2022-07-08 13:54:45 -05:00
|
|
|
/*
|
|
|
|
* COPYRIGHT
|
|
|
|
*
|
|
|
|
* liir - Recursive digital filter functions
|
|
|
|
* Copyright (C) 2007 Exstrom Laboratories LLC
|
|
|
|
*
|
|
|
|
* This program is free software; you can redistribute it and/or modify
|
|
|
|
* it under the terms of the GNU General Public License as published by
|
|
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
|
|
* (at your option) any later version.
|
|
|
|
*
|
|
|
|
* This program is distributed in the hope that it will be useful,
|
|
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
|
|
* GNU General Public License for more details.
|
|
|
|
*
|
|
|
|
* A copy of the GNU General Public License is available on the internet at:
|
|
|
|
*
|
|
|
|
* http://www.gnu.org/copyleft/gpl.html
|
|
|
|
*
|
|
|
|
* or you can write to:
|
|
|
|
*
|
|
|
|
* The Free Software Foundation, Inc.
|
|
|
|
* 675 Mass Ave
|
|
|
|
* Cambridge, MA 02139, USA
|
|
|
|
*
|
|
|
|
* You can contact Exstrom Laboratories LLC via Email at:
|
|
|
|
*
|
|
|
|
* stefan(AT)exstrom.com
|
|
|
|
*
|
|
|
|
* or you can write to:
|
|
|
|
*
|
|
|
|
* Exstrom Laboratories LLC
|
|
|
|
* P.O. Box 7651
|
|
|
|
* Longmont, CO 80501, USA
|
|
|
|
*
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include <stdlib.h>
|
|
|
|
#include <stdio.h>
|
|
|
|
#include <string.h>
|
|
|
|
#include <math.h>
|
|
|
|
#include "limits.h"
|
|
|
|
#include "iir.h"
|
|
|
|
#include "dsp.h"
|
2022-07-10 13:04:24 -05:00
|
|
|
#include "log.h"
|
2022-07-08 13:54:45 -05:00
|
|
|
|
|
|
|
/**********************************************************************
|
|
|
|
binomial_mult - multiplies a series of binomials together and returns
|
|
|
|
the coefficients of the resulting polynomial.
|
|
|
|
|
|
|
|
The multiplication has the following form:
|
|
|
|
|
|
|
|
(x+p[0])*(x+p[1])*...*(x+p[n-1])
|
|
|
|
|
|
|
|
The p[i] coefficients are assumed to be complex and are passed to the
|
|
|
|
function as a pointer to an array of doubles of length 2n.
|
|
|
|
|
|
|
|
The resulting polynomial has the following form:
|
|
|
|
|
|
|
|
x^n + a[0]*x^n-1 + a[1]*x^n-2 + ... +a[n-2]*x + a[n-1]
|
|
|
|
|
|
|
|
The a[i] coefficients can in general be complex but should in most
|
|
|
|
cases turn out to be real. The a[i] coefficients are returned by the
|
|
|
|
function as a pointer to an array of doubles of length 2n. Storage
|
|
|
|
for the array is allocated by the function and should be freed by the
|
|
|
|
calling program when no longer needed.
|
|
|
|
|
|
|
|
Function arguments:
|
|
|
|
|
|
|
|
n - The number of binomials to multiply
|
|
|
|
p - Pointer to an array of doubles where p[2i] (i=0...n-1) is
|
|
|
|
assumed to be the real part of the coefficient of the ith binomial
|
|
|
|
and p[2i+1] is assumed to be the imaginary part. The overall size
|
|
|
|
of the array is then 2n.
|
|
|
|
*/
|
|
|
|
|
|
|
|
double *binomial_mult( int n, double *p )
|
|
|
|
{
|
|
|
|
int i, j;
|
|
|
|
double *a;
|
|
|
|
|
|
|
|
a = (double *)calloc( 2 * n, sizeof(double) );
|
|
|
|
if( a == NULL ) return( NULL );
|
|
|
|
|
|
|
|
for( i = 0; i < n; ++i )
|
|
|
|
{
|
|
|
|
for( j = i; j > 0; --j )
|
|
|
|
{
|
|
|
|
a[2*j] += p[2*i] * a[2*(j-1)] - p[2*i+1] * a[2*(j-1)+1];
|
|
|
|
a[2*j+1] += p[2*i] * a[2*(j-1)+1] + p[2*i+1] * a[2*(j-1)];
|
|
|
|
}
|
|
|
|
a[0] += p[2*i];
|
|
|
|
a[1] += p[2*i+1];
|
|
|
|
}
|
|
|
|
return( a );
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/**********************************************************************
|
|
|
|
trinomial_mult - multiplies a series of trinomials together and returns
|
|
|
|
the coefficients of the resulting polynomial.
|
|
|
|
|
|
|
|
The multiplication has the following form:
|
|
|
|
|
|
|
|
(x^2 + b[0]x + c[0])*(x^2 + b[1]x + c[1])*...*(x^2 + b[n-1]x + c[n-1])
|
|
|
|
|
|
|
|
The b[i] and c[i] coefficients are assumed to be complex and are passed
|
|
|
|
to the function as a pointers to arrays of doubles of length 2n. The real
|
|
|
|
part of the coefficients are stored in the even numbered elements of the
|
|
|
|
array and the imaginary parts are stored in the odd numbered elements.
|
|
|
|
|
|
|
|
The resulting polynomial has the following form:
|
|
|
|
|
|
|
|
x^2n + a[0]*x^2n-1 + a[1]*x^2n-2 + ... +a[2n-2]*x + a[2n-1]
|
|
|
|
|
|
|
|
The a[i] coefficients can in general be complex but should in most cases
|
|
|
|
turn out to be real. The a[i] coefficients are returned by the function as
|
|
|
|
a pointer to an array of doubles of length 4n. The real and imaginary
|
|
|
|
parts are stored, respectively, in the even and odd elements of the array.
|
|
|
|
Storage for the array is allocated by the function and should be freed by
|
|
|
|
the calling program when no longer needed.
|
|
|
|
|
|
|
|
Function arguments:
|
|
|
|
|
|
|
|
n - The number of trinomials to multiply
|
|
|
|
b - Pointer to an array of doubles of length 2n.
|
|
|
|
c - Pointer to an array of doubles of length 2n.
|
|
|
|
*/
|
|
|
|
|
|
|
|
double *trinomial_mult( int n, double *b, double *c )
|
|
|
|
{
|
|
|
|
int i, j;
|
|
|
|
double *a;
|
|
|
|
|
|
|
|
a = (double *)calloc( 4 * n, sizeof(double) );
|
|
|
|
if( a == NULL ) return( NULL );
|
|
|
|
|
|
|
|
a[2] = c[0];
|
|
|
|
a[3] = c[1];
|
|
|
|
a[0] = b[0];
|
|
|
|
a[1] = b[1];
|
|
|
|
|
|
|
|
for( i = 1; i < n; ++i )
|
|
|
|
{
|
|
|
|
a[2*(2*i+1)] += c[2*i]*a[2*(2*i-1)] - c[2*i+1]*a[2*(2*i-1)+1];
|
|
|
|
a[2*(2*i+1)+1] += c[2*i]*a[2*(2*i-1)+1] + c[2*i+1]*a[2*(2*i-1)];
|
|
|
|
|
|
|
|
for( j = 2*i; j > 1; --j )
|
|
|
|
{
|
|
|
|
a[2*j] += b[2*i] * a[2*(j-1)] - b[2*i+1] * a[2*(j-1)+1] +
|
|
|
|
c[2*i] * a[2*(j-2)] - c[2*i+1] * a[2*(j-2)+1];
|
|
|
|
a[2*j+1] += b[2*i] * a[2*(j-1)+1] + b[2*i+1] * a[2*(j-1)] +
|
|
|
|
c[2*i] * a[2*(j-2)+1] + c[2*i+1] * a[2*(j-2)];
|
|
|
|
}
|
|
|
|
|
|
|
|
a[2] += b[2*i] * a[0] - b[2*i+1] * a[1] + c[2*i];
|
|
|
|
a[3] += b[2*i] * a[1] + b[2*i+1] * a[0] + c[2*i+1];
|
|
|
|
a[0] += b[2*i];
|
|
|
|
a[1] += b[2*i+1];
|
|
|
|
}
|
|
|
|
|
|
|
|
return( a );
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/**********************************************************************
|
|
|
|
dcof_bwlp - calculates the d coefficients for a butterworth lowpass
|
|
|
|
filter. The coefficients are returned as an array of doubles.
|
|
|
|
|
|
|
|
*/
|
|
|
|
|
|
|
|
double *dcof_bwlp( int n, double fcf )
|
|
|
|
{
|
|
|
|
int k; // loop variables
|
|
|
|
double theta; // M_PI * fcf / 2.0
|
|
|
|
double st; // sine of theta
|
|
|
|
double ct; // cosine of theta
|
|
|
|
double parg; // pole angle
|
|
|
|
double sparg; // sine of the pole angle
|
|
|
|
double cparg; // cosine of the pole angle
|
|
|
|
double a; // workspace variable
|
|
|
|
double *rcof; // binomial coefficients
|
|
|
|
double *dcof; // dk coefficients
|
|
|
|
|
|
|
|
rcof = (double *)calloc( 2 * n, sizeof(double) );
|
|
|
|
if( rcof == NULL ) return( NULL );
|
|
|
|
|
|
|
|
theta = M_PI * fcf;
|
|
|
|
st = sin(theta);
|
|
|
|
ct = cos(theta);
|
|
|
|
|
|
|
|
for( k = 0; k < n; ++k )
|
|
|
|
{
|
|
|
|
parg = M_PI * (double)(2*k+1)/(double)(2*n);
|
|
|
|
sparg = sin(parg);
|
|
|
|
cparg = cos(parg);
|
|
|
|
a = 1.0 + st*sparg;
|
|
|
|
rcof[2*k] = -ct/a;
|
|
|
|
rcof[2*k+1] = -st*cparg/a;
|
|
|
|
}
|
|
|
|
|
|
|
|
dcof = binomial_mult( n, rcof );
|
|
|
|
free( rcof );
|
|
|
|
|
|
|
|
dcof[1] = dcof[0];
|
|
|
|
dcof[0] = 1.0;
|
|
|
|
for( k = 3; k <= n; ++k )
|
|
|
|
dcof[k] = dcof[2*k-2];
|
|
|
|
return( dcof );
|
|
|
|
}
|
|
|
|
|
|
|
|
/**********************************************************************
|
|
|
|
dcof_bwhp - calculates the d coefficients for a butterworth highpass
|
|
|
|
filter. The coefficients are returned as an array of doubles.
|
|
|
|
|
|
|
|
*/
|
|
|
|
|
|
|
|
double *dcof_bwhp( int n, double fcf )
|
|
|
|
{
|
|
|
|
return( dcof_bwlp( n, fcf ) );
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/**********************************************************************
|
|
|
|
dcof_bwbp - calculates the d coefficients for a butterworth bandpass
|
|
|
|
filter. The coefficients are returned as an array of doubles.
|
|
|
|
|
|
|
|
*/
|
|
|
|
|
|
|
|
double *dcof_bwbp( int n, double f1f, double f2f )
|
|
|
|
{
|
|
|
|
int k; // loop variables
|
|
|
|
double theta; // M_PI * (f2f - f1f) / 2.0
|
|
|
|
double cp; // cosine of phi
|
|
|
|
double st; // sine of theta
|
|
|
|
double ct; // cosine of theta
|
|
|
|
double s2t; // sine of 2*theta
|
|
|
|
double c2t; // cosine 0f 2*theta
|
|
|
|
double *rcof; // z^-2 coefficients
|
|
|
|
double *tcof; // z^-1 coefficients
|
|
|
|
double *dcof; // dk coefficients
|
|
|
|
double parg; // pole angle
|
|
|
|
double sparg; // sine of pole angle
|
|
|
|
double cparg; // cosine of pole angle
|
|
|
|
double a; // workspace variables
|
|
|
|
|
|
|
|
cp = cos(M_PI * (f2f + f1f) / 2.0);
|
|
|
|
theta = M_PI * (f2f - f1f) / 2.0;
|
|
|
|
st = sin(theta);
|
|
|
|
ct = cos(theta);
|
|
|
|
s2t = 2.0*st*ct; // sine of 2*theta
|
|
|
|
c2t = 2.0*ct*ct - 1.0; // cosine of 2*theta
|
|
|
|
|
|
|
|
rcof = (double *)calloc( 2 * n, sizeof(double) );
|
|
|
|
tcof = (double *)calloc( 2 * n, sizeof(double) );
|
|
|
|
|
|
|
|
for( k = 0; k < n; ++k )
|
|
|
|
{
|
|
|
|
parg = M_PI * (double)(2*k+1)/(double)(2*n);
|
|
|
|
sparg = sin(parg);
|
|
|
|
cparg = cos(parg);
|
|
|
|
a = 1.0 + s2t*sparg;
|
|
|
|
rcof[2*k] = c2t/a;
|
|
|
|
rcof[2*k+1] = s2t*cparg/a;
|
|
|
|
tcof[2*k] = -2.0*cp*(ct+st*sparg)/a;
|
|
|
|
tcof[2*k+1] = -2.0*cp*st*cparg/a;
|
|
|
|
}
|
|
|
|
|
|
|
|
dcof = trinomial_mult( n, tcof, rcof );
|
|
|
|
free( tcof );
|
|
|
|
free( rcof );
|
|
|
|
|
|
|
|
dcof[1] = dcof[0];
|
|
|
|
dcof[0] = 1.0;
|
|
|
|
for( k = 3; k <= 2*n; ++k )
|
|
|
|
dcof[k] = dcof[2*k-2];
|
|
|
|
return( dcof );
|
|
|
|
}
|
|
|
|
|
|
|
|
/**********************************************************************
|
|
|
|
dcof_bwbs - calculates the d coefficients for a butterworth bandstop
|
|
|
|
filter. The coefficients are returned as an array of doubles.
|
|
|
|
|
|
|
|
*/
|
|
|
|
|
|
|
|
double *dcof_bwbs( int n, double f1f, double f2f )
|
|
|
|
{
|
|
|
|
int k; // loop variables
|
|
|
|
double theta; // M_PI * (f2f - f1f) / 2.0
|
|
|
|
double cp; // cosine of phi
|
|
|
|
double st; // sine of theta
|
|
|
|
double ct; // cosine of theta
|
|
|
|
double s2t; // sine of 2*theta
|
|
|
|
double c2t; // cosine 0f 2*theta
|
|
|
|
double *rcof; // z^-2 coefficients
|
|
|
|
double *tcof; // z^-1 coefficients
|
|
|
|
double *dcof; // dk coefficients
|
|
|
|
double parg; // pole angle
|
|
|
|
double sparg; // sine of pole angle
|
|
|
|
double cparg; // cosine of pole angle
|
|
|
|
double a; // workspace variables
|
|
|
|
|
|
|
|
cp = cos(M_PI * (f2f + f1f) / 2.0);
|
|
|
|
theta = M_PI * (f2f - f1f) / 2.0;
|
|
|
|
st = sin(theta);
|
|
|
|
ct = cos(theta);
|
|
|
|
s2t = 2.0*st*ct; // sine of 2*theta
|
|
|
|
c2t = 2.0*ct*ct - 1.0; // cosine 0f 2*theta
|
|
|
|
|
|
|
|
rcof = (double *)calloc( 2 * n, sizeof(double) );
|
|
|
|
tcof = (double *)calloc( 2 * n, sizeof(double) );
|
|
|
|
|
|
|
|
for( k = 0; k < n; ++k )
|
|
|
|
{
|
|
|
|
parg = M_PI * (double)(2*k+1)/(double)(2*n);
|
|
|
|
sparg = sin(parg);
|
|
|
|
cparg = cos(parg);
|
|
|
|
a = 1.0 + s2t*sparg;
|
|
|
|
rcof[2*k] = c2t/a;
|
|
|
|
rcof[2*k+1] = -s2t*cparg/a;
|
|
|
|
tcof[2*k] = -2.0*cp*(ct+st*sparg)/a;
|
|
|
|
tcof[2*k+1] = 2.0*cp*st*cparg/a;
|
|
|
|
}
|
|
|
|
|
|
|
|
dcof = trinomial_mult( n, tcof, rcof );
|
|
|
|
free( tcof );
|
|
|
|
free( rcof );
|
|
|
|
|
|
|
|
dcof[1] = dcof[0];
|
|
|
|
dcof[0] = 1.0;
|
|
|
|
for( k = 3; k <= 2*n; ++k )
|
|
|
|
dcof[k] = dcof[2*k-2];
|
|
|
|
return( dcof );
|
|
|
|
}
|
|
|
|
|
|
|
|
/**********************************************************************
|
|
|
|
ccof_bwlp - calculates the c coefficients for a butterworth lowpass
|
|
|
|
filter. The coefficients are returned as an array of integers.
|
|
|
|
|
|
|
|
*/
|
|
|
|
|
|
|
|
int *ccof_bwlp( int n )
|
|
|
|
{
|
|
|
|
int *ccof;
|
|
|
|
int m;
|
|
|
|
int i;
|
|
|
|
|
|
|
|
ccof = (int *)calloc( n+1, sizeof(int) );
|
|
|
|
if( ccof == NULL ) return( NULL );
|
|
|
|
|
|
|
|
ccof[0] = 1;
|
|
|
|
ccof[1] = n;
|
|
|
|
m = n/2;
|
|
|
|
for( i=2; i <= m; ++i)
|
|
|
|
{
|
|
|
|
ccof[i] = (n-i+1)*ccof[i-1]/i;
|
|
|
|
ccof[n-i]= ccof[i];
|
|
|
|
}
|
|
|
|
ccof[n-1] = n;
|
|
|
|
ccof[n] = 1;
|
|
|
|
|
|
|
|
return( ccof );
|
|
|
|
}
|
|
|
|
|
|
|
|
/**********************************************************************
|
|
|
|
ccof_bwhp - calculates the c coefficients for a butterworth highpass
|
|
|
|
filter. The coefficients are returned as an array of integers.
|
|
|
|
|
|
|
|
*/
|
|
|
|
|
|
|
|
int *ccof_bwhp( int n )
|
|
|
|
{
|
|
|
|
int *ccof;
|
|
|
|
int i;
|
|
|
|
|
|
|
|
ccof = ccof_bwlp( n );
|
|
|
|
if( ccof == NULL ) return( NULL );
|
|
|
|
|
|
|
|
for( i = 0; i <= n; ++i)
|
|
|
|
if( i % 2 ) ccof[i] = -ccof[i];
|
|
|
|
|
|
|
|
return( ccof );
|
|
|
|
}
|
|
|
|
|
|
|
|
/**********************************************************************
|
|
|
|
ccof_bwbp - calculates the c coefficients for a butterworth bandpass
|
|
|
|
filter. The coefficients are returned as an array of integers.
|
|
|
|
|
|
|
|
*/
|
|
|
|
|
|
|
|
int *ccof_bwbp( int n )
|
|
|
|
{
|
|
|
|
int *tcof;
|
|
|
|
int *ccof;
|
|
|
|
int i;
|
|
|
|
|
|
|
|
ccof = (int *)calloc( 2*n+1, sizeof(int) );
|
|
|
|
if( ccof == NULL ) return( NULL );
|
|
|
|
|
|
|
|
tcof = ccof_bwhp(n);
|
|
|
|
if( tcof == NULL ) return( NULL );
|
|
|
|
|
|
|
|
for( i = 0; i < n; ++i)
|
|
|
|
{
|
|
|
|
ccof[2*i] = tcof[i];
|
|
|
|
ccof[2*i+1] = 0.0;
|
|
|
|
}
|
|
|
|
ccof[2*n] = tcof[n];
|
|
|
|
|
|
|
|
free( tcof );
|
|
|
|
return( ccof );
|
|
|
|
}
|
|
|
|
|
|
|
|
/**********************************************************************
|
|
|
|
ccof_bwbs - calculates the c coefficients for a butterworth bandstop
|
|
|
|
filter. The coefficients are returned as an array of integers.
|
|
|
|
|
|
|
|
*/
|
|
|
|
|
|
|
|
double *ccof_bwbs( int n, double f1f, double f2f )
|
|
|
|
{
|
|
|
|
double alpha;
|
|
|
|
double *ccof;
|
|
|
|
int i, j;
|
|
|
|
|
|
|
|
alpha = -2.0 * cos(M_PI * (f2f + f1f) / 2.0) / cos(M_PI * (f2f - f1f) / 2.0);
|
|
|
|
|
|
|
|
ccof = (double *)calloc( 2*n+1, sizeof(double) );
|
|
|
|
|
|
|
|
ccof[0] = 1.0;
|
|
|
|
|
|
|
|
ccof[2] = 1.0;
|
|
|
|
ccof[1] = alpha;
|
|
|
|
|
|
|
|
for( i = 1; i < n; ++i )
|
|
|
|
{
|
|
|
|
ccof[2*i+2] += ccof[2*i];
|
|
|
|
for( j = 2*i; j > 1; --j )
|
|
|
|
ccof[j+1] += alpha * ccof[j] + ccof[j-1];
|
|
|
|
|
|
|
|
ccof[2] += alpha * ccof[1] + 1.0;
|
|
|
|
ccof[1] += alpha;
|
|
|
|
}
|
|
|
|
|
|
|
|
return( ccof );
|
|
|
|
}
|
|
|
|
|
|
|
|
/**********************************************************************
|
|
|
|
sf_bwlp - calculates the scaling factor for a butterworth lowpass filter.
|
|
|
|
The scaling factor is what the c coefficients must be multiplied by so
|
|
|
|
that the filter response has a maximum value of 1.
|
|
|
|
|
|
|
|
*/
|
|
|
|
|
|
|
|
double sf_bwlp( int n, double fcf )
|
|
|
|
{
|
|
|
|
int m, k; // loop variables
|
|
|
|
double omega; // M_PI * fcf
|
|
|
|
double fomega; // function of omega
|
|
|
|
double parg0; // zeroth pole angle
|
|
|
|
double sf; // scaling factor
|
|
|
|
|
|
|
|
omega = M_PI * fcf;
|
|
|
|
fomega = sin(omega);
|
|
|
|
parg0 = M_PI / (double)(2*n);
|
|
|
|
|
|
|
|
m = n / 2;
|
|
|
|
sf = 1.0;
|
|
|
|
for( k = 0; k < n/2; ++k )
|
|
|
|
sf *= 1.0 + fomega * sin((double)(2*k+1)*parg0);
|
|
|
|
|
|
|
|
fomega = sin(omega / 2.0);
|
|
|
|
|
|
|
|
if( n % 2 ) sf *= fomega + cos(omega / 2.0);
|
|
|
|
sf = pow( fomega, n ) / sf;
|
|
|
|
|
|
|
|
return sf;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**********************************************************************
|
|
|
|
sf_bwhp - calculates the scaling factor for a butterworth highpass filter.
|
|
|
|
The scaling factor is what the c coefficients must be multiplied by so
|
|
|
|
that the filter response has a maximum value of 1.
|
|
|
|
|
|
|
|
*/
|
|
|
|
|
|
|
|
double sf_bwhp( int n, double fcf )
|
|
|
|
{
|
|
|
|
int m, k; // loop variables
|
|
|
|
double omega; // M_PI * fcf
|
|
|
|
double fomega; // function of omega
|
|
|
|
double parg0; // zeroth pole angle
|
|
|
|
double sf; // scaling factor
|
|
|
|
|
|
|
|
omega = M_PI * fcf;
|
|
|
|
fomega = sin(omega);
|
|
|
|
parg0 = M_PI / (double)(2*n);
|
|
|
|
|
|
|
|
m = n / 2;
|
|
|
|
sf = 1.0;
|
|
|
|
for( k = 0; k < n/2; ++k )
|
|
|
|
sf *= 1.0 + fomega * sin((double)(2*k+1)*parg0);
|
|
|
|
|
|
|
|
fomega = cos(omega / 2.0);
|
|
|
|
|
|
|
|
if( n % 2 ) sf *= fomega + sin(omega / 2.0);
|
|
|
|
sf = pow( fomega, n ) / sf;
|
|
|
|
|
|
|
|
return(sf);
|
|
|
|
}
|
|
|
|
|
|
|
|
/**********************************************************************
|
|
|
|
sf_bwbp - calculates the scaling factor for a butterworth bandpass filter.
|
|
|
|
The scaling factor is what the c coefficients must be multiplied by so
|
|
|
|
that the filter response has a maximum value of 1.
|
|
|
|
|
|
|
|
*/
|
|
|
|
|
|
|
|
double sf_bwbp( int n, double f1f, double f2f )
|
|
|
|
{
|
|
|
|
int k; // loop variables
|
|
|
|
double ctt; // cotangent of theta
|
|
|
|
double sfr, sfi; // real and imaginary parts of the scaling factor
|
|
|
|
double parg; // pole angle
|
|
|
|
double sparg; // sine of pole angle
|
|
|
|
double cparg; // cosine of pole angle
|
|
|
|
double a, b, c; // workspace variables
|
|
|
|
|
|
|
|
ctt = 1.0 / tan(M_PI * (f2f - f1f) / 2.0);
|
|
|
|
sfr = 1.0;
|
|
|
|
sfi = 0.0;
|
|
|
|
|
|
|
|
for( k = 0; k < n; ++k )
|
|
|
|
{
|
|
|
|
parg = M_PI * (double)(2*k+1)/(double)(2*n);
|
|
|
|
sparg = ctt + sin(parg);
|
|
|
|
cparg = cos(parg);
|
|
|
|
a = (sfr + sfi)*(sparg - cparg);
|
|
|
|
b = sfr * sparg;
|
|
|
|
c = -sfi * cparg;
|
|
|
|
sfr = b - c;
|
|
|
|
sfi = a - b - c;
|
|
|
|
}
|
|
|
|
|
|
|
|
return( 1.0 / sfr );
|
|
|
|
}
|
|
|
|
|
|
|
|
/**********************************************************************
|
|
|
|
sf_bwbs - calculates the scaling factor for a butterworth bandstop filter.
|
|
|
|
The scaling factor is what the c coefficients must be multiplied by so
|
|
|
|
that the filter response has a maximum value of 1.
|
|
|
|
*/
|
|
|
|
|
|
|
|
double sf_bwbs( int n, double f1f, double f2f )
|
|
|
|
{
|
|
|
|
int k; // loop variables
|
|
|
|
double tt; // tangent of theta
|
|
|
|
double sfr, sfi; // real and imaginary parts of the scaling factor
|
|
|
|
double parg; // pole angle
|
|
|
|
double sparg; // sine of pole angle
|
|
|
|
double cparg; // cosine of pole angle
|
|
|
|
double a, b, c; // workspace variables
|
|
|
|
|
|
|
|
tt = tan(M_PI * (f2f - f1f) / 2.0);
|
|
|
|
sfr = 1.0;
|
|
|
|
sfi = 0.0;
|
|
|
|
|
|
|
|
for( k = 0; k < n; ++k )
|
|
|
|
{
|
|
|
|
parg = M_PI * (double)(2*k+1)/(double)(2*n);
|
|
|
|
sparg = tt + sin(parg);
|
|
|
|
cparg = cos(parg);
|
|
|
|
a = (sfr + sfi)*(sparg - cparg);
|
|
|
|
b = sfr * sparg;
|
|
|
|
c = -sfi * cparg;
|
|
|
|
sfr = b - c;
|
|
|
|
sfi = a - b - c;
|
|
|
|
}
|
|
|
|
|
|
|
|
return( 1.0 / sfr );
|
|
|
|
}
|
|
|
|
|
|
|
|
float *fir_lp(int n, double fcf)
|
|
|
|
{
|
|
|
|
float *ret = malloc(n * sizeof(*ret));
|
|
|
|
|
|
|
|
double d1 = ((double)n - 1.f) / 2.f;
|
|
|
|
double d2, fc, h;
|
|
|
|
|
|
|
|
fc = fcf * M_PI;
|
|
|
|
|
|
|
|
for (int i = 0; i < n; i++) {
|
|
|
|
d2 = (double)i - d1;
|
|
|
|
h = d2 == 0.f ? fc / M_PI : sin(fc * d2) / (M_PI * d2);
|
|
|
|
ret[i] = h;
|
|
|
|
}
|
|
|
|
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
float *fir_hp(int n, double fcf)
|
|
|
|
{
|
|
|
|
float *ret = malloc(n * sizeof(*ret));
|
|
|
|
|
|
|
|
double d1 = ((double)n - 1.f) / 2.f;
|
|
|
|
double d2, fc, h;
|
|
|
|
|
|
|
|
fc = fcf * M_PI;
|
|
|
|
|
|
|
|
for (int i = 0; i < n; i++) {
|
|
|
|
d2 = (double)i - d1;
|
|
|
|
h = d2 == 0.f ? 1.f - fc / M_PI : (sin(M_PI * d2) - sin(fc * d2)) / (M_PI * d2);
|
|
|
|
ret[i] = h;
|
|
|
|
}
|
|
|
|
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
float *fir_bpf(int n, double fcf1, double fcf2)
|
|
|
|
{
|
|
|
|
float *ret = malloc(n * sizeof(*ret));
|
|
|
|
|
|
|
|
double d1 = ((double)n - 1.f) / 2.f;
|
|
|
|
double d2, fc1, fc2, h;
|
|
|
|
|
|
|
|
fc1 = fcf1 * M_PI;
|
|
|
|
fc2 = fcf2 * M_PI;
|
|
|
|
|
|
|
|
for (int i = 0; i < n; i++) {
|
|
|
|
d2 = (double)i - d1;
|
|
|
|
h = d2 == 0.f ? (fc2 - fc1) / M_PI : (sin(fc2 * d2) - sin(fc1 * d2)) / (M_PI * d2);
|
|
|
|
ret[i] = h;
|
|
|
|
}
|
|
|
|
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
2022-07-10 11:32:21 -05:00
|
|
|
/* Biquad filters */
|
2023-11-27 14:29:55 -06:00
|
|
|
struct dsp_iir make_iir(int order)
|
2022-07-09 21:46:23 -05:00
|
|
|
{
|
2022-07-10 11:32:21 -05:00
|
|
|
struct dsp_iir new;
|
2023-11-27 14:29:55 -06:00
|
|
|
new.n = order+1;
|
|
|
|
new.a = calloc(sizeof(float), new.n);
|
|
|
|
new.b = calloc(sizeof(float), new.n);
|
|
|
|
new.x = calloc(sizeof(float), new.n);
|
|
|
|
new.y = calloc(sizeof(float), new.n);
|
2022-07-10 13:04:24 -05:00
|
|
|
|
2022-07-09 21:46:23 -05:00
|
|
|
return new;
|
|
|
|
}
|
|
|
|
|
2022-07-10 13:04:24 -05:00
|
|
|
struct dsp_iir biquad_iir()
|
|
|
|
{
|
2023-11-27 14:29:55 -06:00
|
|
|
return make_iir(2);
|
2022-07-10 13:04:24 -05:00
|
|
|
}
|
|
|
|
|
2022-07-08 13:54:45 -05:00
|
|
|
void biquad_iir_fill(struct dsp_iir bq, double *a, double *b)
|
|
|
|
{
|
2023-11-27 14:29:55 -06:00
|
|
|
bq.a[0] = (b[0] / a[0]);
|
|
|
|
bq.a[1] = (b[1] / a[0]);
|
|
|
|
bq.a[2] = (b[2] / a[0]);
|
|
|
|
bq.b[0] = 0.f;
|
|
|
|
bq.b[1] = (a[1] / a[0]);
|
|
|
|
bq.b[2] = (a[2] / a[0]);
|
2022-07-08 13:54:45 -05:00
|
|
|
}
|
|
|
|
|
|
|
|
struct dsp_iir bqlp_dcof(double fcf, float Q)
|
|
|
|
{
|
|
|
|
double w0 = M_PI * fcf;
|
|
|
|
|
|
|
|
double a[3];
|
|
|
|
double b[3];
|
|
|
|
double az = sin(w0) / (2 * Q);
|
|
|
|
|
2023-11-27 14:29:55 -06:00
|
|
|
b[0] = (1 - cos(w0)) / 2.0;
|
2022-07-08 13:54:45 -05:00
|
|
|
b[1] = 1 - cos(w0);
|
|
|
|
b[2] = b[0];
|
|
|
|
|
|
|
|
a[0] = 1 + az;
|
|
|
|
a[1] = -2 * cos(w0);
|
|
|
|
a[2] = 1 - az;
|
|
|
|
|
|
|
|
struct dsp_iir new = biquad_iir();
|
|
|
|
biquad_iir_fill(new, a, b);
|
|
|
|
return new;
|
|
|
|
}
|
|
|
|
|
|
|
|
struct dsp_iir bqhp_dcof(double fcf, float Q)
|
|
|
|
{
|
|
|
|
double w0 = M_PI * fcf;
|
|
|
|
double a[3];
|
|
|
|
double b[3];
|
|
|
|
double az = sin(w0) / (2 * Q);
|
|
|
|
|
|
|
|
b[0] = (1 + cos(w0)) / 2;
|
|
|
|
b[1] = -(1 + cos(w0));
|
|
|
|
b[2] = b[0];
|
|
|
|
|
|
|
|
a[0] = 1 + az;
|
|
|
|
a[1] = -2 * cos(w0);
|
|
|
|
a[2] = 1 - az;
|
|
|
|
|
|
|
|
struct dsp_iir new = biquad_iir();
|
|
|
|
biquad_iir_fill(new, a, b);
|
|
|
|
return new;
|
|
|
|
}
|
|
|
|
|
|
|
|
struct dsp_iir bqbp_dcof(double fcf, float Q)
|
|
|
|
{
|
|
|
|
double w0 = M_PI * fcf;
|
|
|
|
double a[3];
|
|
|
|
double b[3];
|
|
|
|
double az = sin(w0) / (2 * Q);
|
|
|
|
|
|
|
|
b[0] = az;
|
|
|
|
b[1] = 0;
|
|
|
|
b[2] = -b[0];
|
|
|
|
|
|
|
|
a[0] = 1 + az;
|
|
|
|
a[1] = -2 * cos(w0);
|
|
|
|
a[2] = 1 - az;
|
|
|
|
|
|
|
|
struct dsp_iir new = biquad_iir();
|
|
|
|
biquad_iir_fill(new, a, b);
|
|
|
|
return new;}
|
|
|
|
|
|
|
|
struct dsp_iir bqnotch_dcof(double fcf, float Q)
|
|
|
|
{
|
|
|
|
double w0 = M_PI * fcf;
|
|
|
|
double a[3];
|
|
|
|
double b[3];
|
|
|
|
double az = sin(w0) / (2 * Q);
|
|
|
|
|
|
|
|
b[0] = 1;
|
|
|
|
b[1] = -2 * cos(w0);
|
|
|
|
b[2] = 1;
|
|
|
|
|
|
|
|
a[0] = 1 + az;
|
|
|
|
a[1] = -2 * cos(w0);
|
|
|
|
a[2] = 1 - az;
|
|
|
|
|
|
|
|
struct dsp_iir new = biquad_iir();
|
|
|
|
biquad_iir_fill(new, a, b);
|
|
|
|
return new;
|
|
|
|
}
|
|
|
|
|
|
|
|
struct dsp_iir bqapf_dcof(double fcf, float Q)
|
|
|
|
{
|
|
|
|
double w0 = M_PI * fcf;
|
|
|
|
double a[3];
|
|
|
|
double b[3];
|
|
|
|
double az = sin(w0) / (2 * Q);
|
|
|
|
|
|
|
|
b[0] = 1 - az;
|
|
|
|
b[1] = -2 * cos(w0);
|
|
|
|
b[2] = 1 + az;
|
|
|
|
|
|
|
|
a[0] = 1 + az;
|
|
|
|
a[1] = -2 * cos(w0);
|
|
|
|
a[2] = 1 - az;
|
|
|
|
|
|
|
|
struct dsp_iir new = biquad_iir();
|
|
|
|
biquad_iir_fill(new, a, b);
|
|
|
|
return new;
|
|
|
|
}
|
|
|
|
|
|
|
|
struct dsp_iir bqpeq_dcof(double fcf, float Q, float dbgain)
|
|
|
|
{
|
|
|
|
double w0 = M_PI * fcf;
|
|
|
|
double a[3];
|
|
|
|
double b[3];
|
|
|
|
double az = sin(w0) / (2 * Q);
|
|
|
|
double A = dbgain * 10 / 40;
|
|
|
|
|
|
|
|
b[0] = 1+ az * A;
|
|
|
|
b[1] = -2 * cos(w0);
|
|
|
|
b[2] = 1 - az * A;
|
|
|
|
|
|
|
|
a[0] = 1 + az /A;
|
|
|
|
a[1] = -2 * cos(w0);
|
|
|
|
a[2] = 1 - az / A;
|
|
|
|
|
|
|
|
struct dsp_iir new = biquad_iir();
|
|
|
|
biquad_iir_fill(new, a, b);
|
|
|
|
return new;}
|
|
|
|
|
|
|
|
struct dsp_iir bqls_dcof(double fcf, float Q, float dbgain)
|
|
|
|
{
|
|
|
|
double w0 = M_PI * fcf;
|
|
|
|
double a[3];
|
|
|
|
double b[3];
|
|
|
|
double az = sin(w0) / (2 * Q);
|
|
|
|
double A = dbgain * 10 / 40;
|
|
|
|
|
|
|
|
b[0] = A * ((A + 1) - (A - 1) * cos(w0) + 2 * sqrt(A) * az);
|
|
|
|
b[1] = 2 * A * ((A - 1) - (A + 1) * cos(w0));
|
|
|
|
b[2] = A * ((A + 1) - (A - 1) * cos(w0) - 2 * sqrt(A) * az);
|
|
|
|
|
|
|
|
a[0] = (A + 1) + (A - 1) * cos(w0) + 2 * sqrt(A) * az;
|
|
|
|
a[1] = -2 * ((A - 1) + (A + 1) * cos(w0));
|
|
|
|
a[2] = (A + 1) + (A - 1) * cos(w0) - 2 * sqrt(A) * az;
|
|
|
|
|
|
|
|
struct dsp_iir new = biquad_iir();
|
|
|
|
biquad_iir_fill(new, a, b);
|
|
|
|
return new;
|
|
|
|
}
|
|
|
|
|
|
|
|
struct dsp_iir bqhs_dcof(double fcf, float Q, float dbgain)
|
|
|
|
{
|
|
|
|
double w0 = M_PI * fcf;
|
|
|
|
double a[3];
|
|
|
|
double b[3];
|
|
|
|
double az = sin(w0) / (2 * Q);
|
|
|
|
double A = dbgain * 10 / 40;
|
|
|
|
|
|
|
|
b[0] = A * ((A + 1) - (A - 1) * cos(w0) + 2 * sqrt(A) * az);
|
|
|
|
b[1] = -2 * A * ((A - 1) - (A + 1) * cos(w0));
|
|
|
|
b[2] = A * ((A + 1) - (A - 1) * cos(w0) - 2 * sqrt(A) * az);
|
|
|
|
|
|
|
|
a[0] = (A + 1) - (A - 1) * cos(w0) + 2 * sqrt(A) * az;
|
|
|
|
a[1] = -2 * ((A - 1) + (A + 1) * cos(w0));
|
|
|
|
a[2] = (A + 1) - (A - 1) * cos(w0) - 2 * sqrt(A) * az;
|
|
|
|
|
|
|
|
struct dsp_iir new = biquad_iir();
|
|
|
|
biquad_iir_fill(new, a, b);
|
|
|
|
return new;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Bipole Butterworth, Critically damped, and Bessel */
|
|
|
|
/* https://unicorn.us.com/trading/allpolefilters.html */
|
2023-11-27 14:29:55 -06:00
|
|
|
/*
|
|
|
|
struct p2_iir {
|
|
|
|
int order;
|
|
|
|
int n;
|
|
|
|
float *a;
|
|
|
|
float *b;
|
|
|
|
float *x;
|
|
|
|
float *y;
|
|
|
|
}
|
|
|
|
soundbyte p2_calc(struct p2_iir iir, soundbyte val)
|
|
|
|
{
|
|
|
|
for (int i = 0; i < iir.order; i++) {
|
|
|
|
|
|
|
|
}
|
|
|
|
}
|
2022-07-08 13:54:45 -05:00
|
|
|
|
|
|
|
void p2_ccalc(double fcf, double p, double g, double *a, double *b)
|
|
|
|
{
|
|
|
|
double w0 = tan(M_PI * fcf);
|
|
|
|
double k[2];
|
|
|
|
k[0] = p * w0;
|
2022-07-10 13:04:24 -05:00
|
|
|
k[1] = g * pow(w0, 2);
|
2022-07-08 13:54:45 -05:00
|
|
|
|
|
|
|
a[0] = k[1] / (1 + k[0] + k[1]);
|
|
|
|
a[1] = 2 * a[0];
|
|
|
|
a[2] = a[0];
|
|
|
|
b[0] = 0.f;
|
|
|
|
b[1] = 2 * a[0] * (1/k[1] - 1);
|
|
|
|
b[2] = 1 - (a[0] + a[1] + a[2] + b[1]);
|
|
|
|
}
|
|
|
|
|
|
|
|
struct dsp_iir p2_bwlp(double fcf)
|
|
|
|
{
|
|
|
|
double p = sqrt(2);
|
|
|
|
double g = 1;
|
|
|
|
|
|
|
|
struct dsp_iir new = biquad_iir();
|
2023-11-27 14:29:55 -06:00
|
|
|
p2_ccalc(fcf, p, g, new.a, new.b);
|
2022-07-08 13:54:45 -05:00
|
|
|
|
|
|
|
return new;
|
|
|
|
}
|
|
|
|
|
|
|
|
struct dsp_iir p2_bwhp(double fcf)
|
|
|
|
{
|
|
|
|
struct dsp_iir new = p2_bwlp(fcf);
|
2023-11-27 14:29:55 -06:00
|
|
|
new.a[1] *= -1;
|
|
|
|
new.b[1] *= -1;
|
2022-07-08 13:54:45 -05:00
|
|
|
|
|
|
|
return new;
|
|
|
|
}
|
|
|
|
|
|
|
|
struct dsp_iir p2_cdlp(double fcf)
|
|
|
|
{
|
|
|
|
double g = 1;
|
|
|
|
double p = 2;
|
|
|
|
|
|
|
|
struct dsp_iir new = biquad_iir();
|
2023-11-27 14:29:55 -06:00
|
|
|
p2_ccalc(fcf, p, g, new.a, new.b);
|
2022-07-08 13:54:45 -05:00
|
|
|
|
|
|
|
return new;
|
|
|
|
}
|
|
|
|
|
|
|
|
struct dsp_iir p2_cdhp(double fcf)
|
|
|
|
{
|
|
|
|
struct dsp_iir new = p2_cdlp(fcf);
|
2023-11-27 14:29:55 -06:00
|
|
|
new.a[1] *= -1;
|
|
|
|
new.b[1] *= -1;
|
2022-07-08 13:54:45 -05:00
|
|
|
|
|
|
|
return new;
|
|
|
|
}
|
|
|
|
|
|
|
|
struct dsp_iir p2_beslp(double fcf)
|
|
|
|
{
|
|
|
|
double g = 3;
|
|
|
|
double p = 3;
|
|
|
|
|
|
|
|
struct dsp_iir new = biquad_iir();
|
2023-11-27 14:29:55 -06:00
|
|
|
p2_ccalc(fcf, p, g, new.a, new.b);
|
2022-07-08 13:54:45 -05:00
|
|
|
|
|
|
|
return new;
|
|
|
|
}
|
|
|
|
|
|
|
|
struct dsp_iir p2_beshp(double fcf)
|
|
|
|
{
|
|
|
|
struct dsp_iir new = p2_beslp(fcf);
|
2023-11-27 14:29:55 -06:00
|
|
|
new.a[1] *= -1;
|
|
|
|
new.b[1] *= -1;
|
2022-07-08 13:54:45 -05:00
|
|
|
|
2022-07-10 11:32:21 -05:00
|
|
|
return new;
|
|
|
|
}
|
2022-07-08 13:54:45 -05:00
|
|
|
|
|
|
|
struct dsp_iir che_lp(int order, double fcf, double e)
|
|
|
|
{
|
|
|
|
struct dsp_iir new = p2_iir_order(order);
|
|
|
|
|
|
|
|
|
|
|
|
double a = tan(M_PI * fcf);
|
2022-07-10 13:04:24 -05:00
|
|
|
double a2 = pow(a, 2);
|
|
|
|
double u = log((1.f + sqrt(1.f + pow(e, 2)))/e);
|
2022-07-08 13:54:45 -05:00
|
|
|
double su = sinh(u/new.order);
|
|
|
|
double cu = cosh(u/new.order);
|
|
|
|
double b, c, s;
|
|
|
|
double ep = 2.f/e;
|
|
|
|
|
|
|
|
for (int i = 0; i < new.order; ++i)
|
|
|
|
{
|
|
|
|
b = sin(M_PI * (2.f*i + 1.f)/(2.f*new.order)) * su;
|
|
|
|
c = cos(M_PI * (2.f*i + 1.f)/(2.f*new.order)) * cu;
|
2022-07-10 13:04:24 -05:00
|
|
|
c = pow(b, 2) + pow(c, 2);
|
2022-07-08 13:54:45 -05:00
|
|
|
s = a2*c + 2.f*a*b + 1.f;
|
|
|
|
double A = a2/(4.f);
|
|
|
|
|
2023-11-27 14:29:55 -06:00
|
|
|
new.a[0*i] = ep * 1.f/A;
|
|
|
|
new.a[1*i] = ep * -2.f/A;
|
|
|
|
new.a[2*i] = ep * 1.f/A;
|
2022-07-08 13:54:45 -05:00
|
|
|
|
2023-11-27 14:29:55 -06:00
|
|
|
new.b[0*i] = ep * 0.f;
|
|
|
|
new.b[1*i] = ep * 2.f*(1-a2*c);
|
|
|
|
new.b[2*i] = ep * -(a2*c - 2.f*a*b + 1.f);
|
2022-07-08 13:54:45 -05:00
|
|
|
}
|
|
|
|
|
|
|
|
return new;
|
|
|
|
}
|
|
|
|
|
|
|
|
struct dsp_iir che_hp(int order, double fcf, double e)
|
|
|
|
{
|
|
|
|
struct dsp_iir new = che_lp(order, fcf, e);
|
|
|
|
|
|
|
|
double a = tan(M_PI * fcf);
|
2022-07-10 13:04:24 -05:00
|
|
|
double a2 = pow(a, 2);
|
|
|
|
double u = log((1.f + sqrt(1.f + pow(e, 2)))/e);
|
2022-07-08 13:54:45 -05:00
|
|
|
double su = sinh(u/new.order);
|
|
|
|
double cu = cosh(u/new.order);
|
|
|
|
double b, c, s;
|
|
|
|
double ep = 2.f/e;
|
|
|
|
|
|
|
|
for (int i = 0; i < new.order; ++i)
|
|
|
|
{
|
|
|
|
b = sin(M_PI * (2.f*i + 1.f)/(2.f*new.order)) * su;
|
|
|
|
c = cos(M_PI * (2.f*i + 1.f)/(2.f*new.order)) * cu;
|
2022-07-10 13:04:24 -05:00
|
|
|
c = pow(b, 2) + pow(c, 2);
|
2022-07-08 13:54:45 -05:00
|
|
|
s = a2*c + 2.f*a*b + 1.f;
|
|
|
|
double A = 1.f/(4.f);
|
|
|
|
|
2023-11-27 14:29:55 -06:00
|
|
|
new.a[0*i] = ep * 1.f/A;
|
|
|
|
new.a[1*i] = ep * -2.f/A;
|
|
|
|
new.a[2*i] = ep * 1.f/A;
|
2022-07-08 13:54:45 -05:00
|
|
|
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
return new;
|
|
|
|
}
|
|
|
|
|
2022-07-09 21:46:23 -05:00
|
|
|
struct dsp_iir che_bp(int order, double s, double fcf1, double fcf2, double e)
|
2022-07-08 13:54:45 -05:00
|
|
|
{
|
2022-07-10 11:32:21 -05:00
|
|
|
if (order %4 != 0) {
|
|
|
|
YughWarn("Tried to make a filter with wrong order. Given order was %d, but order should be 4, 8, 12, ...", order);
|
|
|
|
}
|
|
|
|
|
|
|
|
double ep = 2.f/e;
|
2022-07-08 13:54:45 -05:00
|
|
|
|
2022-07-10 11:32:21 -05:00
|
|
|
int n = order / 4;
|
2023-11-27 14:29:55 -06:00
|
|
|
struct dsp_iir new = biquad_iir();
|
2022-07-10 11:32:21 -05:00
|
|
|
|
|
|
|
double a = cos(M_PI*(fcf1+fcf2)/2) / cos(M_PI*(fcf2-fcf1)/s);
|
2022-07-10 13:04:24 -05:00
|
|
|
double a2 = pow(a, 2);
|
2022-07-09 21:46:23 -05:00
|
|
|
double b = tan(M_PI*(fcf2-fcf1)/s);
|
2022-07-10 13:04:24 -05:00
|
|
|
double b2 = pow(b, 2);
|
|
|
|
double u = log((1.f+sqrt(1.f+pow(e, 2)))/e);
|
2022-07-08 13:54:45 -05:00
|
|
|
double su = sinh(2.f*u/new.order);
|
|
|
|
double cu = cosh(2.f*u/new.order);
|
|
|
|
double A = b2/(4.f);
|
2022-07-09 21:46:23 -05:00
|
|
|
double r, c;
|
2022-07-08 13:54:45 -05:00
|
|
|
|
|
|
|
for (int i = 0; i < new.order; ++i) {
|
|
|
|
r = sin(M_PI*(2.f*i+1.f)/new.order)*su;
|
|
|
|
c = cos(M_PI*(2.f*i+1.f)/new.order)*su;
|
2022-07-10 13:04:24 -05:00
|
|
|
c = pow(r, 2) + pow(c, 2);
|
2022-07-08 13:54:45 -05:00
|
|
|
s = b2*c + 2.f*b*r + 1.f;
|
|
|
|
|
2023-11-27 14:29:55 -06:00
|
|
|
new.a[0*i] = ep * 1.f/A;
|
|
|
|
new.a[1*i] = ep * -2.f/A;
|
|
|
|
new.a[2*i] = ep * 1.f/A;
|
2022-07-08 13:54:45 -05:00
|
|
|
|
2023-11-27 14:29:55 -06:00
|
|
|
new.b[0*i] = 0.f;
|
|
|
|
new.b[1*i] = ep * 4.f*a*(1.f+b*r)/s;
|
|
|
|
new.b[2*i] = ep * 2.f*(b2*c-2.f*a2-1.f)/s;
|
|
|
|
new.b[3*i] = ep * 4.f*a*(1.f-b*r)/s;
|
|
|
|
new.b[4*i] = ep * -(b2*c - 2.f*b*r + 1.f) / s;
|
2022-07-08 13:54:45 -05:00
|
|
|
}
|
|
|
|
|
|
|
|
return new;
|
|
|
|
}
|
|
|
|
|
2022-07-10 13:04:24 -05:00
|
|
|
struct dsp_iir che_notch(int order, double s, double fcf1, double fcf2, double e)
|
2022-07-08 13:54:45 -05:00
|
|
|
{
|
2022-07-10 11:32:21 -05:00
|
|
|
if (order %4 != 0) {
|
|
|
|
YughWarn("Tried to make a filter with wrong order. Given order was %d, but order should be 4, 8, 12, ...", order);
|
|
|
|
}
|
2022-07-09 21:46:23 -05:00
|
|
|
|
2022-07-10 11:32:21 -05:00
|
|
|
int n = order / 4;
|
|
|
|
|
2022-07-10 13:04:24 -05:00
|
|
|
double ep = 2.f/e;
|
2022-07-10 11:32:21 -05:00
|
|
|
struct dsp_iir new = p2_iir_order(order);
|
|
|
|
|
|
|
|
double a = cos(M_PI*(fcf1+fcf2)/2) / cos(M_PI*(fcf2-fcf1)/s);
|
2022-07-10 13:04:24 -05:00
|
|
|
double a2 = pow(a, 2);
|
2022-07-09 21:46:23 -05:00
|
|
|
double b = tan(M_PI*(fcf2-fcf1)/s);
|
2022-07-10 13:04:24 -05:00
|
|
|
double b2 = pow(b, 2);
|
|
|
|
double u = log((1.f+sqrt(1.f+pow(e, 2)))/e);
|
2022-07-10 11:32:21 -05:00
|
|
|
double su = sinh(2.f*u/n);
|
|
|
|
double cu = cosh(2.f*u/n);
|
2022-07-08 13:54:45 -05:00
|
|
|
double A = b2/(4.f*s);
|
2022-07-10 13:04:24 -05:00
|
|
|
double r, c;
|
2022-07-08 13:54:45 -05:00
|
|
|
|
|
|
|
for (int i = 0; i < new.order; ++i) {
|
|
|
|
r = sin(M_PI*(2.f*i+1.f)/new.order)*su;
|
2022-07-10 13:04:24 -05:00
|
|
|
c = cos(M_PI*(2.f*i+1.f)/new.order)*su;
|
|
|
|
c = pow(r, 2) + pow(c, 2);
|
2022-07-08 13:54:45 -05:00
|
|
|
s = b2*c + 2.f*b*r + 1.f;
|
|
|
|
|
2023-11-27 14:29:55 -06:00
|
|
|
new.a[0*i] = ep * 1.f/A;
|
|
|
|
new.a[1*i] = ep * -2.f/A;
|
|
|
|
new.a[2*i] = ep * 1.f/A;
|
2022-07-08 13:54:45 -05:00
|
|
|
|
2023-11-27 14:29:55 -06:00
|
|
|
new.b[0*i] = 0.f;
|
|
|
|
new.b[1*i] = ep * 4.f*a*(c+b*r)/s;
|
|
|
|
new.b[2*i] = ep * 2.f*(b2-2.f*a2*c-c)/s;
|
|
|
|
new.b[3*i] = ep * 4.f*a*(c-b*r)/s;
|
|
|
|
new.b[4*i] = ep * -(b2 - 2.f*b*r + c) / s;
|
2022-07-08 13:54:45 -05:00
|
|
|
}
|
|
|
|
|
|
|
|
return new;
|
|
|
|
}
|
2023-11-27 14:29:55 -06:00
|
|
|
*/
|