prosperon/source/engine/thirdparty/Chipmunk2D/src/cpPolyline.c

653 lines
17 KiB
C
Raw Normal View History

2022-01-19 16:43:21 -06:00
// Copyright 2013 Howling Moon Software. All rights reserved.
// See http://chipmunk2d.net/legal.php for more information.
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <math.h>
#include "chipmunk/chipmunk_private.h"
#include "chipmunk/cpPolyline.h"
static inline int Next(int i, int count){return (i+1)%count;}
//MARK: Polylines
#define DEFAULT_POLYLINE_CAPACITY 16
static int
cpPolylineSizeForCapacity(int capacity)
{
return sizeof(cpPolyline) + capacity*sizeof(cpVect);
}
static cpPolyline *
cpPolylineMake(int capacity)
{
capacity = (capacity > DEFAULT_POLYLINE_CAPACITY ? capacity : DEFAULT_POLYLINE_CAPACITY);
cpPolyline *line = (cpPolyline *)cpcalloc(1, cpPolylineSizeForCapacity(capacity));
line->count = 0;
line->capacity = capacity;
return line;
}
static cpPolyline *
cpPolylineMake2(int capacity, cpVect a, cpVect b)
{
cpPolyline *line = cpPolylineMake(capacity);
line->count = 2;
line->verts[0] = a;
line->verts[1] = b;
return line;
}
static cpPolyline *
cpPolylineShrink(cpPolyline *line)
{
line->capacity = line->count;
return (cpPolyline*) cprealloc(line, cpPolylineSizeForCapacity(line->count));
}
void
cpPolylineFree(cpPolyline *line)
{
cpfree(line);
}
// Grow the allocated memory for a polyline.
static cpPolyline *
cpPolylineGrow(cpPolyline *line, int count)
{
line->count += count;
int capacity = line->capacity;
while(line->count > capacity) capacity *= 2;
if(line->capacity < capacity){
line->capacity = capacity;
line = (cpPolyline*) cprealloc(line, cpPolylineSizeForCapacity(capacity));
}
return line;
}
// Push v onto the end of line.
static cpPolyline *
cpPolylinePush(cpPolyline *line, cpVect v)
{
int count = line->count;
line = cpPolylineGrow(line, 1);
line->verts[count] = v;
return line;
}
// Push v onto the beginning of line.
static cpPolyline *
cpPolylineEnqueue(cpPolyline *line, cpVect v)
{
// TODO could optimize this to grow in both directions.
// Probably doesn't matter though.
int count = line->count;
line = cpPolylineGrow(line, 1);
memmove(line->verts + 1, line->verts, count*sizeof(cpVect));
line->verts[0] = v;
return line;
}
// Returns true if the polyline starts and ends with the same vertex.
cpBool
cpPolylineIsClosed(cpPolyline *line)
{
return (line->count > 1 && cpveql(line->verts[0], line->verts[line->count-1]));
}
// Check if a cpPolyline is longer than a certain length
// Takes a range which can wrap around if the polyline is looped.
static cpBool
cpPolylineIsShort(cpVect *points, int count, int start, int end, cpFloat min)
{
cpFloat length = 0.0f;
for(int i=start; i!=end; i=Next(i, count)){
length += cpvdist(points[i], points[Next(i, count)]);
if(length > min) return cpFalse;
}
return cpTrue;
}
//MARK: Polyline Simplification
static inline cpFloat
Sharpness(cpVect a, cpVect b, cpVect c)
{
// TODO could speed this up by caching the normals instead of calculating each twice.
return cpvdot(cpvnormalize(cpvsub(a, b)), cpvnormalize(cpvsub(c, b)));
}
// Join similar adjacent line segments together. Works well for hard edged shapes.
// 'tol' is the minimum anglular difference in radians of a vertex.
cpPolyline *
cpPolylineSimplifyVertexes(cpPolyline *line, cpFloat tol)
{
cpPolyline *reduced = cpPolylineMake2(0, line->verts[0], line->verts[1]);
cpFloat minSharp = -cpfcos(tol);
for(int i=2; i<line->count; i++){
cpVect vert = line->verts[i];
cpFloat sharp = Sharpness(reduced->verts[reduced->count - 2], reduced->verts[reduced->count - 1], vert);
if(sharp <= minSharp){
reduced->verts[reduced->count - 1] = vert;
} else {
reduced = cpPolylinePush(reduced, vert);
}
}
if(
cpPolylineIsClosed(line) &&
Sharpness(reduced->verts[reduced->count - 2], reduced->verts[0], reduced->verts[1]) < minSharp
){
reduced->verts[0] = reduced->verts[reduced->count - 2];
reduced->count--;
}
// TODO shrink
return reduced;
}
// Recursive function used by cpPolylineSimplifyCurves().
static cpPolyline *
DouglasPeucker(
cpVect *verts, cpPolyline *reduced,
int length, int start, int end,
cpFloat min, cpFloat tol
){
// Early exit if the points are adjacent
if((end - start + length)%length < 2) return reduced;
cpVect a = verts[start];
cpVect b = verts[end];
// Check if the length is below the threshold
if(cpvnear(a, b, min) && cpPolylineIsShort(verts, length, start, end, min)) return reduced;
// Find the maximal vertex to split and recurse on
cpFloat max = 0.0;
int maxi = start;
cpVect n = cpvnormalize(cpvperp(cpvsub(b, a)));
cpFloat d = cpvdot(n, a);
for(int i=Next(start, length); i!=end; i=Next(i, length)){
cpFloat dist = fabs(cpvdot(n, verts[i]) - d);
if(dist > max){
max = dist;
maxi = i;
}
}
if(max > tol){
reduced = DouglasPeucker(verts, reduced, length, start, maxi, min, tol);
reduced = cpPolylinePush(reduced, verts[maxi]);
reduced = DouglasPeucker(verts, reduced, length, maxi, end, min, tol);
}
return reduced;
}
// Recursively reduce the vertex count on a polyline. Works best for smooth shapes.
// 'tol' is the maximum error for the reduction.
// The reduced polyline will never be farther than this distance from the original polyline.
cpPolyline *
cpPolylineSimplifyCurves(cpPolyline *line, cpFloat tol)
{
cpPolyline *reduced = cpPolylineMake(line->count);
cpFloat min = tol/2.0f;
if(cpPolylineIsClosed(line)){
int start, end;
cpLoopIndexes(line->verts, line->count - 1, &start, &end);
reduced = cpPolylinePush(reduced, line->verts[start]);
reduced = DouglasPeucker(line->verts, reduced, line->count - 1, start, end, min, tol);
reduced = cpPolylinePush(reduced, line->verts[end]);
reduced = DouglasPeucker(line->verts, reduced, line->count - 1, end, start, min, tol);
reduced = cpPolylinePush(reduced, line->verts[start]);
} else {
reduced = cpPolylinePush(reduced, line->verts[0]);
reduced = DouglasPeucker(line->verts, reduced, line->count, 0, line->count - 1, min, tol);
reduced = cpPolylinePush(reduced, line->verts[line->count - 1]);
}
return cpPolylineShrink(reduced);
}
//MARK: Polyline Sets
cpPolylineSet *
cpPolylineSetAlloc(void)
{
return (cpPolylineSet *)cpcalloc(1, sizeof(cpPolylineSet));
}
cpPolylineSet *
cpPolylineSetInit(cpPolylineSet *set)
{
set->count = 0;
set->capacity = 8;
set->lines = (cpPolyline**) cpcalloc(set->capacity, sizeof(cpPolyline));
return set;
}
cpPolylineSet *
cpPolylineSetNew(void)
{
return cpPolylineSetInit(cpPolylineSetAlloc());
}
void
cpPolylineSetDestroy(cpPolylineSet *set, cpBool freePolylines)
{
if(freePolylines){
for(int i=0; i<set->count; i++){
cpPolylineFree(set->lines[i]);
}
}
cpfree(set->lines);
}
void
cpPolylineSetFree(cpPolylineSet *set, cpBool freePolylines)
{
if(set){
cpPolylineSetDestroy(set, freePolylines);
cpfree(set);
}
}
// Find the polyline that ends with v.
static int
cpPolylineSetFindEnds(cpPolylineSet *set, cpVect v){
int count = set->count;
cpPolyline **lines = set->lines;
for(int i=0; i<count; i++){
cpPolyline *line = lines[i];
if(cpveql(line->verts[line->count - 1], v)) return i;
}
return -1;
}
// Find the polyline that starts with v.
static int
cpPolylineSetFindStarts(cpPolylineSet *set, cpVect v){
int count = set->count;
cpPolyline **lines = set->lines;
for(int i=0; i<count; i++){
if(cpveql(lines[i]->verts[0], v)) return i;
}
return -1;
}
// Add a new polyline to a polyline set.
static void
cpPolylineSetPush(cpPolylineSet *set, cpPolyline *line)
{
// grow set
set->count++;
if(set->count > set->capacity){
set->capacity *= 2;
set->lines = (cpPolyline**) cprealloc(set->lines, set->capacity*sizeof(cpPolyline));
}
set->lines[set->count - 1] = line;
}
// Add a new polyline to a polyline set.
static void
cpPolylineSetAdd(cpPolylineSet *set, cpVect v0, cpVect v1)
{
cpPolylineSetPush(set, cpPolylineMake2(DEFAULT_POLYLINE_CAPACITY, v0, v1));
}
// Join two cpPolylines in a polyline set together.
static void
cpPolylineSetJoin(cpPolylineSet *set, int before, int after)
{
cpPolyline *lbefore = set->lines[before];
cpPolyline *lafter = set->lines[after];
// append
int count = lbefore->count;
lbefore = cpPolylineGrow(lbefore, lafter->count);
memmove(lbefore->verts + count, lafter->verts, lafter->count*sizeof(cpVect));
set->lines[before] = lbefore;
// delete lafter
set->count--;
cpPolylineFree(set->lines[after]);
set->lines[after] = set->lines[set->count];
}
// Add a segment to a polyline set.
// A segment will either start a new polyline, join two others, or add to or loop an existing polyline.
void
cpPolylineSetCollectSegment(cpVect v0, cpVect v1, cpPolylineSet *lines)
{
int before = cpPolylineSetFindEnds(lines, v0);
int after = cpPolylineSetFindStarts(lines, v1);
if(before >= 0 && after >= 0){
if(before == after){
// loop by pushing v1 onto before
lines->lines[before] = cpPolylinePush(lines->lines[before], v1);
} else {
// join before and after
cpPolylineSetJoin(lines, before, after);
}
} else if(before >= 0){
// push v1 onto before
lines->lines[before] = cpPolylinePush(lines->lines[before], v1);
} else if(after >= 0){
// enqueue v0 onto after
lines->lines[after] = cpPolylineEnqueue(lines->lines[after], v0);
} else {
// create new line from v0 and v1
cpPolylineSetAdd(lines, v0, v1);
}
}
//MARK: Convex Hull Functions
cpPolyline *
cpPolylineToConvexHull(cpPolyline *line, cpFloat tol)
{
cpPolyline *hull = cpPolylineMake(line->count + 1);
hull->count = cpConvexHull(line->count, line->verts, hull->verts, NULL, tol);
hull = cpPolylinePush(hull, hull->verts[0]);
return cpPolylineShrink(hull);
}
//MARK: Approximate Concave Decompostition
struct Notch {
int i;
cpFloat d;
cpVect v;
cpVect n;
};
static cpFloat
FindSteiner(int count, cpVect *verts, struct Notch notch)
{
cpFloat min = INFINITY;
cpFloat feature = -1.0;
for(int i=1; i<count-1; i++){
int index = (notch.i + i)%count;
cpVect seg_a = verts[index];
cpVect seg_b = verts[Next(index, count)];
cpFloat thing_a = cpvcross(notch.n, cpvsub(seg_a, notch.v));
cpFloat thing_b = cpvcross(notch.n, cpvsub(seg_b, notch.v));
if(thing_a*thing_b <= 0.0){
cpFloat t = thing_a/(thing_a - thing_b);
cpFloat dist = cpvdot(notch.n, cpvsub(cpvlerp(seg_a, seg_b, t), notch.v));
if(dist >= 0.0 && dist <= min){
min = dist;
feature = index + t;
}
}
}
return feature;
}
//static cpFloat
//FindSteiner2(cpVect *verts, int count, struct Notch notch)
//{
// cpVect a = verts[(notch.i + count - 1)%count];
// cpVect b = verts[(notch.i + 1)%count];
// cpVect n = cpvnormalize(cpvadd(cpvnormalize(cpvsub(notch.v, a)), cpvnormalize(cpvsub(notch.v, b))));
//
// cpFloat min = INFINITY;
// cpFloat feature = -1.0;
//
// for(int i=1; i<count-1; i++){
// int index = (notch.i + i)%count;
//
// cpVect seg_a = verts[index];
// cpVect seg_b = verts[Next(index, count)];
//
// cpFloat thing_a = cpvcross(n, cpvsub(seg_a, notch.v));
// cpFloat thing_b = cpvcross(n, cpvsub(seg_b, notch.v));
// if(thing_a*thing_b <= 0.0){
// cpFloat t = thing_a/(thing_a - thing_b);
// cpFloat dist = cpvdot(n, cpvsub(cpvlerp(seg_a, seg_b, t), notch.v));
//
// if(dist >= 0.0 && dist <= min){
// min = dist;
// feature = index + t;
// }
// }
// }
//
// cpAssertSoft(feature >= 0.0, "No closest features detected. This is likely due to a self intersecting polygon.");
// return feature;
//}
//struct Range {cpFloat min, max;};
//static inline struct Range
//clip_range(cpVect delta_a, cpVect delta_b, cpVect clip)
//{
// cpFloat da = cpvcross(delta_a, clip);
// cpFloat db = cpvcross(delta_b, clip);
// cpFloat clamp = da/(da - db);
// if(da > db){
// return (struct Range){-INFINITY, clamp};
// } else if(da < db){
// return (struct Range){clamp, INFINITY};
// } else {
// return (struct Range){-INFINITY, INFINITY};
// }
//}
//
//static cpFloat
//FindSteiner3(cpVect *verts, int count, struct Notch notch)
//{
// cpFloat min = INFINITY;
// cpFloat feature = -1.0;
//
// cpVect support_a = verts[(notch.i - 1 + count)%count];
// cpVect support_b = verts[(notch.i + 1)%count];
//
// cpVect clip_a = cpvlerp(support_a, support_b, 0.1);
// cpVect clip_b = cpvlerp(support_b, support_b, 0.9);
//
// for(int i=1; i<count - 1; i++){
// int index = (notch.i + i)%count;
// cpVect seg_a = verts[index];
// cpVect seg_b = verts[Next(index, count)];
//
// cpVect delta_a = cpvsub(seg_a, notch.v);
// cpVect delta_b = cpvsub(seg_b, notch.v);
//
// // Ignore if the segment faces away from the point.
// if(cpvcross(delta_b, delta_a) > 0.0){
// struct Range range1 = clip_range(delta_a, delta_b, cpvsub(notch.v, clip_a));
// struct Range range2 = clip_range(delta_a, delta_b, cpvsub(clip_b, notch.v));
//
// cpFloat min_t = cpfmax(0.0, cpfmax(range1.min, range2.min));
// cpFloat max_t = cpfmin(1.0, cpfmin(range1.max, range2.max));
//
// // Ignore if the segment has been completely clipped away.
// if(min_t < max_t){
// cpVect seg_delta = cpvsub(seg_b, seg_a);
// cpFloat closest_t = cpfclamp(cpvdot(seg_delta, cpvsub(notch.v, seg_a))/cpvlengthsq(seg_delta), min_t, max_t);
// cpVect closest = cpvlerp(seg_a, seg_b, closest_t);
//
// cpFloat dist = cpvdistsq(notch.v, closest);
// if(dist < min){
// min = dist;
// feature = index + closest_t;
// }
// }
// }
// }
//
// cpAssertWarn(feature >= 0.0, "Internal Error: No closest features detected.");
// return feature;
//}
//static cpBool
//VertexUnobscured(int count, cpVect *verts, int index, int notch_i)
//{
// cpVect v = verts[notch_i];
// cpVect n = cpvnormalize(cpvsub(verts[index], v));
//
// for(int i=0; i<count; i++){
// if(i == index || i == Next(i, count) || i == notch_i || i == Next(notch_i, count)) continue;
//
// cpVect seg_a = verts[i];
// cpVect seg_b = verts[Next(i, count)];
//
// cpFloat thing_a = cpvcross(n, cpvsub(seg_a, v));
// cpFloat thing_b = cpvcross(n, cpvsub(seg_b, v));
// if(thing_a*thing_b <= 0.0) return cpTrue;
// }
//
// return cpFalse;
//}
//
//static cpFloat
//FindSteiner4(int count, cpVect *verts, struct Notch notch, cpFloat *convexity)
//{
// cpFloat min = INFINITY;
// cpFloat feature = -1.0;
//
// for(int i=Next(notch.b, count); i!=notch.a; i=Next(i, count)){
// cpVect v = verts[i];
// cpFloat weight = (1.0 + 0.1*convexity[i])/(1.0*cpvdist(notch.v, v));
//
// if(weight <= min && VertexUnobscured(count, verts, i, notch.i)){
// min = weight;
// feature = i;
// }
// }
//
// cpAssertSoft(feature >= 0.0, "No closest features detected. This is likely due to a self intersecting polygon.");
// return feature;
//}
static struct Notch
DeepestNotch(int count, cpVect *verts, int hullCount, cpVect *hullVerts, int first, cpFloat tol)
{
struct Notch notch = {};
int j = Next(first, count);
for(int i=0; i<hullCount; i++){
cpVect a = hullVerts[i];
cpVect b = hullVerts[Next(i, hullCount)];
// TODO use a cross check instead?
cpVect n = cpvnormalize(cpvrperp(cpvsub(a, b)));
cpFloat d = cpvdot(n, a);
cpVect v = verts[j];
while(!cpveql(v, b)){
cpFloat depth = cpvdot(n, v) - d;
if(depth > notch.d){
notch.d = depth;
notch.i = j;
notch.v = v;
notch.n = n;
}
j = Next(j, count);
v = verts[j];
}
j = Next(j, count);
}
return notch;
}
static inline int IMAX(int a, int b){return (a > b ? a : b);}
static void
ApproximateConcaveDecomposition(cpVect *verts, int count, cpFloat tol, cpPolylineSet *set)
{
int first;
cpVect *hullVerts = (cpVect*) alloca(count*sizeof(cpVect));
int hullCount = cpConvexHull(count, verts, hullVerts, &first, 0.0);
if(hullCount != count){
struct Notch notch = DeepestNotch(count, verts, hullCount, hullVerts, first, tol);
if(notch.d > tol){
cpFloat steiner_it = FindSteiner(count, verts, notch);
if(steiner_it >= 0.0){
int steiner_i = (int)steiner_it;
cpVect steiner = cpvlerp(verts[steiner_i], verts[Next(steiner_i, count)], steiner_it - steiner_i);
// Vertex counts NOT including the steiner point.
int sub1_count = (steiner_i - notch.i + count)%count + 1;
int sub2_count = count - (steiner_i - notch.i + count)%count;
cpVect *scratch = (cpVect*) alloca((IMAX(sub1_count, sub2_count) + 1)*sizeof(cpVect));
for(int i=0; i<sub1_count; i++) scratch[i] = verts[(notch.i + i)%count];
scratch[sub1_count] = steiner;
ApproximateConcaveDecomposition(scratch, sub1_count + 1, tol, set);
for(int i=0; i<sub2_count; i++) scratch[i] = verts[(steiner_i + 1 + i)%count];
scratch[sub2_count] = steiner;
ApproximateConcaveDecomposition(scratch, sub2_count + 1, tol, set);
return;
}
}
}
cpPolyline *hull = cpPolylineMake(hullCount + 1);
memcpy(hull->verts, hullVerts, hullCount*sizeof(cpVect));
hull->verts[hullCount] = hullVerts[0];
hull->count = hullCount + 1;
cpPolylineSetPush(set, hull);
}
cpPolylineSet *
cpPolylineConvexDecomposition_BETA(cpPolyline *line, cpFloat tol)
{
cpAssertSoft(cpPolylineIsClosed(line), "Cannot decompose an open polygon.");
cpAssertSoft(cpAreaForPoly(line->count, line->verts, 0.0) >= 0.0, "Winding is backwards. (Are you passing a hole?)");
cpPolylineSet *set = cpPolylineSetNew();
ApproximateConcaveDecomposition(line->verts, line->count - 1, tol, set);
return set;
}