prosperon/source/engine/thirdparty/Chipmunk2D/src/cpRotaryLimitJoint.c

161 lines
4.6 KiB
C
Raw Normal View History

2022-01-19 16:43:21 -06:00
/* Copyright (c) 2013 Scott Lembcke and Howling Moon Software
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "chipmunk/chipmunk_private.h"
static void
preStep(cpRotaryLimitJoint *joint, cpFloat dt)
{
cpBody *a = joint->constraint.a;
cpBody *b = joint->constraint.b;
cpFloat dist = b->a - a->a;
cpFloat pdist = 0.0f;
if(dist > joint->max) {
pdist = joint->max - dist;
} else if(dist < joint->min) {
pdist = joint->min - dist;
}
// calculate moment of inertia coefficient.
joint->iSum = 1.0f/(a->i_inv + b->i_inv);
// calculate bias velocity
cpFloat maxBias = joint->constraint.maxBias;
joint->bias = cpfclamp(-bias_coef(joint->constraint.errorBias, dt)*pdist/dt, -maxBias, maxBias);
// If the bias is 0, the joint is not at a limit. Reset the impulse.
if(!joint->bias) joint->jAcc = 0.0f;
}
static void
applyCachedImpulse(cpRotaryLimitJoint *joint, cpFloat dt_coef)
{
cpBody *a = joint->constraint.a;
cpBody *b = joint->constraint.b;
cpFloat j = joint->jAcc*dt_coef;
a->w -= j*a->i_inv;
b->w += j*b->i_inv;
}
static void
applyImpulse(cpRotaryLimitJoint *joint, cpFloat dt)
{
if(!joint->bias) return; // early exit
cpBody *a = joint->constraint.a;
cpBody *b = joint->constraint.b;
// compute relative rotational velocity
cpFloat wr = b->w - a->w;
cpFloat jMax = joint->constraint.maxForce*dt;
// compute normal impulse
cpFloat j = -(joint->bias + wr)*joint->iSum;
cpFloat jOld = joint->jAcc;
if(joint->bias < 0.0f){
joint->jAcc = cpfclamp(jOld + j, 0.0f, jMax);
} else {
joint->jAcc = cpfclamp(jOld + j, -jMax, 0.0f);
}
j = joint->jAcc - jOld;
// apply impulse
a->w -= j*a->i_inv;
b->w += j*b->i_inv;
}
static cpFloat
getImpulse(cpRotaryLimitJoint *joint)
{
return cpfabs(joint->jAcc);
}
static const cpConstraintClass klass = {
(cpConstraintPreStepImpl)preStep,
(cpConstraintApplyCachedImpulseImpl)applyCachedImpulse,
(cpConstraintApplyImpulseImpl)applyImpulse,
(cpConstraintGetImpulseImpl)getImpulse,
};
cpRotaryLimitJoint *
cpRotaryLimitJointAlloc(void)
{
return (cpRotaryLimitJoint *)cpcalloc(1, sizeof(cpRotaryLimitJoint));
}
cpRotaryLimitJoint *
cpRotaryLimitJointInit(cpRotaryLimitJoint *joint, cpBody *a, cpBody *b, cpFloat min, cpFloat max)
{
cpConstraintInit((cpConstraint *)joint, &klass, a, b);
joint->min = min;
joint->max = max;
joint->jAcc = 0.0f;
return joint;
}
cpConstraint *
cpRotaryLimitJointNew(cpBody *a, cpBody *b, cpFloat min, cpFloat max)
{
return (cpConstraint *)cpRotaryLimitJointInit(cpRotaryLimitJointAlloc(), a, b, min, max);
}
cpBool
cpConstraintIsRotaryLimitJoint(const cpConstraint *constraint)
{
return (constraint->klass == &klass);
}
cpFloat
cpRotaryLimitJointGetMin(const cpConstraint *constraint)
{
cpAssertHard(cpConstraintIsRotaryLimitJoint(constraint), "Constraint is not a rotary limit joint.");
return ((cpRotaryLimitJoint *)constraint)->min;
}
void
cpRotaryLimitJointSetMin(cpConstraint *constraint, cpFloat min)
{
cpAssertHard(cpConstraintIsRotaryLimitJoint(constraint), "Constraint is not a rotary limit joint.");
cpConstraintActivateBodies(constraint);
((cpRotaryLimitJoint *)constraint)->min = min;
}
cpFloat
cpRotaryLimitJointGetMax(const cpConstraint *constraint)
{
cpAssertHard(cpConstraintIsRotaryLimitJoint(constraint), "Constraint is not a rotary limit joint.");
return ((cpRotaryLimitJoint *)constraint)->max;
}
void
cpRotaryLimitJointSetMax(cpConstraint *constraint, cpFloat max)
{
cpAssertHard(cpConstraintIsRotaryLimitJoint(constraint), "Constraint is not a rotary limit joint.");
cpConstraintActivateBodies(constraint);
((cpRotaryLimitJoint *)constraint)->max = max;
}