677 lines
14 KiB
C
677 lines
14 KiB
C
|
// Public Domain. See "unlicense" statement at the end of this file.
|
||
|
|
||
|
// NOTE: This is still very much work in progress and is only being updated as I need it. You don't want to be using this library
|
||
|
// in its current state.
|
||
|
|
||
|
// QUICK NOTES
|
||
|
// - This library does not use SSE for its basic types (vec4, etc.). Rationale: 1) It keeps things simple; 2) SSE is not always
|
||
|
// faster than the FPU(s) on modern CPUs; 3) The library can always implement functions that work on __m128 variables directly
|
||
|
// in the future if the need arises; 4) It doesn't work well with the pass-by-value API this library uses.
|
||
|
// - Use DISABLE_SSE to disable SSE optimized functions.
|
||
|
// - Angles are always specified in radians, unless otherwise noted. Rationale: Consistency with the standard library and most
|
||
|
// other math libraries.
|
||
|
// - Use radians() and degrees() to convert between the two.
|
||
|
|
||
|
#ifndef dr_math_h
|
||
|
#define dr_math_h
|
||
|
|
||
|
#include <math.h>
|
||
|
|
||
|
#if defined(_MSC_VER)
|
||
|
#define DR_MATHCALL static __forceinline
|
||
|
#else
|
||
|
#define DR_MATHCALL static inline
|
||
|
#endif
|
||
|
|
||
|
#define DR_PI 3.14159265358979323846
|
||
|
#define DR_PIF 3.14159265358979323846f
|
||
|
|
||
|
#ifdef __cplusplus
|
||
|
extern "C" {
|
||
|
#endif
|
||
|
|
||
|
typedef struct
|
||
|
{
|
||
|
float x;
|
||
|
float y;
|
||
|
float z;
|
||
|
float w;
|
||
|
} vec4;
|
||
|
|
||
|
typedef struct
|
||
|
{
|
||
|
float x;
|
||
|
float y;
|
||
|
float z;
|
||
|
} vec3;
|
||
|
|
||
|
typedef struct
|
||
|
{
|
||
|
float x;
|
||
|
float y;
|
||
|
} vec2;
|
||
|
|
||
|
typedef struct
|
||
|
{
|
||
|
vec4 col[4];
|
||
|
} mat4;
|
||
|
|
||
|
typedef struct
|
||
|
{
|
||
|
float x;
|
||
|
float y;
|
||
|
float z;
|
||
|
float w;
|
||
|
} quat;
|
||
|
|
||
|
|
||
|
// Radians to degrees.
|
||
|
DR_MATHCALL float dr_degrees(float radians)
|
||
|
{
|
||
|
return radians * 57.29577951308232087685f;
|
||
|
}
|
||
|
|
||
|
// Degrees to radians.
|
||
|
DR_MATHCALL float dr_radians(float degrees)
|
||
|
{
|
||
|
return degrees * 0.01745329251994329577f;
|
||
|
}
|
||
|
|
||
|
|
||
|
|
||
|
///////////////////////////////////////////////
|
||
|
//
|
||
|
// VEC4
|
||
|
//
|
||
|
///////////////////////////////////////////////
|
||
|
|
||
|
DR_MATHCALL vec4 vec4f(float x, float y, float z, float w)
|
||
|
{
|
||
|
vec4 result;
|
||
|
result.x = x;
|
||
|
result.y = y;
|
||
|
result.z = z;
|
||
|
result.w = w;
|
||
|
|
||
|
return result;
|
||
|
}
|
||
|
DR_MATHCALL vec4 vec4v(const float* v)
|
||
|
{
|
||
|
return vec4f(v[0], v[1], v[2], v[3]);
|
||
|
}
|
||
|
DR_MATHCALL vec4 vec4_zero()
|
||
|
{
|
||
|
return vec4f(0, 0, 0, 0);
|
||
|
}
|
||
|
DR_MATHCALL vec4 vec4_one()
|
||
|
{
|
||
|
return vec4f(1, 1, 1, 1);
|
||
|
}
|
||
|
|
||
|
|
||
|
|
||
|
DR_MATHCALL vec4 vec4_add(vec4 a, vec4 b)
|
||
|
{
|
||
|
return vec4f(a.x + b.x, a.y + b.y, a.z + b.z, a.w + b.w);
|
||
|
}
|
||
|
|
||
|
DR_MATHCALL vec4 vec4_sub(vec4 a, vec4 b)
|
||
|
{
|
||
|
return vec4f(a.x - b.x, a.y - b.y, a.z - b.z, a.w - b.w);
|
||
|
}
|
||
|
|
||
|
|
||
|
DR_MATHCALL vec4 vec4_mul(vec4 a, vec4 b)
|
||
|
{
|
||
|
return vec4f(a.x * b.x, a.y * b.y, a.z * b.z, a.w * b.w);
|
||
|
}
|
||
|
DR_MATHCALL vec4 vec4_mul_1f(vec4 a, float x)
|
||
|
{
|
||
|
return vec4f(a.x * x, a.y * x, a.z * x, a.w * x);
|
||
|
}
|
||
|
DR_MATHCALL vec4 vec4_mul_mat4(vec4 v, mat4 m)
|
||
|
{
|
||
|
const vec4 m0 = m.col[0];
|
||
|
const vec4 m1 = m.col[1];
|
||
|
const vec4 m2 = m.col[2];
|
||
|
const vec4 m3 = m.col[3];
|
||
|
|
||
|
return vec4f(
|
||
|
m0.x*v.x + m0.y*v.y + m0.z*v.z + m0.w*v.w,
|
||
|
m1.x*v.x + m1.y*v.y + m1.z*v.z + m1.w*v.w,
|
||
|
m2.x*v.x + m2.y*v.y + m2.z*v.z + m2.w*v.w,
|
||
|
m3.x*v.x + m3.y*v.y + m3.z*v.z + m3.w*v.w
|
||
|
);
|
||
|
}
|
||
|
|
||
|
|
||
|
DR_MATHCALL vec4 vec4_div(vec4 a, vec4 b)
|
||
|
{
|
||
|
return vec4f(a.x / b.x, a.y / b.y, a.z / b.z, a.w / b.w);
|
||
|
}
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
///////////////////////////////////////////////
|
||
|
//
|
||
|
// VEC3
|
||
|
//
|
||
|
///////////////////////////////////////////////
|
||
|
|
||
|
DR_MATHCALL vec3 vec3f(float x, float y, float z)
|
||
|
{
|
||
|
vec3 result;
|
||
|
result.x = x;
|
||
|
result.y = y;
|
||
|
result.z = z;
|
||
|
|
||
|
return result;
|
||
|
}
|
||
|
DR_MATHCALL vec3 vec3v(const float* v)
|
||
|
{
|
||
|
return vec3f(v[0], v[1], v[2]);
|
||
|
}
|
||
|
DR_MATHCALL vec3 vec3_zero()
|
||
|
{
|
||
|
return vec3f(0, 0, 0);
|
||
|
}
|
||
|
DR_MATHCALL vec3 vec3_one()
|
||
|
{
|
||
|
return vec3f(1, 1, 1);
|
||
|
}
|
||
|
|
||
|
|
||
|
DR_MATHCALL vec3 vec3_add(vec3 a, vec3 b)
|
||
|
{
|
||
|
return vec3f(a.x + b.x, a.y + b.y, a.z + b.z);
|
||
|
}
|
||
|
|
||
|
DR_MATHCALL vec3 vec3_sub(vec3 a, vec3 b)
|
||
|
{
|
||
|
return vec3f(a.x - b.x, a.y - b.y, a.z - b.z);
|
||
|
}
|
||
|
|
||
|
|
||
|
DR_MATHCALL vec3 vec3_mul(vec3 a, vec3 b)
|
||
|
{
|
||
|
return vec3f(a.x * b.x, a.y * b.y, a.z * b.z);
|
||
|
}
|
||
|
DR_MATHCALL vec3 vec3_mul_1f(vec3 a, float x)
|
||
|
{
|
||
|
return vec3f(a.x * x, a.y * x, a.z * x);
|
||
|
}
|
||
|
|
||
|
|
||
|
DR_MATHCALL vec3 vec3_div(vec3 a, vec3 b)
|
||
|
{
|
||
|
return vec3f(a.x / b.x, a.y / b.y, a.z / b.z);
|
||
|
}
|
||
|
|
||
|
|
||
|
DR_MATHCALL float vec3_dot(vec3 a, vec3 b)
|
||
|
{
|
||
|
return a.x*b.x + a.y*b.y + a.z*b.z;
|
||
|
}
|
||
|
|
||
|
|
||
|
DR_MATHCALL float vec3_length2(vec3 a)
|
||
|
{
|
||
|
return vec3_dot(a, a);
|
||
|
}
|
||
|
|
||
|
DR_MATHCALL float vec3_length(vec3 a)
|
||
|
{
|
||
|
return sqrtf(vec3_length2(a));
|
||
|
}
|
||
|
|
||
|
|
||
|
DR_MATHCALL vec3 vec3_normalize(vec3 a)
|
||
|
{
|
||
|
float len = vec3_length(a);
|
||
|
|
||
|
return vec3f(
|
||
|
a.x / len,
|
||
|
a.y / len,
|
||
|
a.z / len
|
||
|
);
|
||
|
}
|
||
|
|
||
|
DR_MATHCALL vec3 vec3_cross(vec3 a, vec3 b)
|
||
|
{
|
||
|
return vec3f(
|
||
|
a.y*b.z - a.z*b.y,
|
||
|
a.z*b.x - a.x*b.z,
|
||
|
a.x*b.y - a.y*b.x
|
||
|
);
|
||
|
}
|
||
|
|
||
|
|
||
|
DR_MATHCALL vec3 vec3_triangle_normal(vec3 p1, vec3 p2, vec3 p3)
|
||
|
{
|
||
|
vec3 u = vec3_sub(p2, p1);
|
||
|
vec3 v = vec3_sub(p3, p1);
|
||
|
return vec3_normalize(vec3_cross(u, v));
|
||
|
}
|
||
|
|
||
|
|
||
|
|
||
|
///////////////////////////////////////////////
|
||
|
//
|
||
|
// VEC2
|
||
|
//
|
||
|
///////////////////////////////////////////////
|
||
|
|
||
|
DR_MATHCALL vec2 vec2f(float x, float y)
|
||
|
{
|
||
|
vec2 result;
|
||
|
result.x = x;
|
||
|
result.y = y;
|
||
|
|
||
|
return result;
|
||
|
}
|
||
|
DR_MATHCALL vec2 vec2v(const float* v)
|
||
|
{
|
||
|
return vec2f(v[0], v[1]);
|
||
|
}
|
||
|
DR_MATHCALL vec2 vec2_zero()
|
||
|
{
|
||
|
return vec2f(0, 0);
|
||
|
}
|
||
|
DR_MATHCALL vec2 vec2_one()
|
||
|
{
|
||
|
return vec2f(1, 1);
|
||
|
}
|
||
|
|
||
|
|
||
|
DR_MATHCALL vec2 vec2_add(vec2 a, vec2 b)
|
||
|
{
|
||
|
return vec2f(a.x + b.x, a.y + b.y);
|
||
|
}
|
||
|
|
||
|
DR_MATHCALL vec2 vec2_sub(vec2 a, vec2 b)
|
||
|
{
|
||
|
return vec2f(a.x - b.x, a.y - b.y);
|
||
|
}
|
||
|
|
||
|
|
||
|
DR_MATHCALL vec2 vec2_mul(vec2 a, vec2 b)
|
||
|
{
|
||
|
return vec2f(a.x * b.x, a.y * b.y);
|
||
|
}
|
||
|
DR_MATHCALL vec2 vec2_mul_1f(vec2 a, float x)
|
||
|
{
|
||
|
return vec2f(a.x * x, a.y * x);
|
||
|
}
|
||
|
|
||
|
|
||
|
DR_MATHCALL vec2 vec2_div(vec2 a, vec2 b)
|
||
|
{
|
||
|
return vec2f(a.x / b.x, a.y / b.y);
|
||
|
}
|
||
|
|
||
|
|
||
|
DR_MATHCALL float vec2_dot(vec2 a, vec2 b)
|
||
|
{
|
||
|
return a.x*b.x + a.y*b.y;
|
||
|
}
|
||
|
|
||
|
|
||
|
DR_MATHCALL float vec2_length2(vec2 a)
|
||
|
{
|
||
|
return vec2_dot(a, a);
|
||
|
}
|
||
|
|
||
|
DR_MATHCALL float vec2_length(vec2 a)
|
||
|
{
|
||
|
return sqrtf(vec2_length2(a));
|
||
|
}
|
||
|
|
||
|
|
||
|
DR_MATHCALL vec2 vec2_normalize(vec2 a)
|
||
|
{
|
||
|
float len = vec2_length(a);
|
||
|
|
||
|
return vec2f(
|
||
|
a.x / len,
|
||
|
a.y / len
|
||
|
);
|
||
|
}
|
||
|
|
||
|
|
||
|
DR_MATHCALL float vec2_angle(vec2 a, vec2 b)
|
||
|
{
|
||
|
return atanf(a.y / a.x) - atanf(b.y / b.x);
|
||
|
}
|
||
|
|
||
|
DR_MATHCALL vec2 vec2_rotate(vec2 a, float angleInRadians)
|
||
|
{
|
||
|
float c = cosf(angleInRadians);
|
||
|
float s = sinf(angleInRadians);
|
||
|
|
||
|
return vec2f(
|
||
|
a.x*c - a.y*s,
|
||
|
a.x*s + a.y*c
|
||
|
);
|
||
|
}
|
||
|
|
||
|
|
||
|
///////////////////////////////////////////////
|
||
|
//
|
||
|
// MAT4
|
||
|
//
|
||
|
///////////////////////////////////////////////
|
||
|
|
||
|
DR_MATHCALL mat4 mat4f(vec4 col0, vec4 col1, vec4 col2, vec4 col3)
|
||
|
{
|
||
|
mat4 result;
|
||
|
result.col[0] = col0;
|
||
|
result.col[1] = col1;
|
||
|
result.col[2] = col2;
|
||
|
result.col[3] = col3;
|
||
|
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
DR_MATHCALL mat4 mat4_identity()
|
||
|
{
|
||
|
mat4 result;
|
||
|
result.col[0] = vec4f(1, 0, 0, 0);
|
||
|
result.col[1] = vec4f(0, 1, 0, 0);
|
||
|
result.col[2] = vec4f(0, 0, 1, 0);
|
||
|
result.col[3] = vec4f(0, 0, 0, 1);
|
||
|
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
DR_MATHCALL mat4 mat4_ortho(float left, float right, float bottom, float top, float znear, float zfar)
|
||
|
{
|
||
|
float rml = right - left;
|
||
|
float tmb = top - bottom;
|
||
|
float fmn = zfar - znear;
|
||
|
|
||
|
float rpl = right + left;
|
||
|
float tpb = top + bottom;
|
||
|
float fpn = zfar + znear;
|
||
|
|
||
|
mat4 result;
|
||
|
result.col[0] = vec4f(2/rml, 0, 0, 0);
|
||
|
result.col[1] = vec4f(0, 2/tmb, 0, 0);
|
||
|
result.col[2] = vec4f(0, 0, -2/fmn, 0);
|
||
|
result.col[3] = vec4f(-(rpl/rml), -(tpb/tmb), -(fpn/fmn), 1);
|
||
|
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
DR_MATHCALL mat4 mat4_perspective(float fovy, float aspect, float znear, float zfar)
|
||
|
{
|
||
|
float f = (float)tan(DR_PI/2 - fovy/2);
|
||
|
|
||
|
mat4 result;
|
||
|
result.col[0] = vec4f(f / aspect, 0, 0, 0);
|
||
|
result.col[1] = vec4f(0, f, 0, 0);
|
||
|
result.col[2] = vec4f(0, 0, (zfar + znear) / (znear - zfar), -1);
|
||
|
result.col[3] = vec4f(0, 0, (2 * zfar * znear) / (znear - zfar), 0);
|
||
|
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
DR_MATHCALL mat4 mat4_vulkan_clip_correction()
|
||
|
{
|
||
|
mat4 result;
|
||
|
result.col[0] = vec4f(1, 0, 0, 0);
|
||
|
result.col[1] = vec4f(0, -1, 0, 0);
|
||
|
result.col[2] = vec4f(0, 0, 0.5f, 0);
|
||
|
result.col[3] = vec4f(0, 0, 0.5f, 1);
|
||
|
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
DR_MATHCALL mat4 mat4_translate(vec3 translation)
|
||
|
{
|
||
|
mat4 result;
|
||
|
result.col[0] = vec4f(1, 0, 0, 0);
|
||
|
result.col[1] = vec4f(0, 1, 0, 0);
|
||
|
result.col[2] = vec4f(0, 0, 1, 0);
|
||
|
result.col[3] = vec4f(translation.x, translation.y, translation.z, 1);
|
||
|
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
DR_MATHCALL mat4 mat4_rotate(float angleInRadians, vec3 axis)
|
||
|
{
|
||
|
float c = cosf(angleInRadians);
|
||
|
float s = sinf(angleInRadians);
|
||
|
|
||
|
float x = axis.x;
|
||
|
float y = axis.y;
|
||
|
float z = axis.z;
|
||
|
|
||
|
float xx = x*x;
|
||
|
float xy = x*y;
|
||
|
float xz = x*z;
|
||
|
float yy = y*y;
|
||
|
float yz = y*z;
|
||
|
float zz = z*z;
|
||
|
|
||
|
float xs = x*s;
|
||
|
float ys = y*s;
|
||
|
float zs = z*s;
|
||
|
|
||
|
mat4 result;
|
||
|
result.col[0] = vec4f(xx * (1 - c) + c, xy * (1 - c) - zs, xz * (1 - c) + ys, 0);
|
||
|
result.col[1] = vec4f(xy * (1 - c) + zs, yy * (1 - c) + c, yz * (1 - c) - xs, 0);
|
||
|
result.col[2] = vec4f(xz * (1 - c) - ys, yz * (1 - c) + xs, zz * (1 - c) + c, 0);
|
||
|
result.col[3] = vec4f(0, 0, 0, 1);
|
||
|
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
DR_MATHCALL mat4 mat4_scale(vec3 scale)
|
||
|
{
|
||
|
mat4 result;
|
||
|
result.col[0] = vec4f(scale.x, 0, 0, 0);
|
||
|
result.col[1] = vec4f(0, scale.y, 0, 0);
|
||
|
result.col[2] = vec4f(0, 0, scale.z, 0);
|
||
|
result.col[3] = vec4f(0, 0, 0, 1);
|
||
|
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
|
||
|
DR_MATHCALL mat4 mat4_mul(mat4 a, mat4 b)
|
||
|
{
|
||
|
const vec4 a0 = a.col[0];
|
||
|
const vec4 a1 = a.col[1];
|
||
|
const vec4 a2 = a.col[2];
|
||
|
const vec4 a3 = a.col[3];
|
||
|
|
||
|
const vec4 b0 = b.col[0];
|
||
|
const vec4 b1 = b.col[1];
|
||
|
const vec4 b2 = b.col[2];
|
||
|
const vec4 b3 = b.col[3];
|
||
|
|
||
|
mat4 result;
|
||
|
result.col[0] = vec4f(
|
||
|
a0.x*b0.x + a1.x*b0.y + a2.x*b0.z + a3.x*b0.w,
|
||
|
a0.y*b0.x + a1.y*b0.y + a2.y*b0.z + a3.y*b0.w,
|
||
|
a0.z*b0.x + a1.z*b0.y + a2.z*b0.z + a3.z*b0.w,
|
||
|
a0.w*b0.x + a1.w*b0.y + a2.w*b0.z + a3.w*b0.w
|
||
|
);
|
||
|
|
||
|
result.col[1] = vec4f(
|
||
|
a0.x*b1.x + a1.x*b1.y + a2.x*b1.z + a3.x*b1.w,
|
||
|
a0.y*b1.x + a1.y*b1.y + a2.y*b1.z + a3.y*b1.w,
|
||
|
a0.z*b1.x + a1.z*b1.y + a2.z*b1.z + a3.z*b1.w,
|
||
|
a0.w*b1.x + a1.w*b1.y + a2.w*b1.z + a3.w*b1.w
|
||
|
);
|
||
|
|
||
|
result.col[2] = vec4f(
|
||
|
a0.x*b2.x + a1.x*b2.y + a2.x*b2.z + a3.x*b2.w,
|
||
|
a0.y*b2.x + a1.y*b2.y + a2.y*b2.z + a3.y*b2.w,
|
||
|
a0.z*b2.x + a1.z*b2.y + a2.z*b2.z + a3.z*b2.w,
|
||
|
a0.w*b2.x + a1.w*b2.y + a2.w*b2.z + a3.w*b2.w
|
||
|
);
|
||
|
|
||
|
result.col[3] = vec4f(
|
||
|
a0.x*b3.x + a1.x*b3.y + a2.x*b3.z + a3.x*b3.w,
|
||
|
a0.y*b3.x + a1.y*b3.y + a2.y*b3.z + a3.y*b3.w,
|
||
|
a0.z*b3.x + a1.z*b3.y + a2.z*b3.z + a3.z*b3.w,
|
||
|
a0.w*b3.x + a1.w*b3.y + a2.w*b3.z + a3.w*b3.w
|
||
|
);
|
||
|
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
DR_MATHCALL vec4 mat4_mul_vec4(mat4 m, vec4 v)
|
||
|
{
|
||
|
const vec4 m0 = m.col[0];
|
||
|
const vec4 m1 = m.col[1];
|
||
|
const vec4 m2 = m.col[2];
|
||
|
const vec4 m3 = m.col[3];
|
||
|
|
||
|
return vec4f(
|
||
|
m0.x*v.x + m1.x*v.y + m2.x*v.z + m3.x*v.w,
|
||
|
m0.y*v.x + m1.y*v.y + m2.y*v.z + m3.y*v.w,
|
||
|
m0.z*v.x + m1.z*v.y + m2.z*v.z + m3.z*v.w,
|
||
|
m0.w*v.x + m1.w*v.y + m2.w*v.z + m3.w*v.w
|
||
|
);
|
||
|
}
|
||
|
|
||
|
|
||
|
///////////////////////////////////////////////
|
||
|
//
|
||
|
// QUAT
|
||
|
//
|
||
|
///////////////////////////////////////////////
|
||
|
|
||
|
DR_MATHCALL quat quatf(float x, float y, float z, float w)
|
||
|
{
|
||
|
quat result;
|
||
|
result.x = x;
|
||
|
result.y = y;
|
||
|
result.z = z;
|
||
|
result.w = w;
|
||
|
|
||
|
return result;
|
||
|
}
|
||
|
DR_MATHCALL quat quatv(const float* v)
|
||
|
{
|
||
|
return quatf(v[0], v[1], v[2], v[3]);
|
||
|
}
|
||
|
|
||
|
DR_MATHCALL quat quat_identity()
|
||
|
{
|
||
|
return quatf(0, 0, 0, 1);
|
||
|
}
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
///////////////////////////////////////////////
|
||
|
//
|
||
|
// TRANSFORM
|
||
|
//
|
||
|
///////////////////////////////////////////////
|
||
|
|
||
|
typedef struct
|
||
|
{
|
||
|
vec3 position;
|
||
|
quat rotation;
|
||
|
vec3 scale;
|
||
|
}transform_t;
|
||
|
|
||
|
DR_MATHCALL transform_t transform_init(vec3 position, quat rotation, vec3 scale)
|
||
|
{
|
||
|
transform_t result;
|
||
|
result.position = position;
|
||
|
result.rotation = rotation;
|
||
|
result.scale = scale;
|
||
|
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
DR_MATHCALL transform_t transform_identity()
|
||
|
{
|
||
|
transform_t result;
|
||
|
result.position = vec3_zero();
|
||
|
result.rotation = quat_identity();
|
||
|
result.scale = vec3_one();
|
||
|
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
|
||
|
DR_MATHCALL transform_t transform_translate(transform_t transform, vec3 offset)
|
||
|
{
|
||
|
transform_t result = transform;
|
||
|
result.position = vec3_add(transform.position, offset);
|
||
|
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
///////////////////////////////////////////////
|
||
|
//
|
||
|
// SSE IMPLEMENTATION
|
||
|
//
|
||
|
///////////////////////////////////////////////
|
||
|
|
||
|
// Not supporting SSE on x86/MSVC due to pass-by-value errors with aligned types.
|
||
|
#if (defined(_MSC_VER) && defined(_M_X64)) || defined(__SSE2__)
|
||
|
#define SUPPORTS_SSE
|
||
|
#endif
|
||
|
|
||
|
#if !defined(DISABLE_SSE) && defined(SUPPORTS_SSE)
|
||
|
#define ENABLE_SSE
|
||
|
#endif
|
||
|
|
||
|
#ifdef ENABLE_SSE
|
||
|
#if defined(__MINGW32__)
|
||
|
#include <intrin.h>
|
||
|
#endif
|
||
|
#include <emmintrin.h>
|
||
|
#endif
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
#ifdef __cplusplus
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
#endif //dr_math_h
|
||
|
|
||
|
/*
|
||
|
This is free and unencumbered software released into the public domain.
|
||
|
|
||
|
Anyone is free to copy, modify, publish, use, compile, sell, or
|
||
|
distribute this software, either in source code form or as a compiled
|
||
|
binary, for any purpose, commercial or non-commercial, and by any
|
||
|
means.
|
||
|
|
||
|
In jurisdictions that recognize copyright laws, the author or authors
|
||
|
of this software dedicate any and all copyright interest in the
|
||
|
software to the public domain. We make this dedication for the benefit
|
||
|
of the public at large and to the detriment of our heirs and
|
||
|
successors. We intend this dedication to be an overt act of
|
||
|
relinquishment in perpetuity of all present and future rights to this
|
||
|
software under copyright law.
|
||
|
|
||
|
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
||
|
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
|
||
|
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
|
||
|
IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR
|
||
|
OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
|
||
|
ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
|
||
|
OTHER DEALINGS IN THE SOFTWARE.
|
||
|
|
||
|
For more information, please refer to <http://unlicense.org/>
|
||
|
*/
|