prosperon/source/engine/thirdparty/Chipmunk2D/src/cpArbiter.c

499 lines
14 KiB
C
Raw Normal View History

2022-01-19 16:43:21 -06:00
/* Copyright (c) 2013 Scott Lembcke and Howling Moon Software
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "chipmunk/chipmunk_private.h"
// TODO: make this generic so I can reuse it for constraints also.
static inline void
unthreadHelper(cpArbiter *arb, cpBody *body)
{
struct cpArbiterThread *thread = cpArbiterThreadForBody(arb, body);
cpArbiter *prev = thread->prev;
cpArbiter *next = thread->next;
if(prev){
cpArbiterThreadForBody(prev, body)->next = next;
} else if(body->arbiterList == arb) {
// IFF prev is NULL and body->arbiterList == arb, is arb at the head of the list.
// This function may be called for an arbiter that was never in a list.
// In that case, we need to protect it from wiping out the body->arbiterList pointer.
body->arbiterList = next;
}
if(next) cpArbiterThreadForBody(next, body)->prev = prev;
thread->prev = NULL;
thread->next = NULL;
}
void
cpArbiterUnthread(cpArbiter *arb)
{
unthreadHelper(arb, arb->body_a);
unthreadHelper(arb, arb->body_b);
}
cpBool cpArbiterIsFirstContact(const cpArbiter *arb)
{
return arb->state == CP_ARBITER_STATE_FIRST_COLLISION;
}
cpBool cpArbiterIsRemoval(const cpArbiter *arb)
{
return arb->state == CP_ARBITER_STATE_INVALIDATED;
}
int cpArbiterGetCount(const cpArbiter *arb)
{
// Return 0 contacts if we are in a separate callback.
return (arb->state < CP_ARBITER_STATE_CACHED ? arb->count : 0);
}
cpVect
cpArbiterGetNormal(const cpArbiter *arb)
{
return cpvmult(arb->n, arb->swapped ? -1.0f : 1.0);
}
cpVect
cpArbiterGetPointA(const cpArbiter *arb, int i)
{
cpAssertHard(0 <= i && i < cpArbiterGetCount(arb), "Index error: The specified contact index is invalid for this arbiter");
return cpvadd(arb->body_a->p, arb->contacts[i].r1);
}
cpVect
cpArbiterGetPointB(const cpArbiter *arb, int i)
{
cpAssertHard(0 <= i && i < cpArbiterGetCount(arb), "Index error: The specified contact index is invalid for this arbiter");
return cpvadd(arb->body_b->p, arb->contacts[i].r2);
}
cpFloat
cpArbiterGetDepth(const cpArbiter *arb, int i)
{
cpAssertHard(0 <= i && i < cpArbiterGetCount(arb), "Index error: The specified contact index is invalid for this arbiter");
struct cpContact *con = &arb->contacts[i];
return cpvdot(cpvadd(cpvsub(con->r2, con->r1), cpvsub(arb->body_b->p, arb->body_a->p)), arb->n);
}
cpContactPointSet
cpArbiterGetContactPointSet(const cpArbiter *arb)
{
cpContactPointSet set;
set.count = cpArbiterGetCount(arb);
cpBool swapped = arb->swapped;
cpVect n = arb->n;
set.normal = (swapped ? cpvneg(n) : n);
for(int i=0; i<set.count; i++){
// Contact points are relative to body CoGs;
cpVect p1 = cpvadd(arb->body_a->p, arb->contacts[i].r1);
cpVect p2 = cpvadd(arb->body_b->p, arb->contacts[i].r2);
set.points[i].pointA = (swapped ? p2 : p1);
set.points[i].pointB = (swapped ? p1 : p2);
set.points[i].distance = cpvdot(cpvsub(p2, p1), n);
}
return set;
}
void
cpArbiterSetContactPointSet(cpArbiter *arb, cpContactPointSet *set)
{
int count = set->count;
cpAssertHard(count == arb->count, "The number of contact points cannot be changed.");
cpBool swapped = arb->swapped;
arb->n = (swapped ? cpvneg(set->normal) : set->normal);
for(int i=0; i<count; i++){
// Convert back to CoG relative offsets.
cpVect p1 = set->points[i].pointA;
cpVect p2 = set->points[i].pointB;
arb->contacts[i].r1 = cpvsub(swapped ? p2 : p1, arb->body_a->p);
arb->contacts[i].r2 = cpvsub(swapped ? p1 : p2, arb->body_b->p);
}
}
cpVect
cpArbiterTotalImpulse(const cpArbiter *arb)
{
struct cpContact *contacts = arb->contacts;
cpVect n = arb->n;
cpVect sum = cpvzero;
for(int i=0, count=cpArbiterGetCount(arb); i<count; i++){
struct cpContact *con = &contacts[i];
sum = cpvadd(sum, cpvrotate(n, cpv(con->jnAcc, con->jtAcc)));
}
return (arb->swapped ? sum : cpvneg(sum));
return cpvzero;
}
cpFloat
cpArbiterTotalKE(const cpArbiter *arb)
{
cpFloat eCoef = (1 - arb->e)/(1 + arb->e);
cpFloat sum = 0.0;
struct cpContact *contacts = arb->contacts;
for(int i=0, count=cpArbiterGetCount(arb); i<count; i++){
struct cpContact *con = &contacts[i];
cpFloat jnAcc = con->jnAcc;
cpFloat jtAcc = con->jtAcc;
sum += eCoef*jnAcc*jnAcc/con->nMass + jtAcc*jtAcc/con->tMass;
}
return sum;
}
cpBool
cpArbiterIgnore(cpArbiter *arb)
{
arb->state = CP_ARBITER_STATE_IGNORE;
return cpFalse;
}
cpFloat
cpArbiterGetRestitution(const cpArbiter *arb)
{
return arb->e;
}
void
cpArbiterSetRestitution(cpArbiter *arb, cpFloat restitution)
{
arb->e = restitution;
}
cpFloat
cpArbiterGetFriction(const cpArbiter *arb)
{
return arb->u;
}
void
cpArbiterSetFriction(cpArbiter *arb, cpFloat friction)
{
arb->u = friction;
}
cpVect
cpArbiterGetSurfaceVelocity(cpArbiter *arb)
{
return cpvmult(arb->surface_vr, arb->swapped ? -1.0f : 1.0);
}
void
cpArbiterSetSurfaceVelocity(cpArbiter *arb, cpVect vr)
{
arb->surface_vr = cpvmult(vr, arb->swapped ? -1.0f : 1.0);
}
cpDataPointer
cpArbiterGetUserData(const cpArbiter *arb)
{
return arb->data;
}
void
cpArbiterSetUserData(cpArbiter *arb, cpDataPointer userData)
{
arb->data = userData;
}
void
cpArbiterGetShapes(const cpArbiter *arb, cpShape **a, cpShape **b)
{
if(arb->swapped){
(*a) = (cpShape *)arb->b;
(*b) = (cpShape *)arb->a;
} else {
(*a) = (cpShape *)arb->a;
(*b) = (cpShape *)arb->b;
}
}
void cpArbiterGetBodies(const cpArbiter *arb, cpBody **a, cpBody **b)
{
CP_ARBITER_GET_SHAPES(arb, shape_a, shape_b);
(*a) = shape_a->body;
(*b) = shape_b->body;
}
cpBool
cpArbiterCallWildcardBeginA(cpArbiter *arb, cpSpace *space)
{
cpCollisionHandler *handler = arb->handlerA;
return handler->beginFunc(arb, space, handler->userData);
}
cpBool
cpArbiterCallWildcardBeginB(cpArbiter *arb, cpSpace *space)
{
cpCollisionHandler *handler = arb->handlerB;
arb->swapped = !arb->swapped;
cpBool retval = handler->beginFunc(arb, space, handler->userData);
arb->swapped = !arb->swapped;
return retval;
}
cpBool
cpArbiterCallWildcardPreSolveA(cpArbiter *arb, cpSpace *space)
{
cpCollisionHandler *handler = arb->handlerA;
return handler->preSolveFunc(arb, space, handler->userData);
}
cpBool
cpArbiterCallWildcardPreSolveB(cpArbiter *arb, cpSpace *space)
{
cpCollisionHandler *handler = arb->handlerB;
arb->swapped = !arb->swapped;
cpBool retval = handler->preSolveFunc(arb, space, handler->userData);
arb->swapped = !arb->swapped;
return retval;
}
void
cpArbiterCallWildcardPostSolveA(cpArbiter *arb, cpSpace *space)
{
cpCollisionHandler *handler = arb->handlerA;
handler->postSolveFunc(arb, space, handler->userData);
}
void
cpArbiterCallWildcardPostSolveB(cpArbiter *arb, cpSpace *space)
{
cpCollisionHandler *handler = arb->handlerB;
arb->swapped = !arb->swapped;
handler->postSolveFunc(arb, space, handler->userData);
arb->swapped = !arb->swapped;
}
void
cpArbiterCallWildcardSeparateA(cpArbiter *arb, cpSpace *space)
{
cpCollisionHandler *handler = arb->handlerA;
handler->separateFunc(arb, space, handler->userData);
}
void
cpArbiterCallWildcardSeparateB(cpArbiter *arb, cpSpace *space)
{
cpCollisionHandler *handler = arb->handlerB;
arb->swapped = !arb->swapped;
handler->separateFunc(arb, space, handler->userData);
arb->swapped = !arb->swapped;
}
cpArbiter*
cpArbiterInit(cpArbiter *arb, cpShape *a, cpShape *b)
{
arb->handler = NULL;
arb->swapped = cpFalse;
arb->handler = NULL;
arb->handlerA = NULL;
arb->handlerB = NULL;
arb->e = 0.0f;
arb->u = 0.0f;
arb->surface_vr = cpvzero;
arb->count = 0;
arb->contacts = NULL;
arb->a = a; arb->body_a = a->body;
arb->b = b; arb->body_b = b->body;
arb->thread_a.next = NULL;
arb->thread_b.next = NULL;
arb->thread_a.prev = NULL;
arb->thread_b.prev = NULL;
arb->stamp = 0;
arb->state = CP_ARBITER_STATE_FIRST_COLLISION;
arb->data = NULL;
return arb;
}
static inline cpCollisionHandler *
cpSpaceLookupHandler(cpSpace *space, cpCollisionType a, cpCollisionType b, cpCollisionHandler *defaultValue)
{
cpCollisionType types[] = {a, b};
cpCollisionHandler *handler = (cpCollisionHandler *)cpHashSetFind(space->collisionHandlers, CP_HASH_PAIR(a, b), types);
return (handler ? handler : defaultValue);
}
void
cpArbiterUpdate(cpArbiter *arb, struct cpCollisionInfo *info, cpSpace *space)
{
const cpShape *a = info->a, *b = info->b;
// For collisions between two similar primitive types, the order could have been swapped since the last frame.
arb->a = a; arb->body_a = a->body;
arb->b = b; arb->body_b = b->body;
// Iterate over the possible pairs to look for hash value matches.
for(int i=0; i<info->count; i++){
struct cpContact *con = &info->arr[i];
// r1 and r2 store absolute offsets at init time.
// Need to convert them to relative offsets.
con->r1 = cpvsub(con->r1, a->body->p);
con->r2 = cpvsub(con->r2, b->body->p);
// Cached impulses are not zeroed at init time.
con->jnAcc = con->jtAcc = 0.0f;
for(int j=0; j<arb->count; j++){
struct cpContact *old = &arb->contacts[j];
// This could trigger false positives, but is fairly unlikely nor serious if it does.
if(con->hash == old->hash){
// Copy the persistant contact information.
con->jnAcc = old->jnAcc;
con->jtAcc = old->jtAcc;
}
}
}
arb->contacts = info->arr;
arb->count = info->count;
arb->n = info->n;
arb->e = a->e * b->e;
arb->u = a->u * b->u;
cpVect surface_vr = cpvsub(b->surfaceV, a->surfaceV);
arb->surface_vr = cpvsub(surface_vr, cpvmult(info->n, cpvdot(surface_vr, info->n)));
cpCollisionType typeA = info->a->type, typeB = info->b->type;
cpCollisionHandler *defaultHandler = &space->defaultHandler;
cpCollisionHandler *handler = arb->handler = cpSpaceLookupHandler(space, typeA, typeB, defaultHandler);
// Check if the types match, but don't swap for a default handler which use the wildcard for type A.
cpBool swapped = arb->swapped = (typeA != handler->typeA && handler->typeA != CP_WILDCARD_COLLISION_TYPE);
if(handler != defaultHandler || space->usesWildcards){
// The order of the main handler swaps the wildcard handlers too. Uffda.
arb->handlerA = cpSpaceLookupHandler(space, (swapped ? typeB : typeA), CP_WILDCARD_COLLISION_TYPE, &cpCollisionHandlerDoNothing);
arb->handlerB = cpSpaceLookupHandler(space, (swapped ? typeA : typeB), CP_WILDCARD_COLLISION_TYPE, &cpCollisionHandlerDoNothing);
}
// mark it as new if it's been cached
if(arb->state == CP_ARBITER_STATE_CACHED) arb->state = CP_ARBITER_STATE_FIRST_COLLISION;
}
void
cpArbiterPreStep(cpArbiter *arb, cpFloat dt, cpFloat slop, cpFloat bias)
{
cpBody *a = arb->body_a;
cpBody *b = arb->body_b;
cpVect n = arb->n;
cpVect body_delta = cpvsub(b->p, a->p);
for(int i=0; i<arb->count; i++){
struct cpContact *con = &arb->contacts[i];
// Calculate the mass normal and mass tangent.
con->nMass = 1.0f/k_scalar(a, b, con->r1, con->r2, n);
con->tMass = 1.0f/k_scalar(a, b, con->r1, con->r2, cpvperp(n));
// Calculate the target bias velocity.
cpFloat dist = cpvdot(cpvadd(cpvsub(con->r2, con->r1), body_delta), n);
con->bias = -bias*cpfmin(0.0f, dist + slop)/dt;
con->jBias = 0.0f;
// Calculate the target bounce velocity.
con->bounce = normal_relative_velocity(a, b, con->r1, con->r2, n)*arb->e;
}
}
void
cpArbiterApplyCachedImpulse(cpArbiter *arb, cpFloat dt_coef)
{
if(cpArbiterIsFirstContact(arb)) return;
cpBody *a = arb->body_a;
cpBody *b = arb->body_b;
cpVect n = arb->n;
for(int i=0; i<arb->count; i++){
struct cpContact *con = &arb->contacts[i];
cpVect j = cpvrotate(n, cpv(con->jnAcc, con->jtAcc));
apply_impulses(a, b, con->r1, con->r2, cpvmult(j, dt_coef));
}
}
// TODO: is it worth splitting velocity/position correction?
void
cpArbiterApplyImpulse(cpArbiter *arb)
{
cpBody *a = arb->body_a;
cpBody *b = arb->body_b;
cpVect n = arb->n;
cpVect surface_vr = arb->surface_vr;
cpFloat friction = arb->u;
for(int i=0; i<arb->count; i++){
struct cpContact *con = &arb->contacts[i];
cpFloat nMass = con->nMass;
cpVect r1 = con->r1;
cpVect r2 = con->r2;
cpVect vb1 = cpvadd(a->v_bias, cpvmult(cpvperp(r1), a->w_bias));
cpVect vb2 = cpvadd(b->v_bias, cpvmult(cpvperp(r2), b->w_bias));
cpVect vr = cpvadd(relative_velocity(a, b, r1, r2), surface_vr);
cpFloat vbn = cpvdot(cpvsub(vb2, vb1), n);
cpFloat vrn = cpvdot(vr, n);
cpFloat vrt = cpvdot(vr, cpvperp(n));
cpFloat jbn = (con->bias - vbn)*nMass;
cpFloat jbnOld = con->jBias;
con->jBias = cpfmax(jbnOld + jbn, 0.0f);
cpFloat jn = -(con->bounce + vrn)*nMass;
cpFloat jnOld = con->jnAcc;
con->jnAcc = cpfmax(jnOld + jn, 0.0f);
cpFloat jtMax = friction*con->jnAcc;
cpFloat jt = -vrt*con->tMass;
cpFloat jtOld = con->jtAcc;
con->jtAcc = cpfclamp(jtOld + jt, -jtMax, jtMax);
apply_bias_impulses(a, b, r1, r2, cpvmult(n, con->jBias - jbnOld));
apply_impulses(a, b, r1, r2, cpvrotate(n, cpv(con->jnAcc - jnOld, con->jtAcc - jtOld)));
}
}