) ; is it #n= or #n#?
(let ((n (string-&gt;number (substring str 0 (- len 1)))))
(and (integer? n)
(begin
(if (not known-vals) ; save n so we know when we're done
(begin
(set! known-vals ())
(set! top-n n)))
(if (char=? last-char #\=) ; #n=
(and (eqv? (peek-char) #\() ; eqv? since peek-char can return #&lt;eof&gt;
(let ((cur-val (assoc n known-vals)))
;; associate the number and the list it points to
;; if cur-val, perhaps complain? (#n# redefined)
(let ((lst (catch #t
read
(lambda args ; a read error
(set! known-vals #f) ; so clear our state
(apply throw args))))) ; and pass the error on up
(if cur-val
(set! (cdr cur-val) lst)
(set! known-vals
(cons (set! cur-val (cons n lst)) known-vals))))
(if (= n top-n) ; replace our special keywords
(let ((result (replace-syms cur-val)))
(set! known-vals #f) ; '#1=(#+gsl #1#) -&gt; '(:1)!
result)
(cdr cur-val))))
; #n=&lt;not a list&gt;?
;; else it's #n# — set a marker for now since we may not
;; have its associated value yet. We use a symbol name that
;; string-&gt;number accepts.
(symbol-&gt;keyword
(symbol (number-&gt;string n) (string #\null) " "))))))
; #n&lt;not an integer&gt;?
))))) ; #n&lt;something else&gt;?
(do ((i 0 (+ i 1)))
((= i 10))
;; load up all the #n cases
(set! *#readers*
(cons (cons (integer-&gt;char (+ i (char-&gt;integer #\0))) circular-list-reader)
*#readers*)))
<!-- ) -->
&gt; '#1=(1 2 . #1#)
<em class="gray">#1=(1 2 . #1#)</em>
&gt; '#1=(1 #2=(2 . #2#) . #1#)
<em class="gray">#2=(1 #1=(2 . #1#) . #2#)</em>
</pre>
<p>And of course, we can treat these as labels:
</p>
<pre class="indented">(let ((ctr 0)) #1=(begin (format () "~D " ctr) (set! ctr (+ ctr 1)) (if (&lt; ctr 4) #1# (newline))))
</pre>
<p>which prints "0 1 2 3" and a newline.
</p>
<br>
<p>Length returns +inf.0 if passed a circular list, and returns a negative
number if passed a dotted list. In the dotted case, the absolute value of the length is the list length not counting
the final cdr. <code>(define (circular? lst) (infinite? (length lst)))</code>.
</p>
<p>
<em class="def" id="cyclicsequences">cyclic-sequences</em> returns a list of the cyclic
sequences in its argument, or nil.
<code>(define (cyclic? obj) (pair? (cyclic-sequences obj)))</code>.
</p>
<p>Here's an amusing use of circular lists:
</p>
<pre class="indented">(define (for-each-permutation func vals)
;; apply func to every permutation of vals:
;; (for-each-permutation (lambda args (format () "~{~A~^ ~}~%" args)) '(1 2 3))
(define (pinner cur nvals len)
(if (= len 1)
(apply func (car nvals) cur)
(do ((i 0 (+ i 1))) ; I suppose a named let would be more Schemish
((= i len))
(let ((start nvals))
(set! nvals (cdr nvals))
(let ((cur1 (cons (car nvals) cur))) ; add (car nvals) to our arg list
(set! (cdr start) (cdr nvals)) ; splice out that element and
(pinner cur1 (cdr start) (- len 1)) ; pass a smaller circle on down, "wheels within wheels"
(set! (cdr start) nvals)))))) ; restore original circle
(let ((len (length vals)))
(set-cdr! (list-tail vals (- len 1)) vals) ; make vals into a circle
(pinner () vals len)
(set-cdr! (list-tail vals (- len 1)) ()))) ; restore its original shape
</pre>
</div>
<div class="indented">
<p>s7 and Snd use "*" in a variable name, *features* for example, to indicate
that the variable is predefined. It may occur unprotected in a macro, for
example. The "*" doesn't mean that the variable is special in the CL sense of dynamic scope,
but some clear marker is needed for a global variable so that the programmer
doesn't accidentally step on it.
</p>
<p>Although a variable name's first character is more restricted, currently
only #\null, #\newline, #\tab, #\space, #\), #\(, #\", and #\; can't
occur within the name. I did not originally include double-quote in this set, so wild stuff like
<code>(let ((nam""e 1)) nam""e)</code>
would work, but that means that <code>'(1 ."hi")</code> is parsed as a 1 and the
symbol <code>."hi"</code>, and <code>(string-set! x"hi")</code> is an error.
The first character should not be #\#, #\', #\`, #\,, #\:, or any of those mentioned above,
and some characters can't occur by themselves. For example, "." is not a legal variable
name, but ".." is.
These weird symbols have to be printed sometimes:
</p>
<pre class="indented">&gt; (list 1 (string-&gt;symbol (string #\; #\" #\\)) 2)
<em class="gray">(1 ;"\ 2)</em> <!-- " -->
&gt; (list 1 (string-&gt;symbol (string #\.)) 2)
<em class="gray">(1 . 2)</em>
</pre>
<p>which is a mess. Guile prints the first as <code>(1 #{\;\"\\}# 2)</code>.
In CL and some Schemes:
</p>
<pre class="indented">[1]&gt; (list 1 (intern (coerce (list #\; #\" #\\) 'string)) 2) ; thanks to Rob Warnock
<em class="gray">(1 |;"\\| 2)</em> <!-- " -->
[2]&gt; (equalp 'A '|A|) ; in CL case matters here
<em class="gray">T</em>
</pre>
<p>This is clean, and has the weight of tradition behind it, but
I think I'll use "symbol" instead:
</p>
<pre class="indented">&gt; (list 1 (string-&gt;symbol (string #\; #\" #\\)) 2)
<em class="gray">(1 (symbol ";\"\\") 2)</em> <!-- " -->
</pre>
<p>
This output is readable, and does not eat up perfectly good
characters like vertical bar, but it means we can't easily use
variable names like "| e t c |". We could allow a name to
contain any characters if it starts and ends with "|",
but then one vertical bar is trouble. (The symbol function
actually accepts any number of string arguments which it concatenates
to form the new symbol name).
</p>
<p>
These symbols are not just an optimization of string comparison:
</p>
<pre class="indented">&gt; (define-macro (hi a)
(let ((funny-name (string-&gt;symbol ";")))
`(let ((,funny-name ,a)) (+ 1 ,funny-name))))
<em class="gray">hi</em>
&gt; (hi 2)
<em class="gray">3</em>
&gt; (macroexpand (hi 2))
<em class="gray">(let ((; 2)) (+ 1 ;))</em> ; for a good time, try (string #\")
&gt; (define-macro (hi a)
(let ((funny-name (string-&gt;symbol "| e t c |")))
`(let ((,funny-name ,a)) (+ 1 ,funny-name))))
<em class="gray">hi</em>
&gt; (hi 2)
<em class="gray">3</em>
&gt; (macroexpand (hi 2))
<em class="gray">(let ((| e t c | 2)) (+ 1 | e t c |))</em>
&gt; (let ((funny-name (string-&gt;symbol "| e t c |"))) ; now use it as a keyword arg to a function
(apply define* `((func (,funny-name 32)) (+ ,funny-name 1)))
;; (procedure-source func) is (lambda* ((| e t c | 32)) (+ | e t c | 1))
(apply func (list (symbol-&gt;keyword funny-name) 2)))
<em class="gray">3</em>
</pre>
<p>I hope that makes you as happy as it makes me!
</p>
</div>
<div class="indented">
<p id="legolambda">The built-in syntactic forms, such as "begin", are almost first-class citizens.
</p>
<pre class="indented">&gt; (let ((progn begin))
(progn
(define x 1)
(set! x 3)
(+ x 4)))
<em class="gray">7</em>
&gt; (let ((function lambda))
((function (a b) (list a b)) 3 4))
<em class="gray">(3 4)</em>
&gt; (apply begin '((define x 3) (+ x 2)))
<em class="gray">5</em>
&gt; ((lambda (n) (apply n '(((x 1)) (+ x 2)))) let)
<em class="gray">3</em>
(define-macro (symbol-set! var val) ; like CL's set
`(apply set! ,var ',val ())) ; trailing nil is just to make apply happy — apply*?
(define-macro (progv vars vals . body)
`(apply (apply lambda ,vars ',body) ,vals))
&gt; (let ((s '(one two)) (v '(1 2))) (progv s v (+ one two)))
<em class="gray">3</em>
</pre>
<p>We can snap together program fragments ("look Ma, no macros!"):
</p>
<pre class="indented">(let* ((x 3)
(arg '(x))
(body `((+ ,x x 1))))
((apply lambda arg body) 12)) ; "legolambda"?
(define (engulph form)
(let ((body `(let ((L ()))
(do ((i 0 (+ i 1)))
((= i 10) (reverse L))
(set! L (cons ,form L))))))
(define function (apply lambda () (list (copy body))))
(function)))
(let ()
(define (hi a) (+ a x))
((apply let '((x 32)) (list (procedure-source hi))) 12)) ; one function, many closures?
(let ((ctr -1)) ; (enum zero one two) but without using a macro
(apply begin
(map (lambda (symbol)
(set! ctr (+ ctr 1))
(list 'define symbol ctr)) ; e.g. '(define zero 0)
'(zero one two)))
(+ zero one two))
</pre>
<p>But there's a prettier way to implement enum ("transparent-for-each"):
</p>
<pre class="indented">&gt; (define-macro (enum . args)
`(for-each define ',args (iota (length ',args))))
<em class="gray">enum</em>
&gt; (enum a b c)
<em class="gray">#&lt;unspecified&gt;</em>
&gt; b
<em class="gray">1</em>
</pre>
<p>Now we notice that <code>(case 0.0 ((0.0) 1) (else 0))</code> is 1, but
how to get pi into a key list?
</p>
<pre class="indented">&gt; (apply case 'pi `(((,pi) 1) (else 0)))
<em class="gray">1</em>
&gt; (let ((lst '(1 2))) (apply case 'lst `(((,lst) 1) (else 0))))
<em class="gray">1</em> ; same trick puts a list in the keys
&gt; (apply case '+nan.0 `(((,+nan.0) 1) (else 0)))
<em class="gray">0</em> ; (eqv? +nan.0 +nan.0) is #f
</pre>
<p><code>(apply define ...)</code> is similar to CL's set.
</p>
<pre class="indented">&gt; ((apply define-macro '((m a) `(+ 1 ,a))) 3)
<em class="gray">4</em>
&gt; ((apply define '((hi a) (+ a 1))) 3)
<em class="gray">4</em>
</pre>
<p>Apply let is very similar to eval:
</p>
<pre>&gt; (apply let '((a 2) (b 3)) '((+ a b)))
<em class="gray">5</em>
&gt; (eval '(+ a b) (inlet 'a 2 'b 3))
<em class="gray">5</em>
&gt; ((apply lambda '(a b) '((+ a b))) 2 3)
<em class="gray">5</em>
&gt; (apply let '((a 2) (b 3)) '((list + a b))) ; a -&gt; 2, b -&gt; 3
<em class="gray">(+ 2 3)</em>
</pre>
<p>The redundant-looking double lists are for apply's benefit. We could
use a trailing null instead (mimicking apply* in some ancient lisps):
</p>
<pre>&gt; (apply let '((a 2) (b 3)) '(list + a b) ())
<em class="gray">(+ 2 3)</em>
</pre>
<p>Scheme claims that it evaluates the car of an expression, then calls the
result with the rest of the expression. So <code>((if x + -) y z)</code> calls either
<code>(+ y z)</code> or <code>(- y z)</code> depending on x.
But only s7, as far as I know, handles <code>((if x or and) y z)</code>.
</p>
<p>catch, dynamic-wind, and many of the other functions that take function
arguments in standard Scheme, accept macros in s7, and dynamic-wind accepts
#f as the initial and final entries.
</p>
<p>
Currently, you can't set! a built-in syntactic keyword to some new value:
<code>(set! if 3)</code>.
let-temporarily uses set!, so <code>(let-temporarily ((if 3))...)</code>
is also unlikely to work.
</p>
</div>
<p>Speaking of speed... It is widely believed
that a Scheme with first class everything can't hope to compete with any
"real" Scheme. Humph I say. Take this little example (which is not
so misleading that I feel guilty about it):
</p>
<pre class="indented">(define (do-loop n)
(do ((i 0 (+ i 1)))
((= i n))
(if (zero? (modulo i 1000))
(display ".")))
(newline))
(for-each do-loop (list 1000 1000000 10000000))
</pre>
<p>In s7, that takes 0.09 seconds on my home machine. In tinyScheme, from
whence we sprang, it takes 85 seconds. In the chicken interpreter, 5.3
seconds, and after compilation (using -O2) of the chicken compiler output,
0.75 seconds. So, s7 is comparable to chicken in speed, even though chicken
is compiling to C. I think Guile 2.0.9 takes about 1 second.
The equivalent in CL:
clisp interpreted 9.3 seconds, compiled 0.85 seconds; sbcl 0.21 seconds.
Similarly, s7 computes (fib 40) in 0.8 seconds, approximately the same as sbcl.
Guile 2.2.3 takes 7 seconds.
</p>
<div class="small">
<p>
s7's timing tests are in its tools directory. The script
valcall.scm runs them through callgrind. The results
can be found at the end of s7.c.
If you're interested in the standard Scheme benchmarks, it
is possible to add s7 to that package. First, s7-prelude.scm
and s7-postlude.scm need to be added to the benchmarks src directory.
s7-postlude.scm can be empty. My version of s7-prelude.scm is:
</p>
<pre>(define (this-scheme-implementation-name) "s7")
(define exact-integer? integer?)
(define (exact-integer-sqrt i) (let ((sq (floor (sqrt i)))) (values sq (- i (* sq sq)))))
(define inexact exact-&gt;inexact)
(define exact inexact-&gt;exact)
(define (square x) (* x x))
(define (vector-map f v) (copy v)) ; for quicksort.scm
(define-macro (import . args) #f)
(define (jiffies-per-second) 1000)
(define (current-jiffy) (round (* (jiffies-per-second) (*s7* 'cpu-time))))
(define (current-second) (floor (*s7* 'cpu-time)))
</pre>
<p>
If you want to run gcbench, add the define-record-type macro from r7rs.scm.
Here are the diffs for the bench script:
</p>
<pre>141a142
&gt; S7=${S7:-"/home/bil/motif-snd/repl"}
187a189
&gt; s7 for s7
406a409,421
&gt; # Definitions specific to s7
&gt;
&gt; s7_comp ()
&gt; {
&gt; :
&gt; }
&gt;
&gt; s7_exec ()
&gt; {
&gt; time ${S7} "$1" &lt; "$2"
&gt; }
&gt;
&gt; # -----------------------------------------------------------------------------
940a957,966
&gt;
&gt; s7) NAME='s7'
&gt; COMP=s7_comp
&gt; EXEC=s7_exec
&gt; COMPOPTS=""
&gt; EXTENSION="scm"
&gt; EXTENSIONCOMP="scm"
&gt; COMPCOMMANDS=""
&gt; EXECCOMMANDS=""
&gt; ;;
</pre>
<p>
I call the standalone version of s7 "repl", so its path
is /home/bil/motif-snd/repl. To build repl, get s7.tar.gz
from https://ccrma.stanford.edu/software/s7/s7.tar.gz;
if not using gcc or clang, add the empty file mus-config.h to the tarball's contents,
then (in Linux):
</p>
<pre>gcc s7.c -o repl -DWITH_MAIN -I. -O2 -g -ldl -lm -Wl,-export-dynamic -Wno-stringop-overflow
</pre>
<p>For timing tests, I add "-fomit-frame-pointer -funroll-loops -march=native".
mus-config.h normally has
</p>
<pre>#define HAVE_COMPLEX_NUMBERS 1
#define HAVE_COMPLEX_TRIG 1
</pre>
<p>
but s7.c has defaults, so mus-config.h can be empty, or absent.
Finally, go back to the benchmarks directory and
</p>
<pre>bench s7 all
</pre>
<p>
The benchmark compiler.scm assumes that small
integers can be compared with eq? (via assq), which is incorrect.
pi.scm and chudnovsky.scm need the gmp version of s7.
I ran the bench script on an AMD 3950X machine, and got these results (in seconds):
ack: 6.6, array1: 6.4, browse: 11.2, bv2string: 4.1, cat: 0.4,
compiler: 16.9, conform: 30.0, cpstak: 42.8, ctak: 16.6, deriv: 9.7,
destruc: 8.6, diviter: 3.7, divrec: 4.6, dynamic: 12.6, earley: 25.5,
equal: 0.3, fft: 12.5, fib: 6.1, fibc: 8.6, fibfp: 1.1, gcbench: 12.9,
grahps: 72.5, lattice: 63.4, matrix: 21.0, maze: 11.4, mazefun: 9.8,
mbrot: 12.6, mbrotZ: 8.0, mperm: 18.9, nboyer: 20.1, nqueens: 27.0,
ntakl: 8.0, nucleic: 8.3, paraffins: 4.4, parsing: 20.7, peval: 15.2,
pnpoly: 9.8, primes: 10.2, puzzle: 10.2, quicksort: 40.0, ray: 8.3,
read1: 0.2, sboyer: 19.1, scheme: 29.5, simplex: 26.9, slatex: 4.2,
string: 0.8, sum1: 0.2, sum: 4.1, sumfp: 2.2, tail: 0.1, tak: 7.1,
takl: 8.1, triangl: 16.4, wc: 4.9. In the gmp case, chudnovsky: 0.017, pi: .01.
</p>
</div>
<div class="indented">
<p>In s7, there is only one kind of begin statement,
and it can contain both definitions and expressions. These are evaluated in the order
in which they occur, and in the environment at the point of the evaluation. I think
of it as being a little REPL. begin does not introduce a new frame in
the current environment, so defines happen in the enclosing environment.
Finally, begin, explicit or otherwise, does not pretend to emulate letrec*.
</p>
<p>If we allow defines anywhere, the notion of "lexical scope" becomes problematic.
Scheme is already a mess in that regard: take
</p>
<pre class="indented">(let ((x 1))
(do ((y x x)
(x 3))
((&gt; y 1) y)))
</pre>
<p>In <code>(y x x)</code> the first x is the outer one, and the second is the
following do variable, so this returns 3! But sticking to define, in
</p>
<pre class="indented">(let ((x 1))
(define y x)
(define x 2)
y)
</pre>
<p>s7 returns 1 even though technically the second x is in y's environment.
Since we treat this as a REPL, y gets its value from the only x defined at
the point it is defined. However,
</p>
<pre class="indented">(let ((x 1))
(define y (lambda () x))
(define x 2)
(y))
</pre>
<p>returns 2 in s7 because the x in y's function body is not evaluated
until after the second x is defined.
The define propagates backwards, but:
<code>(list x (define x 0))</code>, or <code>(list x (begin (define x 0) x))</code>.
</p>
</div>
<div class="indented">
<p id="r7rs">The r7rs compatibility code is in r7rs.scm. I used to include it here, but
as r7rs grew, this section got too large. In general, all the conversion routines in
r7rs are handled in s7 via generic functions, records are classes, and so on.
</p>
</div>
<div class="indented">
<p>"Life", a poem.
</p>
<pre class="indented">(+(*(+))(*)(+(+)(+)(*)))
(((((lambda () (lambda () (lambda () (lambda () 1))))))))
(+ (((lambda () values)) 1 2 3))
(map apply (list map) (list map) (list (list *)) '((((1 2)) ((3 4 5)))))
(do ((do do do)) (do do do))
(*(*)(*) (+)(+) 1)
</pre>
</div>
</blockquote>
<br><br>
<div class="topheader" id="FFIexamples">FFI examples</div>
<p>s7 exists only to serve as an extension of some other application, so
it is primarily a foreign function interface. s7.h has lots of comments about the individual
functions. Here I'll collect some complete examples. s7.c depends on the following
compile-time flags:
</p>
<pre class="indented">SIZEOF_VOID_P 8 (default) or 4.
WITH_GMP 1 if you want multiprecision arithmetic (requires gmp, mpfr, and mpc, default is 0)
HAVE_COMPLEX_NUMBERS 1 if your compiler supports complex numbers
HAVE_COMPLEX_TRIG 1 if your math library has complex versions of the trig functions
DISABLE_DEPRECATED 1 if you want to make sure you're not using any deprecated s7 stuff (default is 0)
WITH_IMMUTATBLE_UNQUOTE 1 if you want "unquote" omitted (default is 0)
WITH_EXTRA_EXPONENT_MARKERS 1 if you want "d", "f", "l", and "s" in addition to "e" as exponent markers (default is 0)
if someone defends these exponent markers, ask him to read 1l11+11l1i
(in 2 million lines of open-source Scheme, there is not one use of these silly things)
WITH_SYSTEM_EXTRAS 1 if you want some additional OS-related functions built-in (default is 0)
WITH_MAIN 1 if you want s7.c to include a main program section that runs a REPL.
WITH_C_LOADER 1 if you want to be able to load shared object files with load.
</pre>
<p>See the comment at the start of s7.c for more information about these switches.
s7.h defines the two main number types: s7_int and s7_double.
The examples that follow show:
</p>
<ul>
<li><a href="#repl">read-eval-print loop (and emacs)</a>
</li><li><a href="#defun">define a function with arguments and a returned value, and define a variable </a>
</li><li><a href="#defvar">call a Scheme function from C, and get/set Scheme variable values in C</a>
</li><li><a href="#juce">C++ and Juce</a>
</li><li><a href="#sndlib">load sndlib using the Xen functions and macros</a>
</li><li><a href="#pwstype">add a new Scheme type and a procedure with a setter</a>
</li><li><a href="#functionportexample">redirect display output to a C procedure</a>
</li><li><a href="#extendop">extend a built-in operator ("+" in this case)</a>
</li><li><a href="#definestar1">C-side define* (s7_define_function_star)</a>
</li><li><a href="#definemacro1">C-side define-macro (s7_define_macro)</a>
</li><li><a href="#definegeneric">define a generic function in C</a>
</li><li><a href="#signal">signal handling (C-C to break out of an infinite loop)</a>
</li><li><a href="#notify">notification in C that a Scheme variable has been set!</a>
</li><li><a href="#namespace">Load C defined stuff into a separate namespace</a>
</li><li><a href="#Cerrors">Error handling in C</a>
</li><li><a href="#testhook">Hooks in C and Scheme</a>
</li><li><a href="#dload">Load a C module dynamically</a>
</li><li><a href="#gmpex">gmp and friends</a>
</li><li><a href="#gdb">gdb</a>
</li></ul>
<div class="header" id="repl"><h4>A simple listener</h4></div>
<div class="indented">
<pre>#include &lt;stdlib.h&gt;
#include &lt;stdio.h&gt;
#include &lt;string.h&gt;
#include "s7.h"
int main(int argc, char **argv)
{
s7_scheme *s7;
char buffer[512];
char response[1024];
s7 = <em class="red">s7_init</em>(); /* initialize the interpreter */
while (1) /* fire up a read-eval-print loop */
{
fprintf(stdout, "\n&gt; "); /* prompt for input */
fgets(buffer, 512, stdin);
if ((buffer[0] != '\n') ||
(strlen(buffer) &gt; 1))
{ /* evaluate the input and print the result */
snprintf(response, 1024, "(write %s)", buffer);
<em class="red">s7_eval_c_string</em>(s7, response);
}
}
}
/* if not using gcc or clang, make mus-config.h (it can be empty), then
*
* gcc -c s7.c -I.
* gcc -o repl repl.c s7.o -lm -I. -ldl
*
* run it:
*
* repl
* &gt; (+ 1 2)
* <em class="gray">3</em>
* &gt; (define (add1 x) (+ 1 x))
* <em class="gray">add1</em>
* &gt; (add1 2)
* <em class="gray">3</em>
* &gt; (exit)
*
* for long-term happiness in linux use:
* gcc -o repl repl.c s7.o -Wl,-export-dynamic -lm -I. -ldl
* clang also needs -fPIC I think
* freebsd:
* gcc -o repl repl.c s7.o -Wl,-export-dynamic -lm -I.
* osx:
* gcc -o repl repl.c s7.o -lm -I.
* openbsd:
* gcc -o repl repl.c s7.o -I. -ftrampolines -Wl,-export-dynamic -lm
*/
</pre>
</div>
<p>Since this reads stdin and writes stdout, it can be run as a Scheme subjob of emacs.
One (inconvenient) way to do this is to set the emacs variable scheme-program-name to
the name of the exectuable created above ("repl"), then call the emacs function run-scheme:
M-x eval-expression in emacs, followed by (setq scheme-program-name "repl"), then
M-x run-scheme, and you're talking to s7 in emacs. Of course, this connection can be
customized indefinitely. See, for example, inf-snd.el in the Snd package.
</p>
<p>Here are the not-always-built-in indentations I use in emacs:
</p>
<pre class="indented">(put 'with-let 'scheme-indent-function 1)
(put 'with-baffle 'scheme-indent-function 0)
(put 'with-sound 'scheme-indent-function 1)
(put 'catch 'scheme-indent-function 1)
(put 'lambda* 'scheme-indent-function 1)
(put 'when 'scheme-indent-function 1)
(put 'let-temporarily 'scheme-indent-function 1)
(put 'let*-temporarily 'scheme-indent-function 1)
(put 'call-with-input-string 'scheme-indent-function 1)
(put 'unless 'scheme-indent-function 1)
(put 'letrec* 'scheme-indent-function 1)
(put 'sublet 'scheme-indent-function 1)
(put 'varlet 'scheme-indent-function 1)
(put 'case* 'scheme-indent-function 1)
</pre>
<p>To read stdin while working in a GUI-based program is trickier. In glib, you can use
something like this:
</p>
<blockquote>
<div class="indented">
<pre>static gboolean read_stdin(GIOChannel *source, GIOCondition condition, gpointer data)
{
/* here read from g_io_channel_unix_get_fd(source) and call s7_eval_string */
return(true);
}
/* ... during initialization ... */
GIOChannel *channel;
channel = g_io_channel_unix_new(STDIN_FILENO); /* watch stdin */
stdin_id = g_io_add_watch_full(channel, /* and call read_stdin above if input is noticed */
G_PRIORITY_DEFAULT,
(GIOCondition)(G_IO_IN | G_IO_HUP | G_IO_ERR),
<em class="red">read_stdin</em>, NULL, NULL);
g_io_channel_unref(channel);
</pre></div>
</blockquote>
<p>Here's a version that uses libtecla for the line editor:
</p>
<blockquote>
<div class="indented">
<pre>#include &lt;stdlib.h&gt;
#include &lt;stdio.h&gt;
#include &lt;string.h&gt;
#include &lt;libtecla.h&gt;
#include "s7.h"
int main(int argc, char **argv)
{
s7_scheme *s7;
char *buffer;
char response[1024];
GetLine *gl; /* The tecla line editor */
gl = new_GetLine(500, 5000);
s7 = s7_init();
while (1)
{
buffer = gl_get_line(gl, "&gt; ", NULL, 0);
if ((buffer[0] != '\n') ||
(strlen(buffer) &gt; 1))
{
snprintf(response, 1024, "(write %s)", buffer);
s7_eval_c_string(s7, response);
fprintf(stdout, "\n");
}
}
gl = del_GetLine(gl);
}
/*
* gcc -c s7.c -I. -O2 -g3
* gcc -o ex1 ex1.c s7.o -lm -I. -ltecla -ldl
*/
</pre></div>
</blockquote>
<p>A repl (based on repl.scm or nrepl.scm) is built into s7. Include the compiler flag -DWITH_MAIN:
</p>
<pre class="indented">gcc -o nrepl s7.c -O2 -I. -Wl,-export-dynamic -lm -ldl -DWITH_MAIN -DWITH_NOTCURSES -lnotcurses-core
</pre>
<p id="beginhook">
Common Lisp has something called "evalhook" that makes it possible
to insert your own function into the eval loop. In s7, we have a "begin_hook" which sits at the opening of many begin blocks
(implicit or explicit). begin_hook is a (C) function;
if it sets its bool argument to true,
s7 interrupts the current evaluation.
Here is a version of the REPL in which begin_hook watches for C-g to interrupt
some long computation:
</p>
<blockquote>
<div class="indented">
<pre>/* terminal-based REPL,
* an expansion of the <a href="#repl">read-eval-print loop</a> program above.
* type C-g to interrupt an evaluation.
*/
#include &lt;stdlib.h&gt;
#include &lt;stdio.h&gt;
#include &lt;string.h&gt;
#include &lt;termios.h&gt;
#include &lt;signal.h&gt;
#include "s7.h"
static struct termios save_buf, buf;
static void sigcatch(int n)
{
/* put things back the way they were */
tcsetattr(fileno(stdin), TCSAFLUSH, &amp;save_buf);
exit(0);
}
static char buffer[512];
static int type_ahead_point = 0;
static void <em class="red">watch_for_c_g</em>(s7_scheme *sc, bool *all_done)
{
char c;
/* watch for C-g without blocking, save other chars as type-ahead */
tcsetattr(fileno(stdin), TCSAFLUSH, &amp;buf);
if (read(fileno(stdin), &amp;c, 1) == 1)
{
if (c == 7) /* C-g */
{
*all_done = true;
type_ahead_point = 0;
}
else buffer[type_ahead_point++] = c;
}
tcsetattr(fileno(stdin), TCSAFLUSH, &amp;save_buf);
}
int main(int argc, char **argv)
{
s7_scheme *s7;
bool use_begin_hook;
use_begin_hook = (tcgetattr(fileno(stdin), &amp;save_buf) &gt;= 0);
if (use_begin_hook)
{
buf = save_buf;
buf.c_lflag &amp;= ~ICANON;
buf.c_cc[VMIN] = 0;
buf.c_cc[VTIME] = 0;
signal(SIGINT, sigcatch);
signal(SIGQUIT, sigcatch);
signal(SIGTERM, sigcatch);
}
s7 = s7_init();
if (argc == 2)
{
fprintf(stderr, "load %s\n", argv[1]);
if (!s7_load(s7, argv[1]))
fprintf(stderr, "can't find %s\n", argv[1]);
}
else
{
char response[1024];
while (1)
{
fprintf(stdout, "\n&gt; ");
fgets((char *)(buffer + type_ahead_point), 512 - type_ahead_point, stdin);
type_ahead_point = 0;
if ((buffer[0] != '\n') ||
(strlen(buffer) &gt; 1))
{
snprintf(response, 1024, "(write %s)", buffer);
if (use_begin_hook)
<em class="red">s7_set_begin_hook</em>(s7, watch_for_c_g);
s7_eval_c_string(s7, response);
if (use_begin_hook)
<em class="red">s7_set_begin_hook</em>(s7, NULL);
}
}
}
if (use_begin_hook)
tcsetattr(fileno(stdin), TCSAFLUSH, &amp;save_buf);
}
</pre></div>
</blockquote>
<div class="header" id="defun"><h4>Define a function with arguments and a returned value, and a variable</h4></div>
<div class="indented">
<pre>#include &lt;stdlib.h&gt;
#include &lt;stdio.h&gt;
#include &lt;string.h&gt;
#include "s7.h"
static s7_pointer add1(s7_scheme *sc, s7_pointer args)
{
/* all added functions have this form, args is a list,
* s7_car(args) is the first arg, etc
*/
if (<em class="red">s7_is_integer</em>(s7_car(args)))
return(<em class="red">s7_make_integer</em>(sc, 1 + <em class="red">s7_integer</em>(s7_car(args))));
return(s7_wrong_type_arg_error(sc, "add1", 1, s7_car(args), "an integer"));
}
int main(int argc, char **argv)
{
s7_scheme *s7;
char buffer[512];
char response[1024];
s7 = s7_init();
s7_define_function(s7, "add1", add1, 1, 0, false, "(add1 int) adds 1 to int");
/* add the function "add1" to the interpreter.
* 1, 0, false -&gt; one required arg,
* no optional args,
* no "rest" arg
*/
<em class="red">s7_define_variable</em>(s7, "my-pi", <em class="red">s7_make_real</em>(s7, 3.14159265));
while (1) /* fire up a "repl" */
{
fprintf(stdout, "\n&gt; "); /* prompt for input */
fgets(buffer, 512, stdin);
if ((buffer[0] != '\n') ||
(strlen(buffer) &gt; 1))
{
snprintf(response, 1024, "(write %s)", buffer);
s7_eval_c_string(s7, response); /* evaluate input and write the result */
}
}
}
/* doc7
* &gt; my-pi
* <em class="gray">3.14159265</em>
* &gt; (+ 1 (add1 1))
* <em class="gray">3</em>
* &gt; (exit)
*/
</pre></div>
<div class="header" id="defvar"><h4>Call a Scheme-defined function from C, and get/set Scheme variable values in C</h4></div>
<div class="indented">
<pre>#include &lt;stdlib.h&gt;
#include &lt;stdio.h&gt;
#include &lt;string.h&gt;
#include "s7.h"
int main(int argc, char **argv)
{
s7_scheme *s7;
s7 = s7_init();
s7_define_variable(s7, "an-integer", s7_make_integer(s7, 1));
s7_eval_c_string(s7, "(define (add1 a) (+ a 1))");
fprintf(stderr, "an-integer: %lld\n",
s7_integer(<em class="red">s7_name_to_value</em>(s7, "an-integer")));
<em class="red">s7_symbol_set_value</em>(s7, <em class="red">s7_make_symbol</em>(s7, "an-integer"), s7_make_integer(s7, 32));
fprintf(stderr, "now an-integer: %lld\n",
s7_integer(<em class="red">s7_name_to_value</em>(s7, "an-integer")));
fprintf(stderr, "(add1 2): %lld\n",
s7_integer(<em class="red">s7_call</em>(s7,
s7_name_to_value(s7, "add1"),
s7_cons(s7, s7_make_integer(s7, 2), s7_nil(s7)))));
}
/*
* doc7
* an-integer: 1
* now an-integer: 32
* (add1 2): 3
*/
</pre>
<p>In more complicated cases, it is probably easier use s7_eval_c_string_with_environment.
As an example, say we want to have a C procedure that calls the pretty printer function pp
in write.scm, returning a string to C. We need to make sure pp is loaded, and catch
any errors that come up. And we need to pass the C-level s7 object to pp. So...
</p>
<pre>static const char *pp(s7_scheme *sc, s7_pointer obj) /* (pp obj) */
{
return(s7_string(
<em class="red">s7_eval_c_string_with_environment</em>(sc,
"(catch #t \
(lambda () \
(unless (defined? 'pp) \
(load \"write.scm\")) \
(<em class="red">pp</em> obj)) \
(lambda (type info) \
(apply format #f info)))",
<em class="red">s7_inlet</em>(sc, s7_list(sc, 1, s7_cons(sc, s7_make_symbol(sc, "obj"), obj))))));
}
</pre>
<p>and now when we want a pretty-printed representation of something: pp(sc, obj);
The s7_inlet call is creating a local environment with the object "obj" bound
in scheme to the name "obj" so that (pp obj) will find the "obj" that actually
lives in C. You may need to give the full filename for write.scm, or add its path
to the <a href="#loadpath">load-path list</a>. In the latter case, <code>(require write.scm)</code> could
replace <code>(unless (defined?...))</code>.
</p>
</div>
<div class="header" id="juce"><h4>C++ and Juce, from Rick Taube</h4></div>
<div class="indented">
<pre>int main(int argc, const char* argv[])
{
initialiseJuce_NonGUI();
s7_scheme *s7 = s7_init();
if (!s7)
{
std::cout &lt;&lt; "Can't start S7!\n";
return -1;
}
s7_pointer val;
std::string str;
while (true)
{
std::cout &lt;&lt; "\ns7&gt; ";
std::getline(std::cin, str);
val = s7_eval_c_string(s7, str.c_str());
std::cout &lt;&lt; s7_object_to_c_string(s7, val);
}
free(s7);
std::cout &lt;&lt; "Bye!\n";
return 0;
}
</pre></div>
<div class="header" id="sndlib"><h4>Load sndlib into an s7 repl</h4></div>
<div class="indented">
<pre>#include &lt;stdlib.h&gt;
#include &lt;stdio.h&gt;
#include &lt;string.h&gt;
#include &lt;unistd.h&gt;
/* assume we've configured and built sndlib, so it has created a mus-config.h file.
* also assume we've built s7 with WITH_SYSTEM_EXTRAS set, so we have file-exists? and delete-file
*/
#include "mus-config.h"
#include "s7.h"
#include "xen.h"
#include "clm.h"
#include "clm2xen.h"
/* we need to redirect clm's mus_error calls to s7_error */
static void mus_error_to_s7(int type, char *msg)
{
s7_error(s7, /* s7 is declared in xen.h, defined in xen.c */
s7_make_symbol(s7, "mus-error"),
s7_cons(s7, s7_make_string(s7, msg), s7_nil(s7)));
}
int main(int argc, char **argv)
{
char buffer[512];
char response[1024];
s7 = s7_init(); /* initialize the interpreter */
s7_xen_initialize(s7); /* initialize the xen stuff (hooks and the xen s7 FFI used by sndlib) */
Init_sndlib(); /* initialize sndlib with all the functions linked into s7 */
mus_error_set_handler(mus_error_to_s7); /* catch low-level errors and pass them to s7-error */
while (1) /* fire up a "repl" */
{
fprintf(stdout, "\n&gt; "); /* prompt for input */
fgets(buffer, 512, stdin);
if ((buffer[0] != '\n') ||
(strlen(buffer) &gt; 1))
{
snprintf(response, 1024, "(write %s)", buffer);
s7_eval_c_string(s7, response); /* evaluate input and write the result */
}
}
}
/* gcc -o doc7 doc7.c -lm -I. /usr/local/lib/libsndlib.a -lasound -ldl
*
* (load "sndlib-ws.scm")
* (with-sound () (outa 10 .1))
* (load "v.scm")
* (with-sound () (fm-violin 0 .1 440 .1))
*
* you might also need -lgsl -lgslcblas -lfftw3
*/
</pre>
</div>
<p>If you built libsndlib.so, it is possible to use it directly in the s7 repl:
</p>
<pre>repl ; this is a bare s7 running repl.scm via -DWITH_MAIN=1
loading libc_s7.so
&gt; (load "/home/bil/test/sndlib/libsndlib.so" (inlet 'init_func 's7_init_sndlib))
#t ; s7_init_sndlib ties all the sndlib functions and variables into s7
&gt; (load "sndlib-ws.scm")
tmpnam
&gt; (set! *clm-player* (lambda (file) (system (format #f "sndplay ~A" file))))
&gt; (load "v.scm")
fm-violin
&gt; (with-sound (:play #t) (fm-violin 0 1 440 .1))
"test.snd"
</pre>
<p>You can use autoload to load libsndlib when needed:
</p>
<pre class="indented">(define (find-library name)
(if (or (file-exists? name)
(char=? (name 0) #\/))
name
(call-with-exit
(lambda (return)
(for-each
(lambda (path)
(let ((new-name (string-append path "/" name)))
(if (file-exists? new-name)
(return new-name))))
*load-path*)
(let ((libs (getenv "LD_LIBRARY_PATH")) ; colon separated directory names
(start 0))
(do ((colon (char-position #\: libs) (char-position #\: libs start)))
((or (not colon)
(let ((new-name (string-append (substring libs start colon) "/" name)))
(and (file-exists? new-name)
(return new-name)))))
(set! start (+ colon 1))))
name))))
(<em class="red">autoload</em> 'clm
(lambda (e)
(load (find-library "libsndlib.so") (inlet '(init_func . s7_init_sndlib)))
(set! *features* (cons 'clm *features*))
(with-let (rootlet) (define clm #t))
(load "sndlib-ws.scm")
(set! *clm-player* (lambda (file) (system (format #f "sndplay ~A" file))))))
</pre>
<p>and use the repl's vt100 stuff to (for example) post the current begin time
as a note list computes:
</p>
<pre class="indented">(define (clm-notehook . args)
;; assume second arg is begin time (first is instrument name)
(when (and (pair? args)
(pair? (cdr args))
(number? (cadr args)))
(with-let (sublet (*repl* 'repl-let) :begin-time (cadr args))
(let ((coords (cursor-coords))
(col (floor (/ last-col 2))))
(let ((str (number-&gt;string begin-time)))
(format *stderr* "~C[~D;~DH" #\escape prompt-row col)
(format *stderr* "~C[K~A" #\escape (if (&gt; (length str) col) (substring str 0 (- col 1)) str)))
(format *stderr* "~C[~D;~DH" #\escape (cdr coords) (car coords))))))
(set! *clm-notehook* clm-notehook)
</pre>
<div class="header" id="pwstype"><h4>Add a new Scheme type and a procedure with a setter</h4></div>
<div class="indented">
<pre>#include &lt;stdlib.h&gt;
#include &lt;stdio.h&gt;
#include &lt;string.h&gt;
#include "s7.h"
/* define *listener-prompt* in scheme, add two accessors for C get/set */
static const char *listener_prompt(s7_scheme *sc)
{
return(s7_string(s7_name_to_value(sc, "*listener-prompt*")));
}
static void set_listener_prompt(s7_scheme *sc, const char *new_prompt)
{
s7_symbol_set_value(sc, s7_make_symbol(sc, "*listener-prompt*"), s7_make_string(sc, new_prompt));
}
/* now add a new type, a struct named "dax" with two fields, a real "x" and a list "data" */
/* since the data field is an s7 object, we'll need to mark it to protect it from the GC */
typedef struct {
s7_double x;
s7_pointer data;
} dax;
static int dax_type_tag = 0;
static s7_pointer dax_to_string(s7_scheme *sc, s7_pointer args)
{
char *data_str, *str;
s7_pointer result;
int data_str_len;
dax *o = (dax *)s7_c_object_value(s7_car(args));
data_str = s7_object_to_c_string(sc, o-&gt;data);
data_str_len = strlen(data_str);
str = (char *)calloc(data_str_len + 32, sizeof(char));
snprintf(str, data_str_len + 32, "&lt;dax %.3f %s&gt;", o-&gt;x, data_str);
free(data_str);
result = s7_make_string(sc, str);
free(str);
return(result);
}
static s7_pointer free_dax(s7_scheme *sc, s7_pointer obj)
{
free(s7_c_object_value(obj));
return(NULL);
}
static s7_pointer mark_dax(s7_scheme *sc, s7_pointer obj)
{
dax *o;
o = (dax *)s7_c_object_value(obj);
s7_mark(o-&gt;data);
return(NULL);
}
static s7_pointer make_dax(s7_scheme *sc, s7_pointer args)
{
dax *o;
o = (dax *)malloc(sizeof(dax));
o-&gt;x = s7_real(s7_car(args));
if (s7_cdr(args) != s7_nil(sc))
o-&gt;data = s7_cadr(args);
else o-&gt;data = s7_nil(sc);
return(<em class="red">s7_make_c_object</em>(sc, dax_type_tag, (void *)o));
}
static s7_pointer is_dax(s7_scheme *sc, s7_pointer args)
{
return(s7_make_boolean(sc,
<em class="red">s7_is_c_object</em>(s7_car(args)) &amp;&amp;
<em class="red">s7_c_object_type</em>(s7_car(args)) == dax_type_tag));
}
static s7_pointer dax_x(s7_scheme *sc, s7_pointer args)
{
dax *o;
o = (dax *)<em class="red">s7_c_object_value</em>(s7_car(args));
return(s7_make_real(sc, o-&gt;x));
}
static s7_pointer set_dax_x(s7_scheme *sc, s7_pointer args)
{
dax *o;
o = (dax *)s7_c_object_value(s7_car(args));
o-&gt;x = s7_real(s7_cadr(args));
return(s7_cadr(args));
}
static s7_pointer dax_data(s7_scheme *sc, s7_pointer args)
{
dax *o;
o = (dax *)s7_c_object_value(s7_car(args));
return(o-&gt;data);
}
static s7_pointer set_dax_data(s7_scheme *sc, s7_pointer args)
{
dax *o;
o = (dax *)s7_c_object_value(s7_car(args));
o-&gt;data = s7_cadr(args);
return(o-&gt;data);
}
static s7_pointer dax_is_equal(s7_scheme *sc, s7_pointer args)
{
s7_pointer p1, p2;
dax *d1, *d2;
p1 = s7_car(args);
p2 = s7_cadr(args);
if (p1 == p2)
return(s7_t(sc));
if ((!s7_is_c_object(p2)) ||
(s7_c_object_type(p2) != dax_type_tag))
return(s7_f(sc));
d1 = (dax *)s7_c_object_value(p1);
d2 = (dax *)s7_c_object_value(p2);
return(s7_make_boolean(sc,
(d1-&gt;x == d2-&gt;x) &amp;&amp;
(s7_is_equal(sc, d1-&gt;data, d2-&gt;data))));
}
int main(int argc, char **argv)
{
s7_scheme *s7;
char buffer[512];
char response[1024];
s7 = s7_init();
s7_define_variable(s7, "*listener-prompt*", s7_make_string(s7, "&gt;"));
dax_type_tag = <em class="red">s7_make_c_type</em>(s7, "dax");
s7_c_type_set_gc_free(s7, dax_type_tag, free_dax);
s7_c_type_set_gc_mark(s7, dax_type_tag, mark_dax);
s7_c_type_set_is_equal(s7, dax_type_tag, dax_is_equal);
s7_c_type_set_to_string(s7, dax_type_tag, dax_to_string);
s7_define_function(s7, "make-dax", make_dax, 2, 0, false, "(make-dax x data) makes a new dax");
s7_define_function(s7, "dax?", is_dax, 1, 0, false, "(dax? anything) returns #t if its argument is a dax object");
s7_define_variable(s7, "dax-x",
<em class="red">s7_dilambda</em>(s7, "dax-x", dax_x, 1, 0, set_dax_x, 2, 0, "dax x field"));
s7_define_variable(s7, "dax-data",
<em class="red">s7_dilambda</em>(s7, "dax-data", dax_data, 1, 0, set_dax_data, 2, 0, "dax data field"));
while (1)
{
fprintf(stdout, "\n%s ", listener_prompt(s7));
fgets(buffer, 512, stdin);
if ((buffer[0] != '\n') ||
(strlen(buffer) &gt; 1))
{
snprintf(response, 1024, "(write %s)", buffer);
s7_eval_c_string(s7, response); /* evaluate input and write the result */
}
}
}
/* (in Linux);
* gcc dax.c -o dax -I. -O2 -g s7.o -ldl -lm -Wl,-export-dynamic -Wno-stringop-overflow
* dax
* &gt; *listener-prompt*
* <em class="gray">"&gt;"</em>
* &gt; (set! *listener-prompt* ":")
* <em class="gray">":"</em>
* : (define obj (make-dax 1.0 (list 1 2 3)))
* <em class="gray">obj</em>
* : obj
* <em class="gray">#&lt;dax 1.000 (1 2 3)&gt;</em>
* : (dax-x obj)
* <em class="gray">1.0</em>
* : (dax-data obj)
* <em class="gray">(1 2 3)</em>
* : (set! (dax-x obj) 123.0)
* <em class="gray">123.0</em>
* : obj
* <em class="gray">#&lt;dax 123.000 (1 2 3)&gt;</em>
* : (dax? obj)
* <em class="gray">#t</em>
* : (exit)
*/
</pre></div>
<div class="header" id="functionportexample"><h4>Redirect output (and input) to a C procedure</h4></div>
<div class="indented">
<pre>#include &lt;stdlib.h&gt;
#include &lt;stdio.h&gt;
#include &lt;string.h&gt;
#include "s7.h"
static void my_print(s7_scheme *sc, uint8_t c, s7_pointer port)
{
fprintf(stderr, "[%c] ", c);
}
static s7_pointer my_read(s7_scheme *sc, s7_read_t peek, s7_pointer port)
{
return(<em class="red">s7_make_character</em>(sc, fgetc(stdin)));
}
int main(int argc, char **argv)
{
s7_scheme *s7;
char buffer[512];
char response[1024];
s7 = s7_init();
<em class="red">s7_set_current_output_port</em>(s7, <em class="red">s7_open_output_function</em>(s7, my_print));
s7_define_variable(s7, "io-port", <em class="red">s7_open_input_function</em>(s7, my_read));
while (1)
{
fprintf(stdout, "\n&gt; ");
fgets(buffer, 512, stdin);
if ((buffer[0] != '\n') ||
(strlen(buffer) &gt; 1))
{
snprintf(response, 1024, "(write %s)", buffer);
s7_eval_c_string(s7, response);
}
}
}
/*
* &gt; (+ 1 2)
* <em class="gray">[3]</em>
* &gt; (display "hiho")
* <em class="gray">[h] [i] [h] [o] [#] [&lt;] [u] [n] [s] [p] [e] [c] [i] [f] [i] [e] [d] [&gt;] </em>
* &gt; (define (add1 x) (+ 1 x))
* <em class="gray">[a] [d] [d] [1] </em>
* &gt; (add1 123)
* <em class="gray">[1] [2] [4] </em>
* &gt; (read-char io-port)
* a ; here I typed "a" in the shell
* <em class="gray">[#] [\] [a] </em>
*/
</pre>
</div>
<p>In Snd, we want debug.scm (*debug-port*) output to go to the Snd listener text widget. The Snd function listener_append
adds a string to that widget's text, so we define:
</p>
<pre class="indented">static void (listener_write)(s7_scheme *sc, uint8_t c, s7_pointer port)
{
char buf[2];
buf[0] = c;
buf[1] = '\0';
listener_append(buf);
}
</pre>
<p>
Then we define a Scheme-side variable, *listener-port*, to be a function port:
</p>
<pre class="indented">s7_define_variable_with_documentation(s7, "*listener-port*",
s7_open_output_function(s7, listener_write), "port to write to Snd's listener");
</pre>
<p>
And tie it into *debug-port* via
<code>(set! ((funclet trace-in) '*debug-port*) *listener-port*)</code>.
</p>
<div class="header" id="extendop"><h4>Extend a built-in operator ("+" in this case)</h4></div>
<p>There are several ways to do this. In the first example, we save the original function,
and replace it with ours, calling the original whenever possible:
</p>
<div class="indented">
<pre>#include &lt;stdlib.h&gt;
#include &lt;stdio.h&gt;
#include &lt;string.h&gt;
#include "s7.h"
static s7_pointer old_add; /* the original "+" function for non-string cases */
static s7_pointer old_string_append; /* same, for "string-append" */
static s7_pointer our_add(s7_scheme *sc, s7_pointer args)
{
/* this will replace the built-in "+" operator, extending it to include strings:
* (+ "hi" "ho") -&gt; "hiho" and (+ 3 4) -&gt; 7
*/
if ((s7_is_pair(args)) &amp;&amp;
(s7_is_string(s7_car(args))))
return(<em class="red">s7_apply_function</em>(sc, old_string_append, args));
return(s7_apply_function(sc, old_add, args));
}
int main(int argc, char **argv)
{
s7_scheme *s7;
char buffer[512];
char response[1024];
s7 = s7_init();
/* get built-in + and string-append */
old_add = s7_name_to_value(s7, "+");
old_string_append = s7_name_to_value(s7, "string-append");
/* redefine "+" */
s7_define_function(s7, "+", our_add, 0, 0, true, "(+ ...) adds or appends its arguments");
while (1)
{
fprintf(stdout, "\n&gt; ");
fgets(buffer, 512, stdin);
if ((buffer[0] != '\n') ||
(strlen(buffer) &gt; 1))
{
snprintf(response, 1024, "(write %s)", buffer);
s7_eval_c_string(s7, response);
}
}
}
/* &gt; (+ 1 2)
* <em class="gray">3</em>
* &gt; (+ "hi" "ho")
* <em class="gray">"hiho"</em>
*/
</pre></div>
<p>In the next example, we use the method (inlet) machinery:
</p>
<div class="indented">
<pre>#include &lt;stdlib.h&gt;
#include &lt;stdio.h&gt;
#include &lt;string.h&gt;
#include &lt;math.h&gt;
#include "s7.h"
static s7_pointer our_abs(s7_scheme *sc, s7_pointer args)
{
s7_pointer x;
x = s7_car(args);
if (!s7_is_number(x))
{
s7_pointer method;
method = <em class="red">s7_method</em>(sc, x, s7_make_symbol(sc, "abs"));
if (method == s7_undefined(sc)) /* no method found, so raise an error */
s7_wrong_type_arg_error(sc, "abs", 1, x, "a real");
return(s7_apply_function(sc, method, args)); /* else apply the method to the args */
}
return(s7_make_real(sc, (s7_double)fabs(s7_number_to_real(sc, x))));
}
int main(int argc, char **argv)
{
s7_scheme *s7;
char buffer[512];
char response[1024];
s7 = s7_init();
s7_define_function(s7, "our-abs", our_abs, 1, 0, false, "abs replacement");
while (1)
{
fprintf(stdout, "\n&gt; ");
fgets(buffer, 512, stdin);
if ((buffer[0] != '\n') ||
(strlen(buffer) &gt; 1))
{
snprintf(response, 1024, "(write %s)", buffer);
s7_eval_c_string(s7, response);
}
}
}
/* &gt; (our-abs -1)
* <em class="gray">1.0</em>
* &gt; (our-abs (openlet (inlet 'value -3.0 'abs (lambda (x) (abs (x 'value))))))
* <em class="gray">3.0</em>
*/
</pre>
</div>
<div class="header" id="definestar1"><h4>C-side define* (s7_define_function_star)</h4></div>
<div class="indented">
<pre>#include &lt;stdlib.h&gt;
#include &lt;stdio.h&gt;
#include &lt;string.h&gt;
#include "s7.h"
static s7_pointer plus(s7_scheme *sc, s7_pointer args)
{
/* (define* (plus (red 32) blue) (+ (* 2 red) blue)) */
return(s7_make_integer(sc, 2 * s7_integer(s7_car(args)) + s7_integer(s7_cadr(args))));
}
int main(int argc, char **argv)
{
s7_scheme *s7;
char buffer[512];
char response[1024];
s7 = s7_init();
<em class="red">s7_define_function_star</em>(s7, "plus", plus, "(red 32) blue", "an example of define* from C");
while (1)
{
fprintf(stdout, "\n&gt; ");
fgets(buffer, 512, stdin);
if ((buffer[0] != '\n') ||
(strlen(buffer) &gt; 1))
{
snprintf(response, 1024, "(write %s)", buffer);
s7_eval_c_string(s7, response);
}
}
}
/*
* &gt; (plus 2 3)
* <em class="gray">7</em>
* &gt; (plus :blue 3)
* <em class="gray">67</em>
* &gt; (plus :blue 1 :red 4)
* <em class="gray">9</em>
* &gt; (plus 2 :blue 3)
* <em class="gray">7</em>
* &gt; (plus :blue 3 :red 1)
* <em class="gray">5</em>
*/
</pre></div>
<div class="header" id="definemacro1"><h4>C-side define-macro (s7_define_macro)</h4></div>
<div class="indented">
<pre>#include &lt;stdlib.h&gt;
#include &lt;stdio.h&gt;
#include &lt;string.h&gt;
#include "s7.h"
static s7_pointer plus(s7_scheme *sc, s7_pointer args)
{
/* (define-macro (plus a b) `(+ ,a ,b)) */
s7_pointer a, b;
a = s7_car(args);
b = s7_cadr(args);
return(s7_list(sc, 3, s7_make_symbol(sc, "+"), a, b));
}
int main(int argc, char **argv)
{
s7_scheme *s7;
char buffer[512];
char response[1024];
s7 = s7_init();
<em class="red">s7_define_macro</em>(s7, "plus", plus, 2, 0, false, "plus adds its two arguments");
while (1)
{
fprintf(stdout, "\n&gt; ");
fgets(buffer, 512, stdin);
if ((buffer[0] != '\n') ||
(strlen(buffer) &gt; 1))
{
snprintf(response, 1024, "(write %s)", buffer);
s7_eval_c_string(s7, response);
}
}
}
/*
* &gt; (plus 2 3)
* <em class="gray">5</em>
*/
</pre></div>
<div class="header" id="definegeneric"><h4>define a generic function in C</h4></div>
<p>In scheme, a function becomes generic simply by <code>(apply ((car args) 'func) args)</code>.
To accomplish the same thing in C, we use s7_method and s7_apply_function:
</p>
<div class="indented">
<pre>#include &lt;stdlib.h&gt;
#include &lt;stdio.h&gt;
#include &lt;string.h&gt;
#include "s7.h"
static s7_pointer plus(s7_scheme *sc, s7_pointer args)
{
#define plus_help "(plus obj ...) applies obj's plus method to obj and any trailing arguments."
s7_pointer obj, method;
obj = s7_car(args);
method = <em class="red">s7_method</em>(sc, obj, s7_make_symbol(sc, "plus"));
if (s7_is_procedure(method))
return(<em class="red">s7_apply_function</em>(sc, method, args));
return(s7_f(sc));
}
int main(int argc, char **argv)
{
s7_scheme *s7;
s7 = s7_init();
s7_define_function(s7, "plus", plus, 1, 0, true, plus_help);
while (1)
{
char buffer[512];
char response[1024];
fprintf(stdout, "\n&gt; ");
fgets(buffer, 512, stdin);
if ((buffer[0] != '\n') ||
(strlen(buffer) &gt; 1))
{
snprintf(response, 1024, "(write %s)", buffer);
s7_eval_c_string(s7, response);
}
}
}
/* gcc -c s7.c -I.
* gcc -o ex15 ex15.c s7.o -I. -lm -ldl
*
* &gt; (plus 1 2)
* <em class="gray">#f</em>
* &gt; (define obj (openlet (inlet 'plus (lambda args (apply + 1 (cdr args))))))
* <em class="gray">obj</em>
* &gt; (plus obj 2 3)
* <em class="gray">6</em>
*/
</pre>
</div>
<div class="header" id="signal"><h4>Signal handling and continuations</h4></div>
<div class="indented">
<pre>#include &lt;stdlib.h&gt;
#include &lt;stdio.h&gt;
#include &lt;string.h&gt;
#include &lt;signal.h&gt;
#include "s7.h"
static s7_scheme *s7;
struct sigaction new_act, old_act;
static void handle_sigint(int ignored)
{
fprintf(stderr, "interrupted!\n");
s7_symbol_set_value(s7, s7_make_symbol(s7, "*interrupt*"), <em class="red">s7_make_continuation</em>(s7)); /* save where we were interrupted */
sigaction(SIGINT, &amp;new_act, NULL);
s7_quit(s7); /* get out of the eval loop if possible */
}
static s7_pointer our_sleep(s7_scheme *sc, s7_pointer args)
{
/* slow down our infinite loop for demo purposes */
sleep(1);
return(s7_f(sc));
}
int main(int argc, char **argv)
{
char buffer[512];
char response[1024];
s7 = s7_init();
s7_define_function(s7, "sleep", our_sleep, 0, 0, false, "(sleep) sleeps");
s7_define_variable(s7, "*interrupt*", s7_f(s7));
/* Scheme variable *interrupt* holds the continuation at the point of the interrupt */
sigaction(SIGINT, NULL, &amp;old_act);
if (old_act.sa_handler != SIG_IGN)
{
memset(&amp;new_act, 0, sizeof(new_act));
new_act.sa_handler = &amp;handle_sigint;
sigaction(SIGINT, &amp;new_act, NULL);
}
while (1)
{
fprintf(stderr, "\n&gt; ");
fgets(buffer, 512, stdin);
if ((buffer[0] != '\n') ||
(strlen(buffer) &gt; 1))
{
snprintf(response, 1024, "(write %s)", buffer);
s7_eval_c_string(s7, response);
}
}
}
/*
* &gt; (do ((i 0 (+ i 1))) ((= i -1)) (format () "~D " i) (sleep))
* ;;; now type C-C to break out of this loop
* 0 1 2 ^Cinterrupted!
* ;;; call the continuation to continue from where we were interrupted
* &gt; (*interrupt*)
* 3 4 5 ^Cinterrupted!
* &gt; *interrupt*
* #&lt;continuation&gt;
* &gt; (+ 1 2)
* 3
*/
</pre></div>
<div class="header" id="notify"><h4>Notification from Scheme that a given Scheme variable has been set</h4></div>
<div class="indented">
<pre>#include &lt;stdlib.h&gt;
#include &lt;stdio.h&gt;
#include &lt;string.h&gt;
#include "s7.h"
static s7_pointer scheme_set_notification(s7_scheme *sc, s7_pointer args)
{
/* this function is called when the Scheme variable is set! */
fprintf(stderr, "%s set to %s\n",
s7_object_to_c_string(sc, s7_car(args)),
s7_object_to_c_string(sc, s7_cadr(args)));
return(s7_cadr(args));
}
int main(int argc, char **argv)
{
s7_scheme *s7;
s7 = s7_init();
s7_define_function(s7, "notify-C", scheme_set_notification, 2, 0, false, "called if notified-var is set!");
s7_define_variable(s7, "notified-var", s7_make_integer(s7, 0));
<em class="red">s7_set_setter</em>(s7, s7_make_symbol(s7, "notified-var"), s7_name_to_value(s7, "notify-C"));
if (argc == 2)
{
fprintf(stderr, "load %s\n", argv[1]);
if (!s7_load(s7, argv[1]))
fprintf(stderr, "can't find %s\n", argv[1]);
}
else
{
char buffer[512];
char response[1024];
while (1)
{
fprintf(stdout, "\n&gt; ");
fgets(buffer, 512, stdin);
if ((buffer[0] != '\n') ||
(strlen(buffer) &gt; 1))
{
snprintf(response, 1024, "(write %s)", buffer);
s7_eval_c_string(s7, response);
}
}
}
}
/* &gt; notified-var
* <em class="gray">0</em>
* &gt; (set! notified-var 32)
* <em class="gray">notified-var set to 32</em>
* <em class="gray">32</em>
*/
</pre></div>
<div class="header" id="namespace"><h4>Load C defined stuff into a separate namespace</h4></div>
<div class="indented">
<pre>#include &lt;stdlib.h&gt;
#include &lt;stdio.h&gt;
#include &lt;string.h&gt;
#include "s7.h"
static s7_pointer func1(s7_scheme *sc, s7_pointer args)
{
return(s7_make_integer(sc, s7_integer(s7_car(args)) + 1));
}
int main(int argc, char **argv)
{
s7_scheme *s7;
s7_pointer new_env;
s7 = s7_init();
/* "func1" and "var1" will be placed in an anonymous environment,
* accessible from Scheme via the global variable "lib-exports"
*/
new_env = <em class="red">s7_inlet</em>(s7, s7_curlet(s7), s7_nil(s7));
/* make a private environment for func1 and var1 below (this is our "namespace") */
s7_gc_protect(s7, new_env);
s7_define(s7, <em class="red">new_env</em>,
s7_make_symbol(s7, "func1"),
<em class="red">s7_make_function</em>(s7, "func1", func1, 1, 0, false, "func1 adds 1 to its argument"));
s7_define(s7, <em class="red">new_env</em>, s7_make_symbol(s7, "var1"), s7_make_integer(s7, 32));
/* those two symbols are now defined in the new environment */
/* add "lib-exports" to the global environment */
s7_define_variable(s7, "lib-exports", <em class="red">s7_let_to_list</em>(s7, new_env));
if (argc == 2)
{
fprintf(stderr, "load %s\n", argv[1]);
if (!s7_load(s7, argv[1]))
fprintf(stderr, "can't find %s\n", argv[1]);
}
else
{
char buffer[512];
char response[1024];
while (1)
{
fprintf(stdout, "\n&gt; ");
fgets(buffer, 512, stdin);
if ((buffer[0] != '\n') ||
(strlen(buffer) &gt; 1))
{
snprintf(response, 1024, "(write %s)", buffer);
s7_eval_c_string(s7, response);
}
}
}
}
/* &gt; func1
* <em class="gray">;func1: unbound variable, line 1</em>
* &gt; lib-exports
* <em class="gray">((var1 . 32) (func1 . func1))</em>
* ;; so lib-exports has the C-defined names and values
* ;; we can use these directly:
*
* &gt; (define lib-env (apply <em class="red">sublet</em> (curlet) lib-exports))
* <em class="gray">lib-env</em>
* &gt; (<em class="red">with-let</em> lib-env (func1 var1))
* <em class="gray">33</em>
*
* ;; or rename them to prepend "lib:"
* &gt; (define lib-env (apply sublet
(curlet)
(map (lambda (binding)
(cons (string-&gt;symbol
(string-append "lib:" (symbol-&gt;string (car binding))))
(cdr binding)))
lib-exports)))
* <em class="gray">lib-env</em>
* &gt; (with-let lib-env (lib:func1 lib:var1))
* <em class="gray">33</em>
*
* ;;; now for convenience, place "func1" in the global environment under the name "func2"
* &gt; (define func2 (cdadr lib-exports))
* <em class="gray">func2</em>
* &gt; (func2 1)
* <em class="gray">2</em>
*/
</pre></div>
<div class="header" id="Cerrors"><h4>Handle scheme errors in C</h4></div>
<div class="indented">
<pre>#include &lt;stdlib.h&gt;
#include &lt;stdio.h&gt;
#include &lt;string.h&gt;
#include "s7.h"
static s7_pointer error_handler(s7_scheme *sc, s7_pointer args)
{
fprintf(stdout, "error: %s\n", s7_string(s7_car(args)));
return(s7_f(sc));
}
int main(int argc, char **argv)
{
s7_scheme *s7;
char buffer[512];
char response[1024];
bool with_error_hook = false;
s7 = s7_init();
s7_define_function(s7, "error-handler", error_handler, 1, 0, false, "our error handler");
if (with_error_hook)
s7_eval_c_string(s7, "(set! (hook-functions *error-hook*) \n\
(list (lambda (hook) \n\
(error-handler \n\
(apply format #f (hook 'data))) \n\
(set! (hook 'result) 'our-error))))");
while (1)
{
fprintf(stdout, "\n&gt; ");
fgets(buffer, 512, stdin);
if ((buffer[0] != '\n') ||
(strlen(buffer) &gt; 1))
{
s7_pointer old_port, result;
int gc_loc = -1;
const char *errmsg = NULL;
/* trap error messages */
old_port = s7_set_current_error_port(s7, s7_open_output_string(s7));
if (old_port != s7_nil(s7))
gc_loc = s7_gc_protect(s7, old_port);
/* evaluate the input string */
result = s7_eval_c_string(s7, buffer);
/* print out the value wrapped in "{}" so we can tell it from other IO paths */
fprintf(stdout, "{%s}", s7_object_to_c_string(s7, result));
/* look for error messages */
errmsg = s7_get_output_string(s7, s7_current_error_port(s7));
/* if we got something, wrap it in "[]" */
if ((errmsg) &amp;&amp; (*errmsg))
fprintf(stdout, "[%s]", errmsg);
s7_close_output_port(s7, s7_current_error_port(s7));
s7_set_current_error_port(s7, old_port);
if (gc_loc != -1)
s7_gc_unprotect_at(s7, gc_loc);
}
}
}
/*
* gcc -c s7.c -I. -g3
* gcc -o ex3 ex3.c s7.o -lm -I. -ldl
*
* if with_error_hook is false,
*
* &gt; (+ 1 2)
* <em class="gray">{3}</em>
* &gt; (+ 1 #\c)
* <em class="gray">{wrong-type-arg}[</em>
* <em class="gray">;+ argument 2, #\c, is character but should be a number, line 1</em>
* ]
*
* so s7 by default prepends ";" to the error message, and appends "\n",
* sending that to current-error-port, and the error type ('wrong-type-arg here)
* is returned.
*
* if with_error_hook is true,
*
* &gt; (+ 1 2)
* <em class="gray">{3}</em>
* &gt; (+ 1 #\c)
* <em class="red">error</em><em class="gray">: + argument 2, #\c, is character but should be a number</em>
* <em class="gray">{our-error}</em>
*
* so now the *error-hook* code handles both the error reporting and
* the value returned ('our-error in this case).
*/
</pre></div>
<div class="header" id="testhook"><h4>C and Scheme hooks</h4></div>
<div class="indented">
<pre>#include &lt;stdlib.h&gt;
#include &lt;stdio.h&gt;
#include &lt;string.h&gt;
#include "s7.h"
static s7_pointer my_hook_function(s7_scheme *sc, s7_pointer args)
{
fprintf(stderr, "a is %s\n", s7_object_to_c_string(sc, s7_symbol_local_value(sc, s7_make_symbol(sc, "a"), s7_car(args))));
return(s7_car(args));
}
int main(int argc, char **argv)
{
s7_scheme *s7;
char buffer[512];
char response[1024];
s7_pointer test_hook;
s7 = s7_init();
/* define test_hook in C, test-hook in Scheme, arguments are named a and b */
test_hook = <em class="red">s7_eval_c_string</em>(s7, "(make-hook 'a 'b)");
s7_define_constant(s7, "test-hook", test_hook);
/* add my_hook_function to the test_hook function list */
<em class="red">s7_hook_set_functions</em>(s7, test_hook,
s7_cons(s7,
s7_make_function(s7, "my-hook-function", my_hook_function, 1, 0, false, "my hook-function"),
s7_hook_functions(s7, test_hook)));
while (1)
{
fprintf(stdout, "\n&gt; ");
fgets(buffer, 512, stdin);
if ((buffer[0] != '\n') ||
(strlen(buffer) &gt; 1))
{
snprintf(response, 1024, "(write %s)", buffer);
s7_eval_c_string(s7, response);
}
}
}
/*
* &gt; test-hook
* <em class="gray">#&lt;lambda (hook)&gt;</em>
* &gt; (hook-functions test-hook)
* <em class="gray">(my-hook-function)</em>
* &gt; (test-hook 1 2)
* <em class="gray">a is 1</em>
* <em class="gray">#&lt;unspecified&gt;</em>
*/
</pre></div>
<div class="header" id="dload"><h4>Load a shared library</h4></div>
<p>We can use dlopen to load a shared library, and dlsym to initialize
that library in our main program. The tricky part is to conjure up the right
compiler and loader flags.
First we define a module that defines a new s7 function, add-1 that we'll tie
into s7 explicitly, and another
function that we'll try to call by waving a wand.
</p>
<div class="indented">
<pre>#include &lt;stdlib.h&gt;
#include &lt;stdio.h&gt;
#include &lt;string.h&gt;
#include "s7.h"
double a_function(double an_arg);
double a_function(double an_arg)
{
return(an_arg + 1.0);
}
static s7_pointer add_1(s7_scheme *sc, s7_pointer args)
{
return(s7_make_integer(sc, s7_integer(s7_car(args)) + 1));
}
void init_ex(s7_scheme *sc);
void init_ex(s7_scheme *sc) /* this needs to be globally accessible (not "static") */
{
/* tell s7 about add-1, but leave a_function hidden */
s7_define_function(sc, "add-1", add_1, 1, 0, false, "(add-1 x) adds 1 to x");
}
</pre></div>
<p>And here is our main program:
</p>
<div class="indented">
<pre>#include &lt;stdlib.h&gt;
#include &lt;stdio.h&gt;
#include &lt;string.h&gt;
#include "s7.h"
#include &lt;dlfcn.h&gt;
static void *library = NULL;
static s7_pointer try(s7_scheme *sc, s7_pointer args)
{
/* try tries to call an arbitrary function in the shared library */
void *func;
func = <em class="red">dlsym</em>(library, s7_string(s7_car(args)));
if (func)
{
/* we'll assume double f(double) */
typedef double (*dl_func)(double arg);
return(s7_make_real(sc, ((dl_func)<em class="red">func</em>)(s7_real(s7_cadr(args)))));
}
return(s7_error(sc, s7_make_symbol(sc, "can't find function"),
s7_list(sc, 2, s7_make_string(sc, "loader error: ~S"),
s7_make_string(sc, dlerror()))));
}
static s7_pointer cload(s7_scheme *sc, s7_pointer args)
{
/* cload loads a shared library */
#define CLOAD_HELP "(cload so-file-name) loads the module"
library = dlopen(s7_string(s7_car(args)), RTLD_LAZY);
if (library)
{
/* call our init func to define add-1 in s7 */
void *init_func;
init_func = <em class="red">dlsym</em>(library, s7_string(s7_cadr(args)));
if (init_func)
{
typedef void *(*dl_func)(s7_scheme *sc);
((dl_func)<em class="red">init_func</em>)(sc); /* call the initialization function (init_ex above) */
return(s7_t(sc));
}
}
return(s7_error(sc, s7_make_symbol(sc, "load-error"),
s7_list(sc, 2, s7_make_string(sc, "loader error: ~S"),
s7_make_string(sc, dlerror()))));
}
int main(int argc, char **argv)
{
char buffer[512];
char response[1024];
s7_scheme *s7;
s7 = s7_init();
s7_define_function(s7, "cload", cload, 2, 0, false, CLOAD_HELP);
s7_define_function(s7, "try", try, 2, 0, false,
"(try name num) tries to call name in the shared library with the argument num.");
while (1)
{
fprintf(stdout, "\n&gt; ");
fgets(buffer, 512, stdin);
if ((buffer[0] != '\n') ||
(strlen(buffer) &gt; 1))
{
snprintf(response, 1024, "(write %s)", buffer);
s7_eval_c_string(s7, response);
}
}
}
/* Put the module in the file ex3a.c and the main program in ex3.c, then
*
* in Linux:
* gcc -c -fPIC ex3a.c
* gcc ex3a.o -shared -o ex3a.so
* gcc -c s7.c -I. -fPIC -shared
* gcc -o ex3 ex3.c s7.o -lm -ldl -I. -Wl,-export-dynamic
* # omit -ldl in freeBSD, openBSD might want -ftrampolines
*
* in Mac OSX:
* gcc -c ex3a.c
* gcc ex3a.o -o ex3a.so -dynamic -bundle -undefined suppress -flat_namespace
* gcc -c s7.c -I. -dynamic -bundle -undefined suppress -flat_namespace
* gcc -o ex3 ex3.c s7.o -lm -ldl -I.
*
* and run it:
* ex3
* &gt; (cload "/home/bil/snd-18/ex3a.so" "init_ex")
* <em class="gray">#t</em>
* &gt; (add-1 2)
* <em class="gray">3</em>
* &gt; (try "a_function" 2.5)
* <em class="gray">3.5</em>
*/
</pre></div>
<p>All of this is just boring boilerplate, so with a little support from s7,
we can write a script to do the entire linkage. The s7 side is an extension
to "load" that loads a shared object file if its extension is "so", and
runs an initialization function whose name is defined in the load
environment (the optional second argument to load). An example of the scheme side is cload.scm,
included in the s7 tarball. It defines a function that can be
called:
</p>
<pre class="indented">(c-define '(double j0 (double)) "m" "math.h")
</pre>
<p>This links the s7 function m:j0 to the math library
function j0. See <a href="#cload">cload.scm</a> for more details.
</p>
<p>Here's a shorter example:
</p>
<div class="indented">
<pre>add1.c:
#include &lt;stdlib.h&gt;
#include "s7.h"
static s7_pointer add1(s7_scheme *sc, s7_pointer args)
{
if (s7_is_integer(s7_car(args)))
return(s7_make_integer(sc, 1 + s7_integer(s7_car(args))));
return(s7_wrong_type_arg_error(sc, "add1", 1, s7_car(args), "an integer"));
}
void add1_init(s7_scheme *sc);
void add1_init(s7_scheme *sc)
{
s7_define_function(sc, "add1", add1, 1, 0, false, "(add1 int) adds 1 to int");
}
/* gcc -fpic -c add1.c
* gcc -shared -Wl,-soname,libadd1.so -o libadd1.so add1.o -lm -lc
* gcc s7.c -o repl -fpic -DWITH_MAIN -I. -ldl -lm -Wl,-export-dynamic -DUSE_SND=0
* repl
* (load "libadd1.so" (inlet 'init_func 'add1_init))
* (add1 2)
*/
</pre>
</div>
<div class="header" id="gmpex"><h4>Bignums in C</h4></div>
<p>Bignum support depends on gmp, mpfr, and mpc. In this example, we define "add-1" which adds
1 to any kind of number. The s7_big_* functions return the underlying gmp/mpfr/mpc pointer.
</p>
<div class="indented">
<pre>#include &lt;stdlib.h&gt;
#include &lt;stdio.h&gt;
#include &lt;string.h&gt;
#include &lt;gmp.h&gt;
#include &lt;mpfr.h&gt;
#include &lt;mpc.h&gt;
#include "s7.h"
static s7_pointer big_add_1(s7_scheme *sc, s7_pointer args)
{
/* add 1 to either a normal number or a bignum */
s7_pointer x, n;
x = s7_car(args);
if (s7_is_big_integer(x))
{
mpz_t big_n;
mpz_init_set(big_n, *s7_big_integer(x));
mpz_add_ui(big_n, big_n, 1);
n = s7_make_big_integer(sc, &amp;big_n);
mpz_clear(big_n);
return(n);
}
if (s7_is_big_ratio(x))
{
mpq_t big_q;
mpq_init(big_q);
mpq_set_si(big_q, 1, 1);
mpq_add(big_q, *s7_big_ratio(x), big_q);
mpq_canonicalize(big_q);
n = s7_make_big_ratio(sc, &amp;big_q);
mpq_clear(big_q);
return(n);
}
if (s7_is_big_real(x))
{
mpfr_t big_x;
mpfr_init_set(big_x, *s7_big_real(x), MPFR_RNDN);
mpfr_add_ui(big_x, big_x, 1, MPFR_RNDN);
n = s7_make_big_real(sc, &amp;big_x);
mpfr_clear(big_x);
return(n);
}
if (s7_is_big_complex(x))
{
mpc_t big_z;
mpc_init2(big_z, mpc_get_prec(*s7_big_complex(x)));
mpc_add_ui(big_z, *s7_big_complex(x), 1, MPC_RNDNN);
n = s7_make_big_complex(sc, &amp;big_z);
mpc_clear(big_z);
return(n);
}
if (s7_is_integer(x))
return(s7_make_integer(sc, 1 + s7_integer(x)));
if (s7_is_rational(x))
return(s7_make_ratio(sc, s7_numerator(x) + s7_denominator(x), s7_denominator(x)));
if (s7_is_real(x))
return(s7_make_real(sc, 1.0 + s7_real(x)));
if (s7_is_complex(x))
return(s7_make_complex(sc, 1.0 + s7_real_part(x), s7_imag_part(x)));
return(s7_wrong_type_arg_error(sc, "add-1", 0, x, "a number"));
}
int main(int argc, char **argv)
{
s7_scheme *s7;
char buffer[512];
char response[1024];
s7 = s7_init();
s7_define_function(s7, "add-1", big_add_1, 1, 0, false, "(add-1 num) adds 1 to num");
while (1)
{
fprintf(stdout, "\n&gt; ");
fgets(buffer, 512, stdin);
if ((buffer[0] != '\n') ||
(strlen(buffer) &gt; 1))
{
snprintf(response, 1024, "(write %s)", buffer);
s7_eval_c_string(s7, response);
}
}
}
/*
* gcc -DWITH_GMP=1 -c s7.c -I. -O2 -g3
* gcc -DWITH_GMP=1 -o gmpex gmpex.c s7.o -I. -O2 -lm -ldl -lgmp -lmpfr -lmpc
*
* gmpex
* &gt; (add-1 1)
* 2
* &gt; (add-1 2/3)
* 5/3
* &gt; (add-1 1.4)
* 2.4
* &gt; (add-1 1.5+i)
* 2.5+1i
* &gt; (add-1 (bignum 3))
* 4
* &gt; (add-1 (bignum 3/4))
* 7/4
* &gt; (add-1 (bignum 2.5))
* 3.500E0
* &gt; (add-1 (bignum 1.5+i))
* 2.500E0+1.000E0i
*/
</pre>
</div>
<p>To tie mpfr's bessel-j0 into s7 at run-time:
</p>
<div class="indented">
<pre>/* libgmp_s7.c */
#include &lt;gmp.h&gt;
#include &lt;mpfr.h&gt;
#include &lt;mpc.h&gt;
#define WITH_GMP 1
#include "s7.h"
static s7_pointer gmp_bessel_j0(s7_scheme *sc, s7_pointer args)
{
s7_pointer x, result;
mpfr_t mp;
mpfr_init2(mp, s7_integer(s7_let_field_ref(sc, s7_make_symbol(sc, "bignum-precision"))));
/* initialize the mpfr variable mp to the current s7 bignum-precision */
x = s7_car(args);
if (s7_is_big_real(x))
<em class="red">mpfr_j0</em>(mp, *s7_big_real(x), MPFR_RNDN);
else
{
if (s7_is_real(x))
{
mpfr_set_d(mp, s7_real(x), MPFR_RNDN);
<em class="red">mpfr_j0</em>(mp, mp, MPFR_RNDN);
}
else return(s7_wrong_type_arg_error(sc, "gmp_bessel_j0", 1, x, "real"));
}
result = s7_make_big_real(sc, &amp;mp);
mpfr_clear(mp);
return(result);
}
void libgmp_s7_init(s7_scheme *sc);
void libgmp_s7_init(s7_scheme *sc)
{
s7_define_function(sc, "bessel-j0", gmp_bessel_j0, 1, 0, false, "(bessel-j0 x) returns j0(x)");
}
</pre>
</div>
<p>libarb_s7.c provides some extensions of the multiprecision math: Bessel functions and the like. It is based on
the Flint and Arb libraries, flintlib.org and arblib.org. In Linux:
</p>
<pre class="indented">gcc -fPIC -c libarb_s7.c
gcc libarb_s7.o -shared -o libarb_s7.so -lflint -larb
repl
&gt; (load "libarb_s7.so" (inlet 'init_func 'libarb_s7_init))
<em class="gray">#f</em>
&gt; (acb_bessel_j 0 1.0)
<em class="gray">7.651976865579665514497175261026632209096E-1</em>
</pre>
<div class="header" id="gdb"><h4>gdb</h4></div>
<p>
gdbinit has some debugging commands, intended for your ~/.gdbinit file.
</p>
<pre class="indented">s7print interprets its argument as an s7 value and displays it
s7eval evals its argument (a string)
s7stack displays the current s7 stack (nested lets)
s7value prints the value of the variable passed by its print name: s7v "*features*"
s7let shows all non-global variables that are currently accessible
s7history shows the history entries (if enabled)
</pre>
<p>gdbinit also has two backtrace
decoders: s7bt and s7btfull. The bt replacements print the gdb backtrace info,
replacing bare pointer numbers with their s7 value, wherever possible:
</p>
<pre class="indented">(gdb) s7bt
#0 0x000055555567f7ca in check_cell (p=<b>#&lt;lambda (lst ind)&gt;</b>,
func=0x5555559106e0 &lt;__FUNCTION__.10273&gt; "mark_slot", line=3976) at s7.c:28494
#1 0x000055555567f84d in check_nref (p=<b>#&lt;lambda (lst ind)&gt;</b>,
func=0x5555559106e0 &lt;__FUNCTION__.10273&gt; "mark_slot", line=3976) at s7.c:28507
#2 0x0000555555563201 in mark_slot (p=<b>'list-ref #&lt;lambda (lst ind)&gt;</b>) at s7.c:3976
#3 0x0000555555564ce0 in mark_let (env=<b>#&lt;mock-number-class&gt;</b>) at s7.c:4506
#4 0x0000555555563239 in mark_slot (p=<b>'mock-number-class #&lt;mock-number-class&gt;</b>) at s7.c:3976
#5 0x0000555555564ce0 in mark_let (env=<b>(inlet 'mock-number-class #&lt;mock-number-class&gt; 'mock-number mock-number)</b>) at s7.c:4506
#6 0x0000555555563239 in mark_slot (p=<b>'*mock-number* (inlet 'mock-number-class #&lt;mock-number-class&gt; 'mock-number...)</b>) at s7.c:3976
#7 0x0000555555564ce0 in mark_let (env=<b>(inlet '*features* (mockery.scm stuff.scm linux autoload dlopen...))</b>) at s7.c:4506
#8 0x0000555555565697 in mark_closure (p=<b>reactive-vector</b>) at s7.c:4590
#9 0x0000555555566872 in mark_rootlet (sc=0x555555b41eb0) at s7.c:4813
#10 0x0000555555566a2f in gc (sc=0x555555b41eb0) at s7.c:4897
#11 0x000055555558e903 in copy_stack (sc=0x555555b41eb0, old_v=<b>[sc-&gt;stack] #&lt;stack&gt;</b>) at s7.c:9024
</pre>
<div class="header" id="ffinotes"><h4>FFI notes</h4></div>
<ul>
<li><a href="#cerrors">Errors</a>
</li><li><a href="#cgcprotection">GC protection</a>
</li><li><a href="#ccload">Load</a>
</li><li><a href="#cevalapply">Eval and Apply</a>
</li><li><a href="#cdefine">Define</a>
</li><li><a href="#cfunctioninfo">Function info</a>
</li><li><a href="#ccobjects">C-objects</a>
</li><li><a href="#cio">IO</a>
</li><li><a href="#clets">Lets</a>
</li><li><a href="#csymbols">Symbols</a>
</li><li><a href="#cnumbers">Numbers</a>
</li><li><a href="#clists">Lists</a>
</li><li><a href="#cvectors">Vectors</a>
</li><li><a href="#ccpointers">C-pointers</a>
</li><li><a href="#cstrings">Strings</a>
</li><li><a href="#ccharacters">Characters</a>
</li><li><a href="#chashtables">Hash-tables</a>
</li><li><a href="#citerators">Iterators</a>
</li><li><a href="#chooks">Hooks</a>
</li><li><a href="#cconstants">Constants</a>
</li><li><a href="#coptimizations">Optimization</a>
</li><li><a href="#candsoon">And so on...</a>
</li></ul>
<div class="shortheader" id="cerrors">Errors</div>
<p>Most of the s7.h functions do little, if any, error checking. s7_car, for example,
does not check that its argument is a pair. Partly this is a matter of speed; partly
of simplicity. If we had elaborate error checks, we'd need some convention
for passing error information back to the caller, and of course separate versions
of each function for cases where all those checks are redundant. You can easily
make your own C version of s7_car that includes error checks:
</p>
<pre class="indented">static s7_pointer my_car(s7_scheme *sc, s7_pointer lst)
{
if (s7_is_pair(lst))
return(s7_car(lst));
return(<em class="red">s7_wrong_type_arg_error</em>(sc, "my_car", 0, "a pair"));
}
</pre>
<p>The s7.h error functions are:
</p>
<pre class="indented">s7_pointer s7_error(s7_scheme *sc, s7_pointer type, s7_pointer info);
s7_pointer s7_wrong_type_arg_error(s7_scheme *sc, const char *caller, s7_int arg_n, s7_pointer arg, const char *descr);
s7_pointer s7_out_of_range_error(s7_scheme *sc, const char *caller, s7_int arg_n, s7_pointer arg, const char *descr);
s7_pointer s7_wrong_number_of_args_error(s7_scheme *sc, const char *caller, s7_pointer args);
s7_pointer s7_current_error_port(s7_scheme *sc);
s7_pointer s7_set_current_error_port(s7_scheme *sc, s7_pointer port);
</pre>
<p>s7_error is equivalent to the scheme error function, and like the latter, it takes two arguments:
a symbol giving the error type, and a list giving the error data. In s7, all of the data lists
are organized so that you can <code>(apply format #f data)</code> to get an error string.
If you're using catch to handle errors, the error type is what catch looks for. So, the
s7_wrong_type_arg call above could be:
</p>
<pre class="indented">s7_error(sc, s7_make_symbol(sc, "wrong-type-arg"),
s7_list(sc, 3, s7_make_string(sc, "~S is a ~S, but should be a pair"),
s7_car(lst),
s7_type_of(sc, s7_car(lst))));
</pre>
<p>s7_wrong_type_arg_error takes the name of the caller, the argument number, the argument itself,
and a description of the type expected. If the argument number is 0, that info is left out of the
error message (that is, the caller takes only one argument). s7_out_of_range_error is similar.
s7_wrong_number_of_args_error takes the caller's name and the offending arg list. The corresponding
error types are 'wrong-type-arg, 'wrong-number-of-args, and 'out-of-range.
</p>
<p>Normally, s7_error sends its error message
to the current error-port which defaults to stderr. In GUI-based apps,
you may need to redirect the output to your interface. One method,
used in Snd's snd-motif.c, captures the error output in an output string:
</p>
<pre class="indented">old_port = s7_set_current_error_port(s7, s7_open_output_string(s7));
...
result = s7_eval_c_string(s7, text);
errmsg = s7_get_output_string(s7, s7_current_error_port(s7));
s7_close_output_port(s7, s7_current_error_port(s7));
s7_set_current_error_port(s7, old_port);
...
</pre>
<p>and if errmsg is not NULL, it posts it somewhere.
(You'll also want to GC-protect the old port while it is idle).
If you don't want catch or s7's error messages, you can go down
a level via *error-hook*.
</p>
<p>s7_error does not return; its s7_pointer return type is just a convenience. It unwinds the
scheme stack, closing files, handling dynamic-winds, looking for a catch that matches its type argument
and so on, then longjmps to unwind the C stack. If a catch is found, its error handler becomes the new point
of execution.
</p>
<div class="shortheader" id="cgcprotection">GC protection</div>
<p>If you save an s7_pointer value in C, you may need to protect it from the garbage collector. In the example above,
the first "..." is:
</p>
<pre class="indented">gc_loc = s7_gc_protect(s7, old_port);
</pre>
<p>where gc_loc is (or should be) an s7_int. Since we're subsequently
calling s7_eval_c_string, we need to GC protect old_port beforehand. After the evaluation,
</p>
<pre class="indented">s7_close_output_port(s7, s7_current_error_port(s7));
s7_set_current_error_port(s7, old_port);
s7_gc_unprotect_at(s7, gc_loc);
</pre>
<p>The full set of GC protection functions is:
</p>
<pre class="indented">s7_int s7_gc_protect(s7_scheme *sc, s7_pointer x);
void s7_gc_unprotect_at(s7_scheme *sc, s7_int loc);
s7_pointer s7_gc_protected_at(s7_scheme *sc, s7_int loc);
s7_pointer s7_gc_protect_via_stack(s7_scheme *sc, s7_pointer x);
s7_pointer s7_gc_unprotect_via_stack(s7_scheme *sc, s7_pointer x);
s7_pointer s7_gc_protect_via_location(s7_scheme *sc, s7_pointer x, s7_int loc);
s7_pointer s7_gc_unprotect_via_location(s7_scheme *sc, s7_int loc);
s7_pointer s7_gc_on(s7_scheme *sc, bool on);
</pre>
<p>If you create an s7 object in C, that object
needs to be
GC protected if there is any chance the GC might run without
an existing Scheme-level reference to it. s7_gc_protect places the
object in a vector that the GC always checks, returning the object's location
in that table. s7_gc_unprotect_at unprotects the object (removes it from the
vector) using the location passed to it. s7_gc_protected_at returns the object
at the given location.
There is a built-in lag between the creation of a new object and its first possible GC
(the lag time is set indirectly by GC_TEMPS_SIZE in s7.c), so you don't need to worry about
very short term temps such as the arguments to s7_cons in:
</p>
<pre class="indented">s7_cons(s7, s7_make_real(s7, 3.14),
s7_cons(s7, s7_make_integer(s7, 123), s7_nil(s7)));
</pre>
<p>The protect_via_stack functions place the object on the s7 stack where it is
protected until the stack unwinds past that point. Besides speed, this provides
a way to be sure an object is unprotected even in some complicated situation where
error handling may bypass an explicit s7_gc_unprotect_at call.
The protect_via_location are intended for cases where you have a location already
(from s7_gc_protect), and want to reuse it for a different object.
s7_gc_on turns the GC on or off. Objects can be created at a blistering pace,
so don't leave the GC off for a long time!
</p>
<div class="shortheader" id="ccload">Load</div>
<pre class="indented">s7_pointer s7_load(s7_scheme *sc, const char *file);
s7_pointer s7_load_with_environment(s7_scheme *sc, const char *filename, s7_pointer e);
s7_pointer s7_load_c_string(s7_scheme *sc, const char *content, s7_int bytes);
s7_pointer s7_load_c_string_with_environment(s7_scheme *sc, const char *content, s7_int bytes, s7_pointer e);
s7_pointer s7_load_path(s7_scheme *sc);
s7_pointer s7_add_to_load_path(s7_scheme *sc, const char *dir);
s7_pointer s7_autoload(s7_scheme *sc, s7_pointer symbol, s7_pointer file_or_function);
void s7_autoload_set_names(s7_scheme *sc, const char **names, s7_int size); snd-xref.c
</pre>
<p>s7_load is similar to the scheme-side load function. Its argument is
a file name, and optionally (via s7_load_with_environment) an
environment
in which to place top-level objects. Normally the file contains scheme
code, but if WITH_C_LOADER is set when s7 is built, you can
also load shared-object files. If you load a shared-object file (a
dynamically loadable library), the environment argument
provides a way to pass in the initialization function (named
'init_func). For example, the repl in s7.c needs access to
libc's tcsetattr, so it looks for libc_s7.so (created by libc.scm). If
found,
</p>
<pre class="indented"> s7_load_with_environment(sc, "libc_s7.so",
s7_inlet(sc, s7_list(sc, 2, s7_make_symbol(sc, "init_func"),
s7_make_symbol(sc, "libc_s7_init")));
</pre>
<p>You can also include an 'init_args field to pass arguments to init_func. Here's an example that
includes init_args:
</p>
<pre class="indented">/* tlib.c */
#include &lt;stdio.h&gt;
#include &lt;stdlib.h&gt;
#include "s7.h"
static s7_pointer a_function(s7_scheme *sc, s7_pointer args)
{
return(s7_car(args));
}
s7_pointer tlib_init(s7_scheme *sc, s7_pointer args); /* void tlib_init(s7_scheme *sc) if no init_args */
s7_pointer tlib_init(s7_scheme *sc, s7_pointer args)
{
fprintf(stderr, "tlib_init: %s\n", s7_object_to_c_string(sc, args));
s7_define_function(sc, "a-function", a_function, 1, 0, true, "");
return(s7_car(args));
}
/* in Linux:
gcc -fPIC -c tlib.c
gcc tlib.o -shared -o tlib.so -ldl -lm -Wl,-export-dynamic
/home/bil/cl/ repl
&lt;1&gt; (load "tlib.so" (inlet 'init_func 'tlib_init 'init_args (list 1 2 3)))
tlib_init: (1 2 3)
1
&lt;2&gt; (a-function 1 2 3)
1
*/
</pre>
<p>
s7_load returns the last value produced during the load; so given "test.scm" with the contents:
</p>
<pre class="indented">define (f x) (+ x 1))
32
</pre>
<p>when we call s7_load:</p>
<pre class="indented">s7_pointer val;
val = s7_load_with_environment(sc, "test.scm", s7_curlet(sc));
</pre>
<p>val is set to 32 (as a scheme object), and f is placed in the current environment.
If "test.scm" is not in the current directory, s7 looks at the entries in its <a href="#loadpath">*load-path*</a> variable,
trying each in turn until it finds the file. If it fails, it returns NULL.
s7_load_path returns this list, and s7_add_to_load_path adds a directory name to the list.
</p>
<p>
s7_load_c_string takes an array of bytes representing some scheme code (xxd -i file.scm can generate these arrays),
and treats it as if it were the contents of a file of scheme code. So, unlike s7_eval_c_string, it can handle
multiple statements, and things like double-quote don't need to be quoted. nrepl.c for example
embeds the contents of nrepl.scm at compile time, then calls s7_load_c_string at program startup. It also
includes notcurses_s7.c. The end result is a stand-alone program that doesn't need to load either nrepl.scm
or notcurses_s7.so. The "content" argument should be a null-terminated C string. The "bytes" argument
is the contents length, not including the trailing null, as in strlen. There are simple examples in ffitest.c.
</p>
<blockquote>
<div class="indented">
<p>xxd is not ideal in this context because diffs become enormous. I use this code to turn nrepl.scm
into nrepl-bits.h, following the original code's layout to minimize diffs:
</p>
<pre class="indented">(call-with-output-file "nrepl-bits.h"
(lambda (op)
(call-with-input-file "nrepl.scm"
(lambda (ip)
(format op "unsigned char nrepl_scm[] = {~% ")
(do ((c (read-char ip) (read-char ip))
(i 0 (+ i 1)))
((eof-object? c)
(format op "0};~%unsigned int nrepl_scm_len = ~D;~%" (+ i 1)))
(format op "0x~X, " (char-&gt;integer c))
(if (char=? c #\newline)
(format op "~% ")))))))
</pre>
<p>Then in nrepl.c:
</p>
<pre class="indented"> #include "nrepl-bits.h"
s7_load_c_string(sc, (const char *)nrepl_scm, nrepl_scm_len);
</pre>
<p>which replaces <code>s7_load(sc, "nrepl.scm")</code>.
</p>
</div>
</blockquote>
<p>
s7_autoload adds a symbol to the <a href="#autoload">autoload table</a>. As a convenience,
s7_autoload_set_names adds an array of names+files. The array should be sorted alphabetically
by string&lt;? acting on the symbol names (not the file names), and the size argument is the number
of symbol names (half the actual array size).
snd-xref.c in Snd has more than 5000 such
names:
</p>
<pre>static const char *snd_names[11848] = {
"*clm-array-print-length*", "ws.scm", /* each pair of entries is entity name + file name */
"*clm-channels*", "ws.scm", /* so clm-channels is defined in ws.scm */
...
"zone-tailed-hawk", "animals.scm",
"zoom-spectrum", "examp.scm",
};
s7_autoload_set_names(sc, snd_names, 5924);
</pre>
<div class="shortheader" id="cevalapply">Eval and Apply</div>
<pre class="indented">s7_pointer s7_eval(s7_scheme *sc, s7_pointer code, s7_pointer e);
s7_pointer s7_eval_c_string(s7_scheme *sc, const char *str);
s7_pointer s7_eval_c_string_with_environment(s7_scheme *sc, const char *str, s7_pointer e);
s7_pointer s7_apply_function(s7_scheme *sc, s7_pointer fnc, s7_pointer args);
s7_pointer s7_apply_function_star(s7_scheme *sc, s7_pointer fnc, s7_pointer args);
s7_pointer s7_call(s7_scheme *sc, s7_pointer func, s7_pointer args);
s7_pointer s7_call_with_location(s7_scheme *sc, s7_pointer func, s7_pointer args, const char *caller, const char *file, s7_int line);
s7_pointer s7_call_with_catch(s7_scheme *sc, s7_pointer tag, s7_pointer body, s7_pointer error_handler);
s7_pointer s7_apply_1(s7_scheme *sc, s7_pointer args, s7_pointer (*f1)(s7_pointer a1));
s7_pointer s7_apply_n_1(s7_scheme *sc, s7_pointer args, s7_pointer (*f1)(s7_pointer a1));
/* and many more passing 2 to 9 arguments */
</pre>
<p>These functions evaluate Scheme expressions, and call Scheme functions (which might be defined in C originally).
s7_eval evaluates a list that represents Scheme code. That is,
</p>
<pre class="indented">s7_eval(sc, s7_cons(sc, s7_make_symbol(sc, "+"),
s7_cons(sc, s7_make_integer(sc, 1),
s7_cons(sc, s7_make_integer(sc, 2), s7_nil(sc)))),
s7_rootlet(sc)); /* s7_nil here is the same as s7_rootlet */
</pre>
<p>returns 3 (as a Scheme integer). This may look ridiculous, but see snd-sig.c for an actual use.
s7_eval_c_string evaluates a Scheme expression presented to it as a C string; it combines read and
eval, whereas s7_eval is just the eval portion.
</p>
<pre class="indented">s7_eval_c_string(sc, "(+ 1 2)");
</pre>
<p>also returns 3. The expression is evaluated in rootlet (the global environment). To specify the
environment, use s7_eval_c_string_with_environment.
</p>
<p>s7_apply_function and s7_apply_function_star take an s7_function and apply it to a list of arguments.
These two functions are the low-level versions of the s7_call functions. The latter set up various
catches so that error handling is safe, whereas s7_apply_function assumes you have a catch already somewhere.
</p>
<p>
s7_call_with_location passes some information to the error handler, and
s7_call_with_catch wraps an explicit catch around a function call:
s7_call_with_catch(sc, tag, body, err) is equivalent to (catch tag body err).
There are many examples of these functions in clm2xen.c, ffitest.c, etc.
</p>
<p>The s7_apply_1 functions and its many friends are left over from long ago. I hope to
deprecate them someday, but currently Snd uses them to excess. Each applies its function
to the arguments.
</p>
<div class="shortheader" id="cdefine">Define</div>
<pre class="indented">void s7_define(s7_scheme *sc, s7_pointer env, s7_pointer symbol, s7_pointer value);
bool s7_is_defined(s7_scheme *sc, const char *name);
s7_pointer s7_define_variable(s7_scheme *sc, const char *name, s7_pointer value);
s7_pointer s7_define_variable_with_documentation(s7_scheme *sc, const char *name, s7_pointer value, const char *help);
s7_pointer s7_define_constant(s7_scheme *sc, const char *name, s7_pointer value);
s7_pointer s7_define_constant_with_documentation(s7_scheme *sc, const char *name, s7_pointer value, const char *help);
s7_pointer s7_define_constant_with_environment(s7_scheme *sc, s7_pointer envir, const char *name, s7_pointer value);
s7_pointer s7_define_function(s7_scheme *sc, const char *name, s7_function fnc,
s7_int required_args, s7_int optional_args, bool rest_arg, const char *doc);
s7_pointer s7_define_safe_function(s7_scheme *sc, const char *name, s7_function fnc,
s7_int required_args, s7_int optional_args, bool rest_arg, const char *doc);
s7_pointer s7_define_typed_function(s7_scheme *sc, const char *name, s7_function fnc,
s7_int required_args, s7_int optional_args, bool rest_arg,
const char *doc, s7_pointer signature);
s7_pointer s7_define_unsafe_typed_function(s7_scheme *sc, const char *name, s7_function fnc,
s7_int required_args, s7_int optional_args, bool rest_arg,
const char *doc, s7_pointer signature);
s7_pointer s7_define_semisafe_typed_function(s7_scheme *sc, const char *name, s7_function fnc,
s7_int required_args, s7_int optional_args, bool rest_arg,
const char *doc, s7_pointer signature);
void s7_define_function_star(s7_scheme *sc, const char *name, s7_function fnc,
const char *arglist, const char *doc);
void s7_define_safe_function_star(s7_scheme *sc, const char *name, s7_function fnc,
const char *arglist, const char *doc);
void s7_define_typed_function_star(s7_scheme *sc, const char *name, s7_function fnc,
const char *arglist, const char *doc, s7_pointer signature);
s7_pointer s7_define_macro(s7_scheme *sc, const char *name, s7_function fnc,
s7_int required_args, s7_int optional_args, bool rest_arg, const char *doc);
s7_pointer s7_make_function(s7_scheme *sc, const char *name, s7_function fnc,
s7_int required_args, s7_int optional_args, bool rest_arg, const char *doc);
s7_pointer s7_make_safe_function(s7_scheme *sc, const char *name, s7_function fnc,
s7_int required_args, s7_int optional_args, bool rest_arg, const char *doc);
s7_pointer s7_make_typed_function(s7_scheme *sc, const char *name, s7_function f,
s7_int required_args, s7_int optional_args, bool rest_arg,
const char *doc, s7_pointer signature);
s7_pointer s7_make_function_star(s7_scheme *sc, const char *name, s7_function fnc,
const char *arglist, const char *doc);
s7_pointer s7_make_safe_function_star(s7_scheme *sc, const char *name, s7_function fnc,
const char *arglist, const char *doc);
bool s7_is_dilambda(s7_pointer obj);
s7_pointer s7_dilambda(s7_scheme *sc,
const char *name,
s7_pointer (*getter)(s7_scheme *sc, s7_pointer args),
s7_int get_req_args, s7_int get_opt_args,
s7_pointer (*setter)(s7_scheme *sc, s7_pointer args),
s7_int set_req_args, s7_int set_opt_args,
const char *documentation);
s7_pointer s7_typed_dilambda(s7_scheme *sc,
const char *name,
s7_pointer (*getter)(s7_scheme *sc, s7_pointer args),
s7_int get_req_args, s7_int get_opt_args,
s7_pointer (*setter)(s7_scheme *sc, s7_pointer args),
s7_int set_req_args, s7_int set_opt_args,
const char *documentation,
s7_pointer get_sig, s7_pointer set_sig);
s7_pointer s7_dilambda_with_environment(s7_scheme *sc, s7_pointer envir,
const char *name,
s7_pointer (*getter)(s7_scheme *sc, s7_pointer args),
s7_int get_req_args, s7_int get_opt_args,
s7_pointer (*setter)(s7_scheme *sc, s7_pointer args),
s7_int set_req_args, s7_int set_opt_args,
const char *documentation);
</pre>
<p>The s7_define* functions add a symbol and its binding to either the top-level (global) environment
or, in s7_define, the 'env' passed as the second argument. Use s7_set_shadow_rootlet to
import the current let into rootlet.
</p>
<pre class="indented">s7_define(s7, s7_curlet(s7), s7_make_symbol(s7, "var"), s7_make_integer(s7, 123));
</pre>
<p>adds the variable named var to the current environment with the value 123.
Scheme code can then refer to var just as if we had said <code>(define var 123)</code>
in Scheme.
</p>
<p>s7_define_variable is a wrapper for s7_define; the code above could be:
</p>
<pre class="indented">s7_define_variable(s7, "var", s7_make_integer(s7, 123)); /* (define var 123) */
</pre>
<p>except that s7_define_variable assumes you want var in rootlet.
</p>
<p>s7_define_constant is another wrapper for s7_define; it makes the variable immutable:
</p>
<pre class="indented">s7_define_constant(sc, "var", s7_f(sc)); /* (define-constant var 123) */
</pre>
<p>The rest of the functions in this section deal with tieing C functions into Scheme.
s7_make_function creates a Scheme function object from the s7_function 'fnc'.
An s7_function is a C function of the form <code>s7_pointer func(s7_scheme *sc, s7_pointer args)</code>.
The new function's name is 'name', it requires 'required_args' arguments,
it can accept 'optional_args' other arguments, and if 'rest_arg' is true, it accepts
a "rest" argument (a list of all the trailing arguments).
The function's documentation is 'doc'.
</p>
<p>s7_define_function is the same as s7_make_function, but it also adds 'name' (as a symbol) to the
global environment, with the function as its value. For example, the Scheme
function 'car' is essentially:
</p>
<pre class="indented">s7_pointer g_car(s7_scheme *sc, s7_pointer args) {return(s7_car(s7_car(args)));} /* args is a list of args */
</pre>
<p>It is bound to the name "car":
</p>
<pre class="indented">s7_define_function(sc, "car", g_car, 1, 0, false, "(car obj)");
</pre>
<p>which says that car has one required argument, no optional arguments, and no "rest" argument.
</p>
<p>s7_define_macro defines a Scheme macro; its arguments are not evaluated (unlike a function),
but its returned value (assumed to be some sort of Scheme expression) is evaluated.
</p>
<p>The "safe" and "unsafe" versions of these functions refer to the s7 optimizer.
If it knows a function is safe, it can more thoroughly optimize the expression it is in.
"Safe" here means the function does not call the evaluator itself (via s7_apply_function for example)
and does not mess with s7's stack.
</p>
<p>The "typed" versions refer to the function's signature. Since "car" is safe, and has a signature,
it is defined in s7.c:
</p>
<pre class="indented">s7_define_typed_function(sc, "car", g_car, 1, 0, false, H_car, Q_car);
</pre>
<p>Here unless you use s7_define_unsafe_typed_function, the function is assumed to be safe.
We've given it the Scheme name "car", which invokes the C function g_car. It takes one
required argument, and no optional or rest arguments. Its documentation is H_car, and
its signature is Q_car. The latter is <code>s7_make_signature(sc, 2, sc-&gt;T, sc-&gt;is_pair_symbol)</code>
which says that car takes a pair argument, and returns any type object.
</p>
<p>The function_star functions are similar, but in this case we pass the argument list
as a string, as it would appear in Scheme.
s7 makes sure the arguments are ordered correctly and have the specified defaults before calling the C function.
</p>
<pre class="indented">s7_define_function_star(sc, "a-func", a_func, "arg1 (arg2 32)", "an example of C define*");
</pre>
<p>Now in Scheme, (a-func :arg1 2) calls the C function a_func with the arguments 2 and 32.
</p>
<p>Finally, the dilambda function define Scheme dilambda, just as the Scheme dilambda function does.
The dax example above gives read/write access to its x field via:
</p>
<pre class="indented">s7_define_variable(s7, "dax-x", s7_dilambda(s7, "dax-x", dax_x, 1, 0, set_dax_x, 2, 0, "dax x field"));
</pre>
<div class="shortheader" id="cfunctioninfo">Function info</div>
<pre class="indented">const char *s7_documentation(s7_scheme *sc, s7_pointer p);
const char *s7_set_documentation(s7_scheme *sc, s7_pointer symbol, const char *new_doc);
const char *s7_help(s7_scheme *sc, s7_pointer obj);
s7_pointer s7_arity(s7_scheme *sc, s7_pointer obj);
bool s7_is_aritable(s7_scheme *sc, s7_pointer obj, s7_int args);
s7_pointer s7_setter(s7_scheme *sc, s7_pointer obj);
s7_pointer s7_set_setter(s7_scheme *sc, s7_pointer obj, s7_pointer setter);
s7_pointer s7_signature(s7_scheme *sc, s7_pointer func);
s7_pointer s7_make_signature(s7_scheme *sc, s7_int len, ...);
s7_pointer s7_make_circular_signature(s7_scheme *sc, s7_int cycle_point, s7_int len, ...);
s7_pointer s7_closure_body(s7_scheme *sc, s7_pointer p);
s7_pointer s7_closure_let(s7_scheme *sc, s7_pointer p);
s7_pointer s7_closure_args(s7_scheme *sc, s7_pointer p);
s7_pointer s7_funclet(s7_scheme *sc, s7_pointer p);
</pre>
<p>These functions pertain mostly to functions, both those defined in Scheme and those in C.
s7_help and s7_documentation return the documentation string associated with their argument.
I find "documentation" tedious to type, and Snd uses "help", but other than the name,
there isn't much difference between them. s7_set_documentation sets the documentation string, if it can.
</p>
<p>s7_arity returns an object's arity, a cons of the number of required arguments, and the total acceptable arguments.
s7_is_aritable returns true if the object can accept that number of args.
</p>
<p>s7_setter is the object's <a href="#pws">setter</a>, and s7_set_setter sets it, if possible.
</p>
<p>s7_signature is the object's <a href="#signature">signature</a>, a list of types (symbols like 'integer?) giving return and argument types.
For a function defined in C, s7_make_signature and s7_make_circular_signature create the signature that is then
associated with the function via s7_define_typed_function and its friends.
In s7.c g_is_zero (the function that implements zero?) uses:
</p>
<pre class="indented">s7_make_signature(sc, 2, sc-&gt;is_boolean_symbol, sc-&gt;is_number_symbol); /* return a boolean, argument is a number */
</pre>
<p>Similarly, g_add is:
</p>
<pre class="indented">s7_make_circular_signature(sc, 0, 1, sc-&gt;is_number_symbol); /* returns a number, takes any number of numbers */
</pre>
<p>The two numeric arguments set the cycle start point (0-based) and the number of type symbols passed as arguments to it.
So, char=? is:
</p>
<pre class="indented">s7_make_circular_signature(sc, 1, 2, sc-&gt;is_boolean_symbol, sc-&gt;is_char_symbol);
</pre>
<p>which says there are two type entries (the "2"), and the cycle starts at the second (the "1" -- it's 0-based).
</p>
<p>The s7_closure functions only apply to functions defined in Scheme. They return the closure body (s7_closure_body, a list),
its definition environment (s7_closure_let), and its argument list (s7_closure_args). If the function is of the form
<code>(define (f . args) ...)</code>, s7_closure_args returns the symbol ('args in this case).
s7_funclet returns the top let within the function (the let containing the argument names).
</p>
<div class="shortheader" id="ccobjects">C-objects</div>
<pre class="indented">bool s7_is_c_object(s7_pointer p);
s7_pointer s7_make_c_object(s7_scheme *sc, s7_int type, void *value);
s7_pointer s7_make_c_object_without_gc(s7_scheme *sc, s7_int type, void *value);
s7_pointer s7_make_c_object_with_let(s7_scheme *sc, s7_int type, void *value, s7_pointer let);
s7_int s7_c_object_type(s7_pointer obj);
void *s7_c_object_value(s7_pointer obj);
void *s7_c_object_value_checked(s7_pointer obj, s7_int type);
s7_pointer s7_c_object_let(s7_pointer obj);
s7_pointer s7_c_object_set_let(s7_scheme *sc, s7_pointer obj, s7_pointer e);
s7_int s7_make_c_type(s7_scheme *sc, const char *name);
void s7_c_type_set_gc_free (s7_scheme *sc, s7_int type, s7_pointer (*gc_free) (s7_scheme *sc, s7_pointer obj));
void s7_c_type_set_gc_mark (s7_scheme *sc, s7_int type, s7_pointer (*mark) (s7_scheme *sc, s7_pointer obj));
void s7_c_type_set_is_equal (s7_scheme *sc, s7_int type, s7_pointer (*is_equal) (s7_scheme *sc, s7_pointer args));
void s7_c_type_set_is_equivalent(s7_scheme *sc, s7_int type, s7_pointer (*is_equivalent)(s7_scheme *sc, s7_pointer args));
void s7_c_type_set_ref (s7_scheme *sc, s7_int type, s7_pointer (*ref) (s7_scheme *sc, s7_pointer args));
void s7_c_type_set_set (s7_scheme *sc, s7_int type, s7_pointer (*set) (s7_scheme *sc, s7_pointer args));
void s7_c_type_set_length (s7_scheme *sc, s7_int type, s7_pointer (*length) (s7_scheme *sc, s7_pointer args));
void s7_c_type_set_copy (s7_scheme *sc, s7_int type, s7_pointer (*copy) (s7_scheme *sc, s7_pointer args));
void s7_c_type_set_fill (s7_scheme *sc, s7_int type, s7_pointer (*fill) (s7_scheme *sc, s7_pointer args));
void s7_c_type_set_reverse (s7_scheme *sc, s7_int type, s7_pointer (*reverse) (s7_scheme *sc, s7_pointer args));
void s7_c_type_set_to_list (s7_scheme *sc, s7_int type, s7_pointer (*to_list) (s7_scheme *sc, s7_pointer args));
void s7_c_type_set_to_string (s7_scheme *sc, s7_int type, s7_pointer (*to_string) (s7_scheme *sc, s7_pointer args));
void s7_c_type_set_getter (s7_scheme *sc, s7_int type, s7_pointer getter);
void s7_c_type_set_setter (s7_scheme *sc, s7_int type, s7_pointer setter);
void s7_mark(s7_pointer p);
</pre>
<p>These functions create a new Scheme object type. See <a href="#pwstype">dax</a> above for a simple example,
and s7test.scm for several progressively more complicated examples.
C-objects in Scheme usually correspond to an instance of a struct in C which you want to access from Scheme.
The normal sequence is: define a new c-type via s7_make_c_type, call s7_c_type_set* to specialize its behavior,
then to wrap a C object, call s7_make_c_object.
s7_make_c_type takes an arbitrary name, used in object-&gt;string to identify the object, and returns an s7_int, the "type"
mentioned in many of the other functions.
</p>
<p>s7_c_type_set_free sets the function that is called by the GC when a Scheme c-object is garbage-collected.
You normally use this to free the associated C value (the instance of the struct). To get that value,
call s7_c_object_value. It returns the void* pointer that you originally passed to s7_make_c_object.
See free_dax in the <a href="#pwstype">dax</a> example.
</p>
<p>s7_c_type_set_mark sets the function that is called by the GC during its marking phase. Any s7_pointer
value local to your C struct should be marked explicitly at this time, or the GC will free it. Use s7_mark
for this (see mark_dax).
</p>
<p>s7_c_type_set_equal and s7_c_type_set_equivalent set the function called when s7 sees a c-object of the
current type as an argument to equal? or equivalent?. When called, these functions can assume that the
first argument is a c-object of the current type, but the second argument can be anything (see dax_is_equal).
</p>
<p>s7_c_type_set_ref and s7_c_type_set_set are called when the c-object is treated as an applicable object
in Scheme. That is, <code>(object ...)</code> in Scheme calls the function set as the "ref" function, and
<code>(set! (object ...) new-value)</code> calls the "set" function. The arguments in the set! form are
passed as a flattened list.
</p>
<p>The rest of the s7_c_type_set* functions set the functions called when the c-object is an argument to
length (s7_c_type_set_length), copy (s7_c_type_set_copy), fill! (s7_c_type_set_fill), reverse (s7_c_type_set_reverse),
object-&gt;string (s7_c_type_set_to_string), and internally by map and a few other cases, s7_c_type_set_to_list.
For the copy function, either the first or second argument can be a c-object of the given type.
The getter and setter functions are optimizer helpers.
</p>
<p>s7_c_object_value_checked is like s7_c_object, but it first checks that the object type matches the given type.
</p>
<p>s7_c_object_let and s7_c_object_set_let manage the c-object's local environment.
These two functions need to check that they are passed the correct number of arguments.
See the block object in s7test.scm. The c_object_let provides methods normally.
In Snd, marks can be passed into Scheme; the setup code is:
</p>
<pre class="indented"> static s7_pointer g_mark_methods;
...
g_mark_methods = s7_openlet(s7,
s7_inlet(s7, s7_list(s7, 2, s7_make_symbol(s7, "object-&gt;let"),
mark_to_let_func)));
s7_gc_protect(s7, g_mark_methods);
xen_mark_tag = s7_make_c_type(s7, "&lt;mark&gt;");
s7_c_type_set_gc_free(s7, xen_mark_tag, s7_xen_mark_free);
s7_c_type_set_is_equal(s7, xen_mark_tag, s7_xen_mark_is_equal);
s7_c_type_set_copy(s7, xen_mark_tag, s7_xen_mark_copy);
s7_c_type_set_to_string(s7, xen_mark_tag, g_xen_mark_to_string);
</pre>
<p>The mark object's let (g_mark_methods) has a method for object-&gt;let.
It is tied into each mark object:
</p>
<pre class="indented">s7_pointer m;
m = s7_make_c_object(s7, xen_mark_tag, mx); /* mx is the C-side value */
s7_c_object_set_let(s7, m, g_mark_methods);
</pre>
<p>and now if you type (object-&gt;let mark) in Snd's listener (where "mark" is
an appropriate mark of course), object-&gt;let calls the object's object-&gt;let method.
Don't forget to GC-protect the let!
</p>
<p>s7_make_c_object_without_gc makes a c-object of the given type, but the gc_free function
won't be called when the s7_cell that holds the C data is freed for reuse.
</p>
<div class="shortheader" id="cio">IO</div>
<pre class="indented">bool s7_is_input_port(s7_scheme *sc, s7_pointer p);
bool s7_is_output_port(s7_scheme *sc, s7_pointer p);
void s7_close_input_port(s7_scheme *sc, s7_pointer p);
void s7_close_output_port(s7_scheme *sc, s7_pointer p);
bool s7_flush_output_port(s7_scheme *sc, s7_pointer p); /* false=flush lost data */
const char *s7_port_filename(s7_scheme *sc, s7_pointer x);
s7_int s7_port_line_number(s7_scheme *sc, s7_pointer p);
s7_pointer s7_open_input_file(s7_scheme *sc, const char *name, const char *mode);
s7_pointer s7_open_output_file(s7_scheme *sc, const char *name, const char *mode);
s7_pointer s7_open_input_string(s7_scheme *sc, const char *input_string);
s7_pointer s7_open_output_string(s7_scheme *sc);
const char *s7_get_output_string(s7_scheme *sc, s7_pointer out_port);
s7_pointer s7_output_string(s7_scheme *sc, s7_pointer out_port);
typedef enum {S7_READ, S7_READ_CHAR, S7_READ_LINE, S7_PEEK_CHAR, S7_IS_CHAR_READY, S7_NUM_READ_CHOICES} s7_read_t;
s7_pointer s7_open_output_function(s7_scheme *sc, void (*function)(s7_scheme *sc, uint8_t c, s7_pointer port));
s7_pointer s7_open_input_function(s7_scheme *sc, s7_pointer (*function)(s7_scheme *sc, s7_read_t read_choice, s7_pointer port));
s7_pointer s7_read_char(s7_scheme *sc, s7_pointer port);
s7_pointer s7_peek_char(s7_scheme *sc, s7_pointer port);
s7_pointer s7_write_char(s7_scheme *sc, s7_pointer c, s7_pointer port);
s7_pointer s7_write(s7_scheme *sc, s7_pointer obj, s7_pointer port);
s7_pointer s7_display(s7_scheme *sc, s7_pointer obj, s7_pointer port);
void s7_newline(s7_scheme *sc, s7_pointer port);
const char *s7_format(s7_scheme *sc, s7_pointer args);
s7_pointer s7_object_to_string(s7_scheme *sc, s7_pointer arg, bool use_write);
char *s7_object_to_c_string(s7_scheme *sc, s7_pointer obj);
s7_pointer s7_current_input_port(s7_scheme *sc);
s7_pointer s7_set_current_input_port(s7_scheme *sc, s7_pointer p);
s7_pointer s7_current_output_port(s7_scheme *sc);
s7_pointer s7_set_current_output_port(s7_scheme *sc, s7_pointer p);
s7_pointer s7_current_error_port(s7_scheme *sc);
s7_pointer s7_set_current_error_port(s7_scheme *sc, s7_pointer port);
s7_pointer s7_read(s7_scheme *sc, s7_pointer port);
</pre>
<p>Most of these correspond closely to the similarly named scheme function. s7_port_filename
returns the file associated with a file port. s7_port_line_number returns position of the
reader in an input file port. The "use_write" parameter to s7_object_to_string refers
to the write/display choice in scheme. The string returned by s7_object_to_c_string
should be freed by the caller.
s7_output_string is the same as s7_get_output_string except that it returns an s7 string,
not a C string.
</p>
<p>s7_open_input_function and s7_open_output_function
call their "function" argument when input or output is requested. The "read_choice"
argument specifies to that function which of the input scheme functions called it.
The intent of these two input functions is to give you complete control over IO.
In the case of an input_function:
</p>
<pre class="indented">static s7_pointer my_read(s7_scheme *sc, s7_read_t peek, s7_pointer port)
{
/* this function should handle input according to the peek choice */
return(s7_make_character(sc, '0'));
}
s7_pointer port;
s7_int gc_loc;
uint8_t c;
port = s7_open_input_function(sc, my_read);
gc_loc = s7_gc_protect(sc, port);
c = s7_character(s7_read_char(sc, p1)); /* my_read "peek" == S7_READ_CHAR */
if (last_c != '0')
fprintf(stderr, "c: %c\n", c);
s7_gc_unprotect_at(sc, gc_loc);
</pre>
<div class="shortheader" id="clets">Lets</div>
<pre class="indented">s7_pointer s7_rootlet(s7_scheme *sc);
s7_pointer s7_shadow_rootlet(s7_scheme *sc);
s7_pointer s7_set_shadow_rootlet(s7_scheme *sc, s7_pointer let);
s7_pointer s7_curlet(s7_scheme *sc);
s7_pointer s7_set_curlet(s7_scheme *sc, s7_pointer e);
s7_pointer s7_outlet(s7_scheme *sc, s7_pointer e);
s7_pointer s7_sublet(s7_scheme *sc, s7_pointer let, s7_pointer bindings);
s7_pointer s7_inlet(s7_scheme *sc, s7_pointer bindings);
s7_pointer s7_varlet(s7_scheme *sc, s7_pointer let, s7_pointer symbol, s7_pointer value);
s7_pointer s7_let_to_list(s7_scheme *sc, s7_pointer let);
bool s7_is_let(s7_pointer e);
s7_pointer s7_let_ref(s7_scheme *sc, s7_pointer let, s7_pointer symbol);
s7_pointer s7_let_set(s7_scheme *sc, s7_pointer let, s7_pointer symbol, s7_pointer val);
s7_pointer s7_let_field_ref(s7_scheme *sc, s7_pointer symbol);
s7_pointer s7_let_field_set(s7_scheme *sc, s7_pointer symbol, s7_pointer new_value);
s7_pointer s7_openlet(s7_scheme *sc, s7_pointer e);
bool s7_is_openlet(s7_pointer e);
s7_pointer s7_method(s7_scheme *sc, s7_pointer object, s7_pointer method);
/* these might go away someday */
s7_pointer s7_slot(s7_scheme *sc, s7_pointer symbol);
s7_pointer s7_slot_value(s7_pointer slot);
s7_pointer s7_slot_set_value(s7_scheme *sc, s7_pointer slot, s7_pointer value);
s7_pointer s7_make_slot(s7_scheme *sc, s7_pointer env, s7_pointer symbol, s7_pointer value);
void s7_slot_set_real_value(s7_scheme *sc, s7_pointer slot, s7_double value);
</pre>
<p>Many of these are the same as the corresponding scheme function: s7_rootlet, s7_curlet, s7_outlet,
s7_sublet, s7_inlet, s7_varlet, s7_let_to_list, s7_is_let, s7_let_ref, s7_let_set, s7_openlet,
and s7_is_openlet.
</p>
<p>s7_let_field_ref and s7_let_field_set refer to *s7*, the let that holds various s7 settings.
To get the current default print-length,
</p>
<pre class="indented">s7_integer(s7_let_field_ref(s7, s7_make_symbol(s7, "print-length")))
</pre>
<p>s7_method looks for a field in "object" with the name "method", a symbol.
For example, in clm2xen.c, if mus-copy is called on an object that Snd does not
immediately recognize (i.e. a generator), it looks for a mus-copy method, and
if found, Snd calls it:
</p>
<pre class="indented">s7_pointer func;
func = s7_method(s7, gen, s7_make_symbol(s7, "mus-copy"));
if (func != s7_undefined(s7))
return(s7_apply_function(s7, func, s7_list(s7, 1, gen)));
</pre>
<p>The object searched can be anything that has an associated let: a c-object,
a function or macro, a c-pointer, or of course a let.
</p>
<p>s7_set_curlet and the slot functions might go away someday. They are currently used
in Snd. For the adventurous however, here's a sketchy description.
A slot in s7 is a location in a let (a variable binding in an environment to use more standard terminology).
s7_make_slot creates a slot in "env" with the given symbol and value. s7_slot_value returns the value;
s7_slot_set_value sets the value; s7_slot_set_real_value sets the mutable real value's numerical value.
s7_slot takes a symbol and tries to find its currently active slot. s7_set_curlet sets curlet, returning
the previous curlet.
</p>
<p>s7_shadow_rootlet and s7_set_shadow_rootlet make it easier to import a let into rootlet. This is also aimed
at code that is defining lots of functions and variables, using the default functions like s7_define_variable
that place things in the rootlet, but the code actually wants all those objects stored
in a let other than rootlet.
</p>
<pre class="indented">s7_pointer cur_env, old_shadow;
cur_env = s7_curlet(sc);
old_shadow = s7_set_shadow_rootlet(sc, cur_env);
/* define everything here */
s7_set_shadow_rootlet(sc, old_shadow);
</pre>
<p>s7_set_shadow_rootlet returns the previous shadow rootlet,
so this turns the current environment into a shadow rootlet while defining functions, then restores
the old rootlet.
Similarly notcurses_s7.c places everything in the *notcurses* let,
but uses s7_set_shadow_rootlet to make these available in scheme as if they were in the rootlet:
</p>
<pre class="indented"> s7_pointer notcurses_let, old_shadow;
s7_define_constant(sc, "*notcurses*", notcurses_let = s7_inlet(sc, s7_nil(sc)));
old_shadow = s7_set_shadow_rootlet(sc, notcurses_let);
/* ... here we have all the s7_defines ... */
s7_set_shadow_rootlet(sc, old_shadow);
</pre>
<div class="shortheader" id="csymbols">Symbols</div>
<pre class="indented">bool s7_is_symbol(s7_pointer p);
const char *s7_symbol_name(s7_pointer p);
s7_pointer s7_make_symbol(s7_scheme *sc, const char *name);
s7_pointer s7_gensym(s7_scheme *sc, const char *prefix);
bool s7_is_keyword(s7_pointer obj);
s7_pointer s7_make_keyword(s7_scheme *sc, const char *key);
s7_pointer s7_keyword_to_symbol(s7_scheme *sc, s7_pointer key);
s7_pointer s7_name_to_value(s7_scheme *sc, const char *name);
s7_pointer s7_symbol_value(s7_scheme *sc, s7_pointer sym);
s7_pointer s7_symbol_set_value(s7_scheme *sc, s7_pointer sym, s7_pointer val);
s7_pointer s7_symbol_local_value(s7_scheme *sc, s7_pointer sym, s7_pointer local_env);
s7_pointer s7_symbol_table_find_name(s7_scheme *sc, const char *name);
bool s7_for_each_symbol_name(s7_scheme *sc, bool (*symbol_func)(const char *symbol_name, void *data), void *data);
bool s7_for_each_symbol(s7_scheme *sc, bool (*symbol_func)(const char *symbol_name, void *data), void *data);
</pre>
<p>s7_is_symbol corresponds to scheme's symbol?, s7_symbol_name to symbol-&gt;string,
s7_make_symbol is string-&gt;symbol,
s7_gensym to gensym. The gensym prefix is the optional argument to gensym in scheme.
By default the prefix is "gensym", so the gensym-created symbols are of the form {gensym}-nnn
where nnn is some number. s7_is_keyword is keyword?, s7_make_keyword is string-&gt;keyword,
and s7_keyword_to_symbol is keyword-&gt;symbol.
</p>
<p>Normal symbols, and keywords do not need to be garbage-protected, but gensyms do.
</p>
<p>s7_symbol_to_value finds the current binding of the symbol (using its string name),
and returns its value, similar to symbol-&gt;value. To specify the environment in which to
lookup the symbol, use s7_symbol_local_value. s7_symbol_set_value sets the value of the
symbol in its current binding.
</p>
<p>s7_symbol_table_find_name finds the symbol given its name. s7_make_symbol is the same
if the symbol already exists, but s7_symbol_find_by_name returns NULL if there isn't any
symbol by that name.
s7_for_each_symbol_name and s7_for_each_symbol traverse the symbol
table, calling "symbol_func" on each symbol. symbol_func is a boolean function that
takes as arguments the symbol name and the void* data pointer. The latter can carry
along whatever state your function needs. s7_for_each_symbol_name also includes some
s7 constants like #f.
</p>
<p>The C declaration above says s7_for_each_symbol is a C function that returns a boolean,
and takes three arguments, an s7_scheme* pointer, a function (symbol_func), and a void* pointer
(data). The function passed (symbol_func) also returns a boolean, and takes two arguments, a char* (name),
and the same void* pointer that was passed to s7_symbol_for_each. If symbol_func returns true,
the outer function immediately returns true, ending the symbol table traversal.
Sketched in scheme, it might be:
</p>
<pre class="indented">(define (s7_for_each_symbol s7 symbol_func data)
(call-with-exit
(lambda (return)
(for-each
(lambda (symbol-name)
(if (symbol_func symbol-name data)
(return #t)))
(symbol-table))
#f)))
</pre>
<p>An example is snd-completion.c.
</p>
<div class="shortheader" id="cnumbers">Numbers</div>
<pre class="indented">bool s7_is_number(s7_pointer p);
char *s7_number_to_string(s7_scheme *sc, s7_pointer obj, s7_int radix);
bool s7_is_integer(s7_pointer p);
s7_int s7_integer(s7_pointer p);
s7_pointer s7_make_integer(s7_scheme *sc, s7_int num);
s7_int s7_number_to_integer(s7_scheme *sc, s7_pointer x);
s7_int s7_number_to_integer_with_caller(s7_scheme *sc, s7_pointer x, const char *caller);
bool s7_is_real(s7_pointer p);
s7_double s7_real(s7_pointer p);
s7_pointer s7_make_real(s7_scheme *sc, s7_double num);
s7_pointer s7_make_mutable_real(s7_scheme *sc, s7_double n);
s7_double s7_number_to_real(s7_scheme *sc, s7_pointer x);
s7_double s7_number_to_real_with_caller(s7_scheme *sc, s7_pointer x, const char *caller);
bool s7_is_rational(s7_pointer arg);
bool s7_is_ratio(s7_pointer arg);
s7_pointer s7_make_ratio(s7_scheme *sc, s7_int a, s7_int b);
s7_pointer s7_rationalize(s7_scheme *sc, s7_double x, s7_double error);
s7_int s7_numerator(s7_pointer x);
s7_int s7_denominator(s7_pointer x);
bool s7_is_complex(s7_pointer arg);
s7_pointer s7_make_complex(s7_scheme *sc, s7_double a, s7_double b);
s7_double s7_real_part(s7_pointer z);
s7_double s7_imag_part(s7_pointer z);
s7_double s7_random(s7_scheme *sc, s7_pointer state);
s7_pointer s7_random_state(s7_scheme *sc, s7_pointer seed);
bool s7_is_random_state(s7_pointer p);
s7_pointer s7_random_state_to_list(s7_scheme *sc, s7_pointer args);
void s7_set_default_random_state(s7_scheme *sc, s7_int seed, s7_int carry);
bool s7_is_bignum(s7_pointer obj);
mpfr_t *s7_big_real(s7_pointer x);
mpz_t *s7_big_integer(s7_pointer x);
mpq_t *s7_big_ratio(s7_pointer x);
mpc_t *s7_big_complex(s7_pointer x);
s7_pointer s7_make_big_integer(s7_scheme *sc, mpz_t *val);
s7_pointer s7_make_big_ratio(s7_scheme *sc, mpq_t *val);
s7_pointer s7_make_big_real(s7_scheme *sc, mpfr_t *val);
s7_pointer s7_make_big_complex(s7_scheme *sc, mpc_t *val);
</pre>
<p>Most of these correspond to the obvious scheme functions, so I'll
only touch on the less-obvious cases.
s7_make_mutable_real returns a real number object whose value can be changed directly.
In snd-sig.c, for example, we have a C procedure that applies a scheme function to
every sound sample in an audio file. We do not want to create a new object for the
scheme function's argument list on every call! So, we start by creating the mutable real:
</p>
<pre class="indented">yp = s7_make_slot(s7, e, arg, s7_make_mutable_real(s7, 1.5));
</pre>
<p>"e" is the let for the evaluation, "arg" is the real's name as a symbol in that let,
and we make its initial value 1.5 (for no particular reason). Then on every sample, we
call the function:
</p>
<pre class="indented">s7_slot_set_real_value(s7, yp, data[kp]); /* set yp's value to data[kp] */
data[kp] = opt_func(s7, res); /* call opt_func */
</pre>
<p>s7_number_to_real returns any real number as an s7_double. If it can't
convert its argument, it signals an error, which is annoying because it doesn't
know where that error occured in scheme. So s7_number_to_real_with_caller gives
you a way to tell it at lease the caller's name.
</p>
<p>For the bignum functions, see <a href="#gmpex">Bignums in C</a>.
</p>
<div class="shortheader" id="clists">Lists</div>
<pre class="indented">bool s7_is_pair(s7_pointer p);
s7_pointer s7_cons(s7_scheme *sc, s7_pointer a, s7_pointer b);
s7_pointer s7_car(s7_pointer p);
s7_pointer s7_cdr(s7_pointer p);
s7_pointer s7_set_car(s7_pointer p, s7_pointer q);
s7_pointer s7_set_cdr(s7_pointer p, s7_pointer q);
s7_pointer s7_cadr(s7_pointer p);
etc...
bool s7_is_list(s7_scheme *sc, s7_pointer p);
bool s7_is_proper_list(s7_scheme *sc, s7_pointer p);
s7_pointer s7_make_list(s7_scheme *sc, s7_int length, s7_pointer initial_value);
s7_int s7_list_length(s7_scheme *sc, s7_pointer a);
s7_pointer s7_list(s7_scheme *sc, s7_int num_values, ...);
s7_pointer s7_list_nl(s7_scheme *sc, s7_int num_values, ...);
s7_pointer s7_array_to_list(s7_scheme *sc, s7_int num_values, s7_pointer *array);
s7_pointer s7_list_ref(s7_scheme *sc, s7_pointer lst, s7_int num);
s7_pointer s7_list_set(s7_scheme *sc, s7_pointer lst, s7_int num, s7_pointer val);
s7_pointer s7_reverse(s7_scheme *sc, s7_pointer a);
s7_pointer s7_append(s7_scheme *sc, s7_pointer a, s7_pointer b);
s7_pointer s7_assoc(s7_scheme *sc, s7_pointer obj, s7_pointer lst);
s7_pointer s7_assq(s7_scheme *sc, s7_pointer obj, s7_pointer x);
s7_pointer s7_member(s7_scheme *sc, s7_pointer obj, s7_pointer lst);
s7_pointer s7_memq(s7_scheme *sc, s7_pointer obj, s7_pointer x);
bool s7_tree_memq(s7_scheme *sc, s7_pointer sym, s7_pointer tree);
</pre>
<p>These functions are mostly obvious: s7_car corresponds to scheme car, etc.
s7_list_nl was added to catch a typo that affected s7_list: the latter would accept
trailing, but ignored list values. s7_tree_memq is like s7_memq, but searches
an entire tree structure. not just the top-level list. s7_array_to_list takes
an array of s7_pointers and returns a list of them (similar to s7_vector_to_list).
</p>
<div class="shortheader" id="cvectors">Vectors</div>
<pre class="indented">s7_pointer s7_make_vector(s7_scheme *sc, s7_int len);
s7_pointer s7_make_and_fill_vector(s7_scheme *sc, s7_int len, s7_pointer fill);
s7_pointer s7_make_normal_vector(s7_scheme *sc, s7_int len, s7_int dims, s7_int *dim_info);
bool s7_is_vector(s7_pointer p);
s7_int s7_vector_length(s7_pointer vec);
s7_int s7_vector_rank(s7_pointer vect);
s7_int s7_vector_dimension(s7_pointer vec, s7_int dim);
s7_pointer *s7_vector_elements(s7_pointer vec);
s7_int s7_vector_dimensions(s7_pointer vec, s7_int *dims, s7_int dims_size);
s7_int s7_vector_offsets(s7_pointer vec, s7_int *offs, s7_int offs_size);
void s7_vector_fill(s7_scheme *sc, s7_pointer vec, s7_pointer obj);
s7_pointer s7_vector_copy(s7_scheme *sc, s7_pointer old_vect);
s7_pointer s7_vector_to_list(s7_scheme *sc, s7_pointer vect);
s7_pointer s7_make_int_vector(s7_scheme *sc, s7_int len, s7_int dims, s7_int *dim_info);
s7_int *s7_int_vector_elements(s7_pointer vec);
bool s7_is_int_vector(s7_pointer p);
s7_int s7_int_vector_ref(s7_pointer vec, s7_int index);
s7_int s7_int_vector_set(s7_pointer vec, s7_int index, s7_int value);
s7_pointer s7_make_float_vector(s7_scheme *sc, s7_int len, s7_int dims, s7_int *dim_info);
s7_pointer s7_make_float_vector_wrapper(s7_scheme *sc, s7_int len, s7_double *data, s7_int dims, s7_int *dim_info, bool free_data);
s7_double *s7_float_vector_elements(s7_pointer vec);
bool s7_is_float_vector(s7_pointer p);
s7_double s7_float_vector_ref(s7_pointer vec, s7_int index);
s7_double s7_float_vector_set(s7_pointer vec, s7_int index, s7_double value);
s7_pointer s7_vector_ref(s7_scheme *sc, s7_pointer vec, s7_int index);
s7_pointer s7_vector_set(s7_scheme *sc, s7_pointer vec, s7_int index, s7_pointer a);
s7_pointer s7_vector_ref_n(s7_scheme *sc, s7_pointer vector, s7_int indices, ...);
s7_pointer s7_vector_set_n(s7_scheme *sc, s7_pointer vector, s7_pointer value, s7_int indices, ...);
</pre>
<p>s7_make_vector returns a one-dimensional vector of the given length;
its elements are initialized to the empty list, ().
s7_make_and_fill_vector is similar, but the initial element is set by
the "fill" parameter. This value
is simply placed in every vector location, not copied, so if you pass a
cons, then change its car,
that change is reflected in every element of the vector.
s7_make_normal_vector returns a possibly multidimensional inhomogenous
vector (a "normal" vector, as opposed to an int-vector or a
float-vector).
</p>
<p>s7_is_vector is the same as vector?, s7_vector_length is length.
s7_vector_rank returns the number of dimensions in a vector, and s7_vector_dimension returns
the size of the given dimension. s7_vector_elements returns the s7_pointer array that holds
that vector's elements.
s7_vector_dimensions fills "dims" with the lengths of the corresponding dimensions.
s7_vector_offsets does the same for the successive dimensional offsets.
In a multidimensional vector, you can get the s7_vector_elements index by summing each index * offset[dimension].
s7_vector_to_list is vector-&gt;list. s7_vector_fill is fill! (as applied to a vector of course), and s7_vector_copy is copy.
</p>
<p>s7_make_int_vector returns an int-vector. Its elements are s7_ints (int64_t), and the array of s7_ints can be accessed
via s7_int_vector_elements. Similarly for float-vectors (the elements are s7_doubles which
are C doubles). s7_make_float_vector_wrapper provides a way to pass a C array of doubles
through scheme; it wraps up the array as a scheme float-vector. Both s7_make_int_vector
and s7_make_float_vector can return multidimensional vectors. The "dims" parameter specifies
the number of dimensions, and the "dim_info" parameter the individual dimensions. If dims
is 1, dim_info can be NULL. If the s7_make_float_vector_wrapper "free_data" parameter is true, s7 will free the "data"
array when the float-vector is garbage-collected. In ffitest.c, the g_block example calls:
</p>
<pre class="indented">v1 = s7_make_float_vector_wrapper(sc, len, g1-&gt;data, 1, NULL, false);
</pre>
<p>when checking if two blocks are equivalent. Since this data is actually being shared
with a block object, we don't want s7 to free it when the g_blocks_are_equivalent function
is done. g1-&gt;data is freed by g_block_free when the c-object is garbage collected.
</p>
<p>s7_vector_ref and s7_vector_set apply to one-dimensional vectors; the "_n" cases
apply to multidimensional cases. All four functions can be used on any type of vector.
</p>
<div class="shortheader" id="ccpointers">C-pointers</div>
<pre class="indented">bool s7_is_c_pointer(s7_pointer arg);
bool s7_is_c_pointer_of_type(s7_pointer arg, s7_pointer type);
void *s7_c_pointer(s7_pointer p);
void *s7_c_pointer_with_type(s7_scheme *sc, s7_pointer p, s7_pointer expected_type, const char *caller, s7_int argnum);
s7_pointer s7_make_c_pointer(s7_scheme *sc, void *ptr);
s7_pointer s7_make_c_pointer_with_type(s7_scheme *sc, void *ptr, s7_pointer type, s7_pointer info);
s7_pointer s7_c_pointer_type(s7_pointer p);
</pre>
<p>These functions are equivalent to s7's c-pointer?, c-pointer, and c-pointer-type.
C-pointers in s7 are aimed primarily at passing uninterpreted C pointers through
s7 from one C function to another.
The "type" field can hold a type
indication, useful in debugging. s7_c_pointer_of_type checks that the c-pointer's
type field matches the type passed as the second argument. As a convenience,
s7_c_pointer_with_type combines s7_c_pointer with s7_is_c_pointer_of_type,
calling s7_error if the types don't match.
Nothing else in s7 assumes the type field is actually a type symbol, so you
can use the type and info fields for any purpose.
</p>
<div class="shortheader" id="cstrings">Strings</div>
<pre class="indented">bool s7_is_string(s7_pointer p);
const char *s7_string(s7_pointer p);
s7_pointer s7_make_string(s7_scheme *sc, const char *str);
s7_pointer s7_make_string_with_length(s7_scheme *sc, const char *str, s7_int len);
s7_pointer s7_make_string_wrapper(s7_scheme *sc, const char *str);
s7_pointer s7_make_permanent_string(s7_scheme *sc, const char *str);
s7_int s7_string_length(s7_pointer str);
</pre>
<p>These handle s7 strings. s7_is_string corresponds to scheme's string?,
and s7_string_length to scheme's string-length. s7_string returns the scheme string's value as a C string.
Don't free the returned string! s7_make_string takes a C string, and returns its scheme
equivalent. s7_make_string_with_length is the same, but it is faster because you pass the
new string's length (s7_make_string has to use strlen).
s7_make_permanent_string returns a scheme string that is not in the heap; it will never be GC'd.
s7_make_string_wrapper creates a temporary string. This saves the overhead of getting a free cell
from the heap and later GC-ing it, but the string may be reused at any time. It is useful as
an argument to s7_call and similar functions where you know no other strings will be needed
during that call.
</p>
<div class="shortheader" id="ccharacters">Characters</div>
<pre class="indented">bool s7_is_character(s7_pointer p);
uint8_t s7_character(s7_pointer p);
s7_pointer s7_make_character(s7_scheme *sc, uint8_t c);
</pre>
<p>s7_is_character is equivalent to character?. s7_character returns the unsigned char held by the s7 object p,
and s7_make_character returns an s7 object holding the unsigned char c.
</p>
<div class="shortheader" id="chashtables">Hash-tables</div>
<pre class="indented">bool s7_is_hash_table(s7_pointer p);
s7_pointer s7_make_hash_table(s7_scheme *sc, s7_int size);
s7_pointer s7_hash_table_ref(s7_scheme *sc, s7_pointer table, s7_pointer key);
s7_pointer s7_hash_table_set(s7_scheme *sc, s7_pointer table, s7_pointer key, s7_pointer value);
</pre>
<p>These functions are the C-side equivalent of hash-table?, make-hash-table, hash-table-ref,
and hash-table-set!.
</p>
<div class="shortheader" id="citerators">Iterators</div>
<pre class="indented">s7_pointer s7_make_iterator(s7_scheme *sc, s7_pointer e);
bool s7_is_iterator(s7_pointer obj);
bool s7_iterator_is_at_end(s7_scheme *sc, s7_pointer iter);
s7_pointer s7_iterate(s7_scheme *sc, s7_pointer iter);
</pre>
<p>These are the C equivalents of make-iterator, iterator?, iterator-at-end?, and iterate.
</p>
<div class="shortheader" id="chooks">Hooks</div>
<pre class="indented">s7_pointer s7_hook_functions(s7_scheme *sc, s7_pointer hook);
s7_pointer s7_hook_set_functions(s7_scheme *sc, s7_pointer hook, s7_pointer functions);
</pre>
<p>These access the list of functions associated with a hook. See <a href="#hooks">hooks</a>
for a discussion of hooks, and <a href="#testhook">C and Scheme Hooks</a> for a short example.
The scheme equivalent is hook-functions (a dilambda).
</p>
<div class="shortheader" id="cconstants">Constants</div>
<pre class="indented">s7_pointer s7_f(s7_scheme *sc);
s7_pointer s7_t(s7_scheme *sc);
s7_pointer s7_nil(s7_scheme *sc);
s7_pointer s7_undefined(s7_scheme *sc);
s7_pointer s7_unspecified(s7_scheme *sc);
s7_pointer s7_eof_object(s7_scheme *sc);
bool s7_is_unspecified(s7_scheme *sc, s7_pointer val);
bool s7_is_null(s7_scheme *sc, s7_pointer p);
bool s7_is_boolean(s7_pointer x);
bool s7_boolean(s7_scheme *sc, s7_pointer x);
s7_pointer s7_make_boolean(s7_scheme *sc, bool x);
bool s7_is_immutable(s7_pointer p);
s7_pointer s7_immutable(s7_pointer p);
</pre>
<p>These return the standard scheme or s7 constants: #f, #t, (), #&lt;undefined&gt;, #&lt;unspecified&gt;, and #&lt;eof&gt;.
Also the s7 function unspecified?, and the scheme functions null?, and boolean?. s7_make_boolean
returns #t or #f depending on its argument.
</p>
<p>s7_immutable makes its argument immutable, and s7_is_immutable returns true if its argument is immutable.
They parallel s7's immutable! and immutable?.
</p>
<div class="shortheader" id="coptimizations">Optimization</div>
<pre class="indented">typedef s7_double (*s7_d_t)(void);
void s7_set_d_function(s7_scheme *sc, s7_pointer f, s7_d_t df);
s7_d_t s7_d_function(s7_pointer f);
etc...
</pre>
<p>
These functions tell s7 to call a foreign function directly, without any scheme-related
overhead. The function to be called in this manner needs to take the form of one of the s7_*_t functions in s7.h.
For example,
one way to call + is to pass it two s7_double arguments and get an s7_double back. This is the
s7_d_dd_t function (the first letter gives the return type, the rest give successive argument types,
d=double, i=integer, v=c_object, p=s7_pointer).
We tell s7 about it via s7_set_d_dd_function. Whenever s7's optimizer encounters + with two arguments
that it (the optimizer) knows are s7_doubles, in a context where an s7_double result is expected,
s7 calls the associated s7_d_dd_t function directly without preparing a list of arguments, and without
wrapping up the result as an s7 object.
</p>
<p>Here is an example of using these functions; more extensive examples are in clm2xen.c in sndlib, and in s7.c.
</p>
<pre class="indented">static s7_pointer g_plus_one(s7_scheme *sc, s7_pointer args)
{
return(s7_make_integer(sc, s7_integer(s7_car(args)) + 1));
}
static s7_int plus_one(s7_int x) {return(x + 1);}
s7_define_safe_function(sc, "plus1", g_plus_one, 1, 0, false, "");
s7_set_i_i_function(sc, s7_name_to_value(sc, "plus1"), plus_one);
</pre>
<p>s7_define_safe_function defines a Scheme function "plus1",
telling the optimizer that this function is safe.
A safe function does not push anything on the s7 stack, and treats the arglist
passed to it as immutable and temporary (that is, it just grabs the arguments from
the list). A few s7_* functions are unsafe, and that makes anything that calls
them also unsafe. If the optimizer knows a function is safe, it can use prebuilt
lists to pass the arguments (saving in the GC), and can combine it in various
ways with other stuff. If an unsafe function handles its argument list safely,
declare it with s7_define_semisafe_typed_function.
If the safe function knows its return and argument
types, there is another level of optimization that can call it without
setting up an arglist or "unboxing" values, basically a direct call in C.
In this example, the s7_set_i_i_function call
tells the optimizer that if plus1 is seen in a context where the optimizer
knows it is receiving an s7_int argument, and is expected to return
an s7_int result, it can call plus_one directly, rather than g_plus_one.
</p>
<p>There are more of these functions in s7.c that could be exported via s7.h
if you need them.
</p>
<p>By the way, to optimize scheme code (for speed), first use functions: the optimizer
ignores anything else at the top level. Then perhaps check lint.scm and the profiler.
Don't use something dumb like call/cc. Avoid append. Use iteration, not recursion.
Perhaps take the hot spot and do it in C. callgrind might also be helpful, but it
can be hard to map from callgrind output to the original scheme code.
</p>
<div class="shortheader" id="candsoon">And so on...</div>
<pre class="indented">s7_scheme *s7_init(void);
void s7_quit(s7_scheme *sc);
void s7_free(s7_scheme *sc);
void s7_repl(s7_scheme *sc);
bool s7_is_eq(s7_pointer a, s7_pointer b);
bool s7_is_eqv(s7_scheme *sc, s7_pointer a, s7_pointer b);
bool s7_is_equal(s7_scheme *sc, s7_pointer a, s7_pointer b);
bool s7_is_equivalent(s7_scheme *sc, s7_pointer x, s7_pointer y);
void s7_provide(s7_scheme *sc, const char *feature);
bool s7_is_provided(s7_scheme *sc, const char *feature);
s7_pointer s7_stacktrace(s7_scheme *sc);
s7_pointer s7_history(s7_scheme *sc);
s7_pointer s7_add_to_history(s7_scheme *sc, s7_pointer entry);
bool s7_history_enabled(s7_scheme *sc);
bool s7_set_history_enabled(s7_scheme *sc, bool enabled);
s7_pointer s7_dynamic_wind(s7_scheme *sc, s7_pointer init, s7_pointer body, s7_pointer finish);
s7_pointer s7_make_continuation(s7_scheme *sc);
s7_pointer s7_values(s7_scheme *sc, s7_pointer args);
s7_pointer s7_copy(s7_scheme *sc, s7_pointer args);
s7_pointer s7_fill(s7_scheme *sc, s7_pointer args);
s7_pointer s7_type_of(s7_scheme *sc, s7_pointer arg);
s7_pfunc s7_optimize(s7_scheme *sc, s7_pointer expr);
bool s7_is_syntax(s7_pointer p);
bool s7_is_valid(s7_scheme *sc, s7_pointer arg);
void (*s7_begin_hook(s7_scheme *sc))(s7_scheme *sc, bool *val);
void s7_set_begin_hook(s7_scheme *sc, void (*hook)(s7_scheme *sc, bool *val));
</pre>
<p>s7_init creates a scheme interpreter. The returned value is the s7_scheme* used by many of the FFI functions.
s7_quit exits the interpreter. The memory allocated for it by s7_init is not freed unless you call s7_free.
(s7_free also frees its s7_scheme* argument).
s7_repl fires up a REPL.
s7_is_eq and friends correspond to scheme's eq?, eqv?, equal?, and equivalent?. s7_provide and s7_is_provided
add a symbol to the *features* list, or check for its presence there.
</p>
<p>s7_stacktrace is like stacktrace; it currently ignores (*s7* 'stacktrace).
The s7_history functions deal with the (*s7* 'history) buffer.
s7_dynamic_wind is dynamic-wind in C. The parameters "init", "body", and "finish" are
the same as in scheme (i.e. #f or a thunk). s7_make_continuation is call/cc; there
is an <a href="#signal">example</a> above.
s7_values is values, s7_copy is copy, s7_fill is fill!, s7_type_of is type-of, s7_is_syntax
is syntax?.
</p>
<p>s7_is_valid is a debugging aid; it tries to tell if an arbitrary value is pointing to
an s7 object. Set the compile-time switch TRAP_SEGFAULT to 1 before using this function!
</p>
<p>s7_optimize is the third-level optimizer. It is a bit hard to explain,
but basically you pass it some scheme code, and it returns either NULL or a function that can be called
to evaluate that code. There are several examples in snd-sig.c.
</p>
<pre class="indented">static s7_pointer g_d_func(s7_scheme *sc, s7_pointer args)
{
/* a normal C-defined s7 function that simply returns (scheme) 1.0 */
return(s7_make_real(sc, 1.0));
}
static s7_double opt_d_func(void)
{
/* a version of g_d_func that returns (C) 1.0 */
return(1.0);
}
/* now make it possible to call opt_d_func in place of g_d_func */
s7_float_function func;
s7_pointer symbol;
symbol = s7_define_safe_function(sc, "d-func", g_d_func, 0, 0, false, "opt func");
s7_set_d_function(sc, s7_name_to_value(sc, "d-func"), opt_d_func);
/* and try it (this saves creating an s7 real, accessing its value, and GC-ing it eventually) */
func = s7_float_optimize(sc, s7_list(sc, 1, s7_list(sc, 1, symbol)));
fprintf(stderr, "%f\n", func(sc));
</pre>
<p>
Finally, the begin_hook
functions are explained <a href="#beginhook">above</a>.
</p>
<br><br>
<div class="topheader" id="s7examples">s7 examples</div>
<p>The s7 tarball includes several scheme files:
</p>
<ul>
<li>case.scm provides case*, an extension of case for pattern matching
</li><li>cload.scm is a wrapper for the FFI stuff described above
</li><li>debug.scm provides various debugging aids such as trace, break, and watch
</li><li>json.scm is a JSON reader/writer, but I got side-tracked
</li><li>lint.scm is the s7 equivalent of the ancient C program named lint (modern equivalent: cppcheck)
</li><li>loop.scm is Rick Taube's CL loop macro
</li><li>mockery.scm has mock data libraries (openlets masquerading as various data types)
</li><li>profile.scm is a profiler
</li><li>r7rs.scm implements some of r7rs-small
</li><li>reactive.scm implements some reactive programming macros (set!, let)
</li><li>repl.scm is a vt-100 based repl
</li><li>nrepl.scm is a notcurses based repl
</li><li>s7test.scm is a regression test for s7
</li><li>stuff.scm is just some arbitrary stuff
</li><li>write.scm has a pretty printer
</li></ul>
<p>
libc.scm, libgsl.scm, libm.scm, libdl.scm, notcurses_s7.c, libutf8proc.scm, and libgdbm.scm tie the associated
libraries into s7.
gdbinit has some gdb commands for s7.
</p>
<div class="header" id="cload"><h4>cload.scm</h4></div>
<p>cload.scm defines the macro c-define that reduces the overhead
involved in (dynamically) linking C entities into s7.
</p>
<pre class="indented">(<em class="def" id="definecfunction">c-define</em> c-info (prefix "") (headers ()) (cflags "") (ldflags "") output-name)
</pre>
<p>For example, <code>(c-define '(double j0 (double)) "m" "math.h")</code>
links the C math library function j0 into s7 under the name m:j0,
passing it a double argument and getting a double result (a real in s7).
</p>
<p><em>prefix</em> is some arbitrary prefix that you want prepended to various names.
</p>
<p><em>headers</em> is a list of headers (as strings) that the c-info relies on, (("math.h") for example).
</p>
<p><em>cflags</em> are any special C compiler flags that are needed ("-I." in particular), and
<em>ldflags</em> is the similar case for the loader. <em>output-name</em> is the name of the
output C file and associated library. It defaults to "temp-s7-output" followed by a number.
In libm.scm, it is set to "libm_s7" to protect it across cload calls. If cload finds an
up-to-date output C file and shared library, it simply loads the library, rather than
going through all the trouble of writing and compling it.
</p>
<p><em>c-info</em> is a list that describes the C entities that you want to load into s7.
It can be either one list describing one entity, or a list of such lists.
Each description has the form:
</p>
<pre class="indented">(return-type entity-name-in-C (argument-type...))
</pre>
<p>where each entry is a symbol, and C names are used throughout. So, in the j0
example above, <code>(double j0 (double))</code> says we want access to j0, it returns
a C double, and it takes one argument, also a C double. s7 tries to figure out
what the corresponding s7 type is, but in tricky cases, you should tell it
by replacing the bare type name with a list: <code>(C-type underlying-C-type)</code>. For example,
the Snd function set_graph_style takes an (enum) argument of type graph_style_t.
This is actually an int, so we use <code>(graph_style_t int)</code> as the type:
</p>
<pre class="indented">(void set_graph_style ((graph_style_t int)))
</pre>
<p>If the C entity is a constant, then the descriptor list has just two entries,
the C-type and the entity name: <code>(int F_OK)</code> for example. The entity name can also be a list:
</p>
<pre class="indented">((graph_style_t int) (GRAPH_LINES GRAPH_DOTS GRAPH_FILLED GRAPH_DOTS_AND_LINES GRAPH_LOLLIPOPS))
</pre>
<p>This defines all the names in the list as integers.
If the C type has a space ("struct tm*"), use <code>(symbol "struct tm*")</code>
to construct the corresponding symbol.
</p>
<p>The entity is placed in the current s7 environment under the name <code>(string-append prefix ":" name)</code>
where the ":" is omitted if the prefix is null. So in the j0 example, we get in s7 the function m:j0.
c-define returns #t if it thinks the load worked, and #f otherwise.
</p>
<p>There are times when the only straightforward approach is to write the desired
C code directly. To insert C code on the fly, use (in-C "code..."). Two more such
cases that come up all the time: C-function for linkage to functions written
directly in s7 style using in-C, and C-macro for macros in the C header file that
need to be wrapped in #ifdefs.
Here are some examples:
</p>
<pre class="indented">;;; various math library functions
(c-define '((double j0 (double))
(double j1 (double))
(double erf (double))
(double erfc (double))
(double lgamma (double)))
"m" "math.h")
;;; getenv and setenv
(c-define '(char* getenv (char*)))
(c-define '(int setenv (char* char* int)))
;;; file-exists? and delete-file
(define file-exists? (let () ; define F_OK and access only within this let
(c-define '((int F_OK) (int access (char* int))) "" "unistd.h")
(lambda (arg) (= (access arg F_OK) 0))))
(define delete-file (let ()
(c-define '(int unlink (char*)) "" "unistd.h")
(lambda (file) (= (unlink file) 0)))) ; 0=success
;;; examples from Snd:
(c-define '(char* version_info ()) "" "snd.h" "-I.")
(c-define '(mus_float_t mus_degrees_to_radians (mus_float_t)) "" "snd.h" "-I.")
(c-define '(snd_info* any_selected_sound ()) "" "snd.h" "-I.")
(c-define '(void select_channel (snd_info* int)) "" "snd.h" "-I.")
(c-define '(((graph_style_t int) (GRAPH_LINES GRAPH_DOTS GRAPH_FILLED GRAPH_DOTS_AND_LINES GRAPH_LOLLIPOPS))
(void set_graph_style ((graph_style_t int))))
"" "snd.h" "-I.")
;;; getcwd, strftime
(c-define '(char* getcwd (char* size_t)) "" "unistd.h")
(c-define (list '(void* calloc (size_t size_t))
'(void free (void*))
'(void time (time_t*)) ; ignore returned value
(list (symbol "struct tm*") 'localtime '(time_t*))
(list 'size_t 'strftime (list 'char* 'size_t 'char* (symbol "struct tm*"))))
"" "time.h")
&gt; (let ((p (calloc 1 8))
(str (make-string 32)))
(time p)
(strftime str 32 "%a %d-%b-%Y %H:%M %Z" (localtime p))
(free p)
str)
<em class="gray">"Sat 11-Aug-2012 08:55 PDT\x00 "</em>
;;; opendir, read_dir, closedir
(c-define '((int closedir (DIR*))
(DIR* opendir (char*))
(in-C "static char *read_dir(DIR *p) \
{ \
struct dirent *dirp; \
dirp = readdir(p); \
if (!dirp) return(NULL); \
return(dirp-&gt;d_name); \
}")
(char* read_dir (DIR*)))
"" '("sys/types.h" "dirent.h"))
</pre>
<p>C-init inserts its string argument into the initialization section of
the module. In libgsl.scm, for example,
</p>
<pre class="inserted">(C-init "gsl_set_error_handler(g_gsl_error);")
</pre>
<p>inserts that string (as C code) into libgsl_s7.c toward the beginning of the
libgsl_s7_init function (line 42346 or so).
</p>
<p>When compiling, for the simple cases above, include "-ldl -Wl,-export-dynamic" in the gcc command. So the first
FFI example is built (this is in Linux):
</p>
<pre class="indented">gcc -c s7.c -I.
gcc -o ex1 ex1.c s7.o -lm -I. -ldl -Wl,-export-dynamic
ex1
&gt; (load "cload.scm")
<em class="gray">c-define-1</em>
&gt; (c-define '(double j0 (double)) "m" "math.h")
<em class="gray">#t</em>
&gt; (m:j0 0.5)
<em class="gray">0.93846980724081</em>
</pre>
<p>See also r7rs.scm, libc.scm, libgsl.scm, libm.scm, libdl.scm, and libgdbm.scm.
libutf8proc.scm exists, but I have not tested it at all.
</p>
<p>The default in the lib*.scm files is to use the C name as the Scheme name.
This collides with (for example) the widespread use of "-", rather than "_" in Scheme, but
I have found it much more straightforward to stick with one name. In cases like
libgsl there are thousands of names, all documented at great length
by the C name. Anyone who wants to use these functions has to start with the C name.
If they are forced to fuss with some annoying Schemely translation of it,
the only sane response is: "forget it! I'll do it in C".
</p>
<div class="indented" id="libc">
<pre>(require libc.scm)
(define (copy-file in-file out-file)
(with-let (sublet *libc* :in-file in-file :out-file out-file)
;; the rest of the function body exists in the *libc* environment, with the
;; function parameters in-file and out-file imported, so, for example,
;; (open ...) below calls the libc function open.
(let ((infd (open in-file O_RDONLY 0)))
(if (= infd -1)
(error 'io-error "can't find ~S~%" in-file)
(let ((outfd (creat out-file #o666)))
(if (= outfd -1)
(begin
(close infd)
(error 'io-error "can't open ~S~%" out-file))
(let* ((BUF_SIZE 1024)
(buf (malloc BUF_SIZE)))
(do ((num (read infd buf BUF_SIZE) (read infd buf BUF_SIZE)))
((or (&lt;= num 0)
(not (= (write outfd buf num) num)))))
(close outfd)
(close infd)
(free buf)
out-file)))))))
(define (glob-&gt;list pattern)
(with-let (sublet *libc* :pattern pattern)
(let ((g (glob.make)))
(glob pattern 0 g)
(let ((res (glob.gl_pathv g)))
(globfree g)
res))))
;; now (load "*.scm") is (for-each load (glob-&gt;list "*.scm"))
;; a couple regular expression examples
(with-let (sublet *libc*)
(define rg (regex.make))
(regcomp rg "a.b" 0)
(display (regexec rg "acb" 0 0)) (newline) ; 0 = match
(regfree rg))
(with-let (sublet *libc*)
(define rg (regex.make))
(let ((res (regcomp rg "colou\\?r" 0)))
(if (not (zero? res))
(error 'regex-error "~S: ~S~%" "colou\\?r" (regerror res rg)))
(set! res (regexec rg "The color green" 1 0))
(display res) (newline) ; #i(4 9) = match start/end
(regfree rg)))
</pre>
</div>
<div class="indented" id="libgsl">
<pre>(require libgsl.scm)
(define (eigenvalues M)
(with-let (sublet *libgsl* :M M)
(let* ((len (sqrt (length M)))
(gm (gsl_matrix_alloc len len))
(m (float-vector-&gt;gsl_matrix M gm))
(evl (gsl_vector_complex_alloc len))
(evc (gsl_matrix_complex_alloc len len))
(w (gsl_eigen_nonsymmv_alloc len)))
(gsl_eigen_nonsymmv m evl evc w)
(gsl_eigen_nonsymmv_free w)
(gsl_eigen_nonsymmv_sort evl evc GSL_EIGEN_SORT_ABS_DESC)
(let ((vals (make-vector len)))
(do ((i 0 (+ i 1)))
((= i len))
(set! (vals i) (gsl_vector_complex_get evl i)))
(gsl_matrix_free gm)
(gsl_vector_complex_free evl)
(gsl_matrix_complex_free evc)
vals))))
</pre>
</div>
<p>We can use gdbm (or better yet, mdb), the :readable argument to object-&gt;string, and
the fallback methods in the environments to create name-spaces (lets) with billions of
thread-safe local variables, which can be saved and communicated between s7 runs:
</p>
<div class="indented" id="libgdbm">
<pre>(require libgdbm.scm)
(with-let *libgdbm*
(define *db*
(openlet
(inlet :file (gdbm_open "test.gdbm" 1024 GDBM_NEWDB #o664
(lambda (str) (format *stderr* "gdbm error: ~S~%" str)))
:let-ref-fallback (lambda (obj sym)
(eval-string (gdbm_fetch (obj 'file) (symbol-&gt;string sym))))
:let-set-fallback (lambda (obj sym val)
(gdbm_store (obj 'file)
(symbol-&gt;string sym)
(object-&gt;string val :readable)
GDBM_REPLACE)
val)
:make-iterator (lambda (obj)
(let ((key #f)
(length (lambda (obj) (expt 2 20))))
(#_make-iterator
(let ((+iterator+ #t))
(openlet
(lambda ()
(if key
(set! key (gdbm_nextkey (obj 'file) (cdr key)))
(set! key (gdbm_firstkey (obj 'file))))
(if (pair? key)
(cons (string-&gt;symbol (car key))
(eval-string (gdbm_fetch (obj 'file) (car key))))
key))))))))))
(set! (*db* 'str) "123") ; add a variable named 'str with the value "123"
(set! (*db* 'int) 432)
(with-let *db*
(+ int (length str))) ; -&gt; 435
(map values *db*) ; -&gt; '((str . "123") (int . 432))
(gdbm_close (*db* 'file)))
</pre>
<!-- the overhead of using a data-base is not negligible, although libgdbm is probably not the fastest.
A bare set/ref 200000 times is .002 secs, via let-ref is .005, but via the data-base is .184.
Presumably thread globals won't be in inner loops, so even this looks ok, say 1 million / second.
-->
</div>
<div class="header" id="case"><h4>case.scm</h4></div>
<p>case.scm has case*, a compatible extension of case that includes pattern matching.
<code>(case* selector ((target...) body) ...)</code> uses equivalent? to match the
selector to the targets, evaluating the body associated with the first matching target.
If a target is a list or vector, the elements are checked item by item.
Each target, or element of a list or vector can be a pattern. Patterns
are of the form #&lt;whatever&gt; (undefined constants from s7's pointer of view).
A pattern can be:
</p>
<pre><ul>
<li>#&lt;&gt; any expr matches
</li><li>#&lt;func&gt; expr matches if (func expr)
</li><li>#&lt;label:func&gt; expr matches as above, expr is saved under "label"
</li><li>#&lt;label:&gt; any expr matches, and is saved under "label"
</li><li>#&lt;label&gt; expr must match the value saved under "label"
</li><li>#&lt;...&gt; skip exprs covered by the ellipsis
</li><li>#&lt;label:...&gt; skip as above, saved skipped exprs under "label" as a quoted list.
</li><li> a pattern can have any number of labelled ellipses overall,
</li><li> but just one unnamed ellipsis, and only one ellipsis per pair or vector
</li><li>#&lt;label,func:...&gt; a labelled ellipsis which matches if (func expr); expr is the ellipsis list,
</li><li> label is not optional in this case
</li><li>#&lt;"regexp"&gt; pattern is a regular expression to be matched against a string
</li><li>#&lt;label:"regexp"&gt; a labelled regular expression
</li></ul>
</pre>
<p>If a label occurs in the result body, the expression it labelled is substituted for it.
</p>
<pre class="indented">(case* x ((3.14) 'pi)) ; returns 'pi if x is 3.14
(case* x ((#&lt;symbol?&gt;))) ; returns #t if x is a symbol
(case* x (((+ 1 #&lt;symbol?&gt;)))) ; matches any list of the form '(+ 1 x) or any symbol in place of "x"
(case* x (((#&lt;symbol?&gt; #&lt;e1:...&gt; (+ #&lt;e2:...&gt;)))
(append #&lt;e1&gt; #&lt;e2&gt;))) ; passed '(a b c d (+ 1 2)), returns '(b c d 1 2)
(case* x ((#&lt;"a.b"&gt;))) ; matches if x is a string "a.b" where "." matches anything
(define (palindrome? x)
(case* x
((() (#&lt;&gt;))
#t)
(((#&lt;start:&gt; #&lt;middle:...&gt; #&lt;start&gt;))
(palindrome? #&lt;middle&gt;))
(else #f)))
</pre>
<p>case*'s matching function can be used anywhere.
</p>
<pre class="indented">(let ((match? ((funclet 'case*) 'case*-match?))) ; this is case*'s matcher
(match? x '(+ #&lt;symbol?&gt; 1))) ; returns #t if x is of the form '(+ x 1), x any symbol
(define match+
(let ((match? ((funclet 'case*) 'case*-match?))
(labels ((funclet 'case*) 'case*-labels))) ; these are the labels and their values
(macro (arg)
(cond ((null? arg) ())
((match? arg '(+ #&lt;a:&gt; (+ #&lt;b:...&gt;))) `(+ ,(labels 'a) ,@(cadr (labels 'b))))
((match? arg '(+ #&lt;&gt; #&lt;&gt;)) `(+ ,@(cdr arg)))
(else #f)))))
;; (match+ (+ 1 (+ 2 3))) -&gt; 6
</pre>
<p>See case.scm and s7test.scm for many more examples, including let and hash-table matching.
</p>
<div class="header" id="debug"><h4>debug.scm</h4></div>
<p>debug.scm has various debugging aids, including trace, break, watch, and a C-style stacktrace.
The *s7* field 'debug controls when these are active, and to what extent.
</p>
<p>(<em class="emdef">trace</em> func) adds a tracepoint to the start of the function or macro func.
(trace) adds such tracing to every subsequently defined function or macro.
(<em class="emdef">untrace</em>) turns off tracing; (untrace func) turns off tracing in func.
Similarly (<em class="emdef">break</em> func) places a breakpoint at the start of func,
(<em class="emdef">unbreak</em> func) removes it. (unbreak) removes all breakpoints.
When a breakpoint is encountered, you are placed in a repl at
that point; type C-q to continue. To trace a variable, use
(<em class="emdef">watch</em> var). watch reports whenever var is set! and
(<em class="emdef">unwatch</em> var) removes the watchpoint.
</p>
<p>
These trace, break and watchpoints are active
only if <em class="emdef">(*s7* 'debug)</em> is positive. If 'debug is 1, existing traces
and breaks are active, but no new ones are added by s7. If 'debug
is 2, s7 adds tracepoints to any subsequently defined (i.e. named) functions and macros.
If (*s7* 'debug) is 3, unnamed functions are also traced.
If any tracing is enabled, you can get a C-style stacktrace by
setting (<em class="emdef">debug-stack</em>) to a vector, then
call (<em class="emdef">show-debug-stack</em>) to see the calls.
</p>
<p>
Besides debug-stack, debug.scm also defines the convenience functions
<em class="emdef">debug-function</em>, <em class="emdef">debug-port</em>, and
<em class="emdef">debug-repl</em>. debug-port is the debugger's
output port, debug-repl drops into a repl at a breakpoint, and debug-function
provides a way to customize the debugger's behavior.
The function <em class="emdef">debug-frame</em> provides a way to examine local variables.
</p>
<pre class="indented">&gt; (define (g1 x) (+ x 1))
<em class="gray">g1</em>
&gt; (trace g1) ; this loads debug.scm unless it's already loaded, and sets (*s7* 'debug) to 1
<em class="gray">g1</em>
&gt; (procedure-source g1) ; you can add trace-in explicitly (rather than call trace)
<em class="gray">(lambda (x) (trace-in (curlet)) (+ x 1))</em>
&gt; (g1 2)
<em class="gray">(g1 2)</em> ; file/line info is included if relevant
<em class="gray"> -&gt; 3
3</em>
&gt; (break g1)
<em class="gray">g1</em>
&gt; (g1 3)
<em class="gray">break: (g1 3), C-q to exit break
break&gt; x</em> ; this is a repl started at the breakpoint
<em class="gray">3</em>
break&gt; -&gt; 4 ; C-q typed to exit the break
<em class="gray">4</em>
&gt; (define var 1)
<em class="gray">1</em>
&gt; (watch var)
<em class="gray">#&lt;lambda (s v ...)&gt;</em> ; this is the new setter for 'var
&gt; (set! var 3)
<em class="gray">var set! to 3
3</em>
&gt; (define lt (inlet 'a 3))
<em class="gray">(inlet 'a 3)</em>
&gt; (watch (lt 'a))
<em class="gray">#&lt;lambda (s v ...)&gt;</em>
&gt; (set! (lt 'a) 12)
<em class="gray">let-set! a to 12
12</em>
</pre>
<p>s7test.scm has more examples</p>
<div class="header" id="lint"><h4>lint.scm</h4></div>
<p>lint tries to find errors or infelicities in your scheme code.
To try it:
</p>
<pre class="indented">(load "lint.scm")
(lint "some-code.scm")
</pre>
<p>
There are several
variables at the start of lint.scm to control additional output:
</p>
<pre class="indented">*report-unused-parameters*
*report-unused-top-level-functions*
*report-shadowed-variables*
*report-undefined-identifiers*
*report-multiply-defined-top-level-functions*
*report-nested-if*
*report-short-branch*
*report-one-armed-if*
*report-loaded-files*
*report-any-!-as-setter*
*report-doc-strings*
*report-func-as-arg-arity-mismatch*
*report-bad-variable-names*
*report-built-in-functions-used-as-variables*
*report-forward-functions*
*report-sloppy-assoc*
*report-bloated-arg*
*report-clobbered-function-return-value*
*report-boolean-functions-misbehaving*
*report-repeated-code-fragments*
*report-quasiquote-rewrites*
*report-combinable-lets*
</pre>
<p>See lint.scm for more about these switches. You can also extend lint by adding your own code,
or adding your functions to lint's tables, or most simply by defining signatures for your functions.
snd-lint.scm performs these tasks for Snd. (lint exports its innards via *lint*).
lint is not smart about functions defined outside the current file, so *report-undefined-variables*
sometimes gets confused. You'll sometimes get a recommendation from lint that is less than helpful; nobody's perfect.
If it's actually wrong, and not just wrong-headed, please let me know.
Also in lint.scm are html-lint and C-lint. html-lint reads an HTML file looking for
Scheme code. If any is found, it runs s7 and then lint over it, reporting troubles.
Similarly C-lint reads a C file looking for s7_eval_c_string and running lint over its string.
</p>
<div class="header" id="schemerepl"><h4>repl.scm and nrepl.scm</h4></div>
<p>There are three or four repls included with s7.
repl.scm is a textual interface based on vt-100 codes, and nrepl.scm is an
improvement of repl.scm based on the notcurses-core library.
I'll treat repl.scm first, then discuss how nrepl differs from it.
</p>
<div class="separator"></div>
<p>repl.scm implements a repl using vt100 codes and libc.scm. It includes
symbol and filename completion, a history buffer, paren matching,
indentation, multi-line edits, and a debugger window.
To move around in the history buffer, use M-p, M-n or M-. (C-p and C-n are used to move the cursor in the current expression).
You can change the keymap or the prompt; all the repl functions are
accessible through the *repl* environment. One field is 'repl-let which
gives you access to all the repl's internal variables and functions.
Another is 'top-level-let, normally (sublet (rootlet)), which is the environment in
which the repl's evaluation takes place. You can reset the repl back to its
starting point with: <code>(set! (*repl* 'top-level-let) (sublet (rootlet)))</code>.
You can save the current repl state via <code>((*repl* 'save-repl))</code>, and
restore it later via <code>((*repl* 'restore-repl))</code>. The repl's saved state
is in the file save.repl, or the filename can be passed as an argument to save-repl and restore-repl.
</p>
<p>There is one annoying consequence of using (sublet (rootlet)) for the top-level let:
if you define something in the repl, then load a file that expects to find that thing
in rootlet, it won't:
</p>
<pre class="indented">&lt;1&gt; (define (func x) (+ x 1)) ; func is in (sublet (rootlet))
<em class="gray">func</em>
&lt;2&gt; (load "use-func.scm") ; file contents: (display (func 3))
<em class="red">error</em><em class="gray">: unbound variable func</em>
</pre>
<p>To get around this, either load the file into curlet: <code>(load "use-func.scm" (curlet))</code>,
or use with-let to place the definition in rootlet: <code>(with-let (curlet) (define (func x) (+ x 1)))</code>.
</p>
<p>Meta keys are a problem on the Mac. You can use ESC instead, but that requires
super-human capacities. I stared at replacement control keys, and nothing seemed
right. If you can think of something, it's easy to define replacements: see repl.scm
which has a small table of mappings.
</p>
<p>To run the repl, either build s7 with the compiler flag -DWITH_MAIN,
or conjure up a wrapper:
</p>
<pre class="indented">#include "s7.h"
int main(int argc, char **argv)
{
s7_scheme *sc;
sc = s7_init();
s7_load(sc, "repl.scm");
s7_eval_c_string(sc, "((*repl* 'run))");
return(0);
}
/* gcc -o r r.c s7.o -Wl,-export-dynamic -lm -I. -ldl
*/
</pre>
<p>Besides evaluating s7 expressions, like any repl,
you can also type shell commands just as in a shell:
</p>
<pre class="indented">&lt;1&gt; pwd
<em class="gray">/home/bil/cl</em>
&lt;2&gt; cd ..
<em class="gray">/home/bil</em>
&lt;3&gt; date
<em class="gray">Wed 15-Apr-2015 17:32:24 PDT</em>
</pre>
<p>In most cases, these are handled through *unbound-variable-hook*, checked using "command -v", then passed
to the underlying shell via the system function.
</p>
<p>The prompt is set by the function (*repl* 'prompt). It gets one argument,
the current line number, and should set the prompt string and its length.
</p>
<pre class="indented">(set! (*repl* 'prompt) (lambda (num)
(with-let (*repl* 'repl-let)
(set! prompt-string "scheme&gt; ")
(set! prompt-length (length prompt-string)))))
</pre>
<p>or, to use the red lambda example mentioned earlier:
</p>
<pre class="indented">(set! (*repl* 'prompt)
(lambda (num)
(with-let (*repl* 'repl-let)
(set! prompt-string (bold (red (string #\xce #\xbb #\&gt; #\space))))
(set! prompt-length 3)))) ; until we get unicode length calc
</pre>
<p>The line number provides a quick way to move around in the history buffer.
To get a previous line without laboriously typing M-p over and over,
simply type the line number (without control or meta bits), then M-.
In some CL repls, the special variable '* holds the last value computed.
In repl.scm, each value is retained in variables of the form '&lt;n&gt; where n
is the number shown in the prompt.
</p>
<pre class="indented">&lt;1&gt; (+ 1 2)
<em class="gray">3</em>
&lt;2&gt; (* &lt;1&gt; 2)
<em class="gray">6</em>
</pre>
<p>Here is an example of adding to the keymap:
</p>
<pre class="indented">(set! ((*repl* 'keymap) (integer-&gt;char 17)) ; C-q to quit and return to caller
(lambda (c)
(set! ((*repl* 'repl-let) 'all-done) #t)))
</pre>
<p>To access the meta keys (in the keymap), use a string:
<code>((*repl* 'keymap) (string #\escape #\p))</code>; this is Meta-p which normally accesses
the history buffer.
</p>
<p>You can call the repl from other code, poke around in the current environment (or whatever),
then return to the caller:
</p>
<pre class="indented">(load "repl.scm")
(define (drop-into-repl e)
(let ((C-q (integer-&gt;char 17))) ; we'll use the C-q example above to get out
(let ((old-C-q ((*repl* 'keymap) C-q))
(old-top-level (*repl* 'top-level-let)))
(dynamic-wind
(lambda ()
(set! (*repl* 'top-level-let) e)
(set! ((*repl* 'keymap) C-q)
(lambda (c)
(set! ((*repl* 'repl-let) 'all-done) #t))))
(lambda ()
((<em class="red">*repl* 'run</em>))) ; run the repl
(lambda ()
(set! (*repl* 'top-level-let) old-top-level)
(set! ((*repl* 'keymap) C-q) old-C-q))))))
(let ((x 32))
(format *stderr* "x: ~A~%" x)
(<em class="red">drop-into-repl</em> (curlet))
(format *stderr* "now x: ~A~%" x))
</pre>
<p>Now load that code and:
</p>
<pre class="indented">x: 32
&lt;1&gt; x
<em class="gray">32</em>
&lt;2&gt; (set! x 91)
<em class="gray">91</em>
&lt;3&gt; x
<em class="gray">91</em>
&lt;4&gt; now x: 91 ; here I typed C-q at the prompt
</pre>
<p>Another possibility:
</p>
<pre class="indented">(set! (hook-functions *error-hook*)
(list (lambda (hook)
(apply format *stderr* (hook 'data))
(newline *stderr*)
(drop-into-repl (owlet)))))
</pre>
<p>See the end of repl.scm for more examples. See nrepl.scm for a better version of repl.scm.
Eventually I'll probably retire repl.scm.
</p>
<!--
(load "/home/bil/test/sndlib/libsndlib.so" (inlet 'init_func 's7_init_sndlib))
-->
<div class="separator"></div>
<p>Unlike repl, nrepl has support for the mouse, traversable, scrollable, and resizable panes, built-in ties to
lint.scm, debug.scm, and profile.scm, and various other enhancements.
Since it includes all the libc, notcurses FFI code, and nrepl.scm at compile-time, there
are no problems running it anywhere. To build nrepl:
</p>
<pre class="indented">gcc -o nrepl s7.c -O2 -I. -Wl,-export-dynamic -lm -ldl -DWITH_MAIN -DWITH_NOTCURSES -lnotcurses-core
</pre>
<p>If that is too easy, try:
</p>
<pre class="indented">gcc -c s7.c -O2 -I. -Wl,-export-dynamic -lm -ldl
gcc -o nrepl nrepl.c s7.o -lnotcurses-core -lm -I. -ldl
</pre>
<p>notcurses_s7.c needs version 2.1.6 or later of the notcurses-core library.
</p>
<p>When nrepl starts up, you have a prompt at the top of the terminal, and a status box
at the bottom. You can move around the pane via C-p and C-n (no need for repl.scm's M-p and M-n),
or use the mouse, or the arrow keys. If you set and hit a break point, a new pane is
opened in the context of the break. C-q exits the break. At the top pane, C-q exits
nrepl. C-g gives you another prompt (handy if you're caught in a messed up expression).
If you're in an infinite loop, C-c interrupts it. Otherwise C-c exits nrepl.
</p>
<p>If you set up a watcher (via watch from debug.scm), the action is displayed in
a separate box in the upper right corner. The status box displays all sorts of
informative and helpful messages, or at least that is the intent. lint.scm
checks each expression you type, and various hooks let you know when things
are happening in the background. Function signatures are posted there as well.
</p>
<p>You can customize nrepl in basically the same ways as described above for repl.scm.
You can also place these in a file named ".nrepl"; if nrepl finds such a file, it
loads it automatically at startup.
</p>
<br>
<blockquote>
<div class="indented">
<p>After months of intense typing,
Insanely declares his labors complete. "Ship it!" says Mr Big, and hands
him a million stock options. Meanwhile, in the basement behind an old door
with the eldritch sign "eep Ou", in a labyrinth of pounding pipes and fluorescent lights,
a forgotten shadow types <code>(lint "insanely-great.scm")</code>...
</p>
</div>
</blockquote>
</body></html>